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by
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SCALING LAW FOR HEART RATE WHEN DOMINATED BY STRETCHING

To complement the discussion in the main text, here we consider the case of a (thin) shell dominated by stretching
deformations. The work required to deform such a shell scales as Eε2R2h, where E is the elastic modulus of the walls
and ε ∼ A/R is the stretching strain for a small amplitude of deformation A. This work is converted into kinetic
energy of the fluid that is pushed out, and scales as ρfR

3(Aft)
2, where we have assumed that the fluid velocity scales

as the product of the frequency ft and the amplitude A. Balancing the work and kinetic energy yields an estimate
for the frequency of such a fluid-loaded & purely stretched soft elastic shell as

ft ≈
c′shape

2π

√
E

ρf

h1/2

R3/2
, (S1)

where c′shape is a dimensionless constant that is determined by the shape of the ventricle (c′shape '
√

3 for a sphere,

and c′shape '
√

2 for a cylinder). We note that the scaling law is qualitatively different from the estimate obtained
by balancing the bending energy and the kinetic energy (see (1) in the main text) - differing by a factor of h/R.
For the dimensions of a human heart, h ∼ 10 mm, R ∼ 30 mm, E ∼ 104 Pa and ρf ∼ 103 kg/m3, which gives an
elastohydrodynamic resonance frequency ft ∼ 10 Hz, larger than the one obtained when deformations dominated by
bending by a factor

√
12R/h. For twist-driven pumping that is the typical mode of ventricular deformation, the shell

deforms primarily via twist-induced buckling that leads to bending, so that the scaling law (1) in the main text is the
appropriate one to characterize resonant pumping in the heart.

NUMERICAL SIMULATIONS

Elasticity

In order to simulate the twist induced buckling of the cylindrical shell, we minimize the elastic energy for Kirchhoff-
Love shells [1]. This energy can be written in terms of the first fundamental form a and second fundamental form b
of the mid-surface in the current configuration and the reference configuration (denoted by the subscript 0):

E =
1

2

∫
U

[
h

4

∥∥a−10 a− I
∥∥2
e

+
h3

12

∥∥a−10 (b− b0)
∥∥2
e

]√
det a0 dx dy, (S2)

The integral is evaluated over the range of parametric coordinates (x, y) ∈ U ⊂ R2, where U defines the parametric
domain whose mapping to R3 corresponds to the mid-surface embedding. The elastic norm ‖A‖2e = αTr2(A) +
2βTr(A2) defines the invariants of the strain A, with the coefficients α = Eνp/(1 − ν2) and β = E/(2 + 2νp) being
the plane-stress Lamé parameters expressed in terms of the Young’s modulus E and Poisson’s ratio νp, of the St.
Venant-Kirchhoff material model. We note that, for a thin plate (b0 = 0), when the assumptions of moderate rotations
and small in-plane strain assumptions are explicitly taken into account. this energy reduces to the Föppl-van Karman
energy [2].

For our discrete approximation of the shell, the first and second fundamental forms of the mid-surface can be written
as

atriangle =

(
~e1 · ~e1 ~e1 · ~e2
~e1 · ~e2 ~e2 · ~e2

)

btriangle =

(
2~e1 · (~n0 − ~n2) −2~e1 · ~n0
−2~e1 · ~n0 2~e2 · (~n1 − ~n0)

)
where ~ei represent directed edges of the triangle, and ~ni represent normal vectors defined on all edges of the triangle
mesh. The introduction to edge-normal vectors introduces extra degrees of freedom into the mesh; see [1] for an
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exposition of this choice. This leads to a discretized expression of the elastic energy as a sum over all triangular faces,
as further detailed in [1, 2]. The total energy is then minimized with respect to all free mesh vertex positions and the
orientation of edge-normal vectors, given the rest configuration and appropriate loading/boundary conditions. The
current implementation uses the L-BFGS method to minimize the total energy.

Hydrodynamics

The cylindrical shell is immersed in a fluid, the dynamics of which are computed by solving the incompressible
Navier-Stokes equations in a three-dimensional Cartesian domain:

∂u

∂t
+ u · ∇u = − 1

ρf
∇p+ ν∇2u + fibm, (S3)

∇ · u = 0. (S4)

where u is the fluid velocity vector, ρf is the density of the fluid and p is the hydrodynamic pressure. fibm is the
force needed to enforce the influence of the cylindrical shell on the flow through the immersed boundary method.
In the immersed boundary method the boundary condition of any immersed surface (here no-slip) is represented
through a momentum source in the governing momentum equations. The equations are solved using an energy-
conserving second-order centered finite difference scheme in a Cartesian domain with fractional time-stepping. An
explicit Adams-Bashforth scheme is used to discretise the non-linear terms while an implicit Crank-Nicholson scheme
is used for the viscous terms. Time integration is performed via a self starting fractional step third-order Runge-Kutta
(RK3) scheme. Additional details on the numerical schemes and validation can be found in [9, 10]. The simulations
are run in such a way that hydrodynamic stresses do not influence the structural dynamics. This allows us to explicitly
test the dependence of pumping dynamics on the twist-untwist frequency.

Dynamics of pumping

In the attached Supplementary movie S1, we show animations of the pumping dynamics when the shell is immersed
in the fluid. The dotted lines represent the domain and the flow is visualised in the mid-plane bisecting the cylindrical
shell. The colour represents the velocity of the fluid in the axial direction.

EXPERIMENTS ON TWIST BUCKLING OF A CYLINDRICAL SHELL

To realise this experimentally, we build a model of a tubular heart-like pump made of an elastomer that ejects
fluid by twisting and bending. The cylindrical shell of constant thickness h = 2.3 mm and radius R = 18.9 mm is
obtained by spincasting a curing solution of silicone at 1000 rpm in a cylindrical mold. The geometry of the shell is
characterised by the aspect ratio L/R and thickness ratio R/h, where L, R and h are the length, radius and thickness
of the shell, respectively. The shape evolution of such a shell is shown in Fig. S1. Such a device can yield ejection
fractions of 50% with bending strains smaller than 30%, as shown in Fig. S2.

2
cm

FIG. S1. Artificial pump undergoing controlled instabilities under twist. The shell thickness is h = 2.3 mm, its radius is
R = 18.9 mm, R/h ' 8.2 .
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FIG. S2. Ejection fraction as a function of the maximum bending strain of the shell, measured experimentally by determining
the radius of curvature of the wrinkles. The different symbols indicate four independent series of tests. The dashed line is a
guide for eyes.

HEART SIZE, SHAPE AND RATE DATA

Here we report the references that have been used in Fig. 3 of the main text. R denotes the radius of the left ventricle
at the end of the diastole regime. h denotes the average thickness of the left ventricle at the end of the diastole regime.
The reported value of the heart rate, fe, is an average on adult male and female specimens. In an individual, the
heart rate fe varies as a function of the temperature, stress level, physical activity, disease. Nevertheless, we made
the choice to only report the average value for the healthy adult animal. In [11], the wall thickness h is estimated
from measurements of the end-diastole volume of the left ventricle and from the myocardial volume.



4

TABLE S1. Heart geometry and heart rate in terrestrial mammals. (*) The Etruscan shrew heart wall thickness is estimated
from the value of R and the best fit h = 0.21×R1.15 indicated in Fig. S3.

R
(m

m
)

h
(m

m
)

R
/
h

f e
(H

z)
so

u
rc

es

E
tr

u
sc

a
n

sh
re

w
S

u
n

cu
s

et
ru

sc
u

s
0
.8

0
.2

*
4
.9

*
1
6
.7

[1
2
]

M
o
u
se

M
u

s
m

u
sc

u
lu

s
2
.8

0
.8

3
.5

9
.7

[5
,

1
2
0
,

1
9
9
,

2
0
7
]

in
[1

1
]

R
a
t

R
a

tt
u

s
n

o
rv

eg
ic

u
s

3
.8

1
.9

2
.1

5
.1

[1
3
]

R
a
t

R
a

tt
u

s
ra

tt
u

s
5
.1

2
.1

2
.4

5
.7

[5
6
,

8
7
,

8
8
,

1
0
6
,

1
1
3
,

1
2
7
,

1
3
4
,

1
3
6
,

1
7
7
]

in
[1

1
]

G
u
in

ea
p
ig

C
a

vi
a

po
rc

el
lu

s
7
.2

1
.8

4
.0

4
.6

[7
,

8
1
,

8
3
,

8
7
,

1
0
7
,

1
3
2
,

1
6
7
]

in
[1

1
]

C
a
t

F
el

is
d

o
m

es
ti

cu
s

1
1
.7

4
.8

2
.4

3
.0

[1
9
,

3
5
,

7
8
,

1
0
3
,

1
1
5
,

1
3
8
]

in
[1

1
]

T
h
re

e-
to

ed
sl

o
t

B
ra

d
yp

u
s

tr
id

a
ct

yl
u

s
1
1
.9

3
.1

3
.8

1
.4

[2
1
,

3
8
,

3
9
,

4
0
,

1
3
8
]

in
[1

1
]

D
o
m

es
ti

c
ra

b
b
it

O
ry

ct
o

la
gu

s
cu

n
ic

u
lu

s
1
2
.1

2
.5

4
.8

4
.2

[1
8
,

3
4
,

4
9
,

1
0
4
,

1
1
7
,

1
5
4
,

1
9
0
]

in
[1

1
]

R
h
es

u
s

m
o
n
k
ey

M
a

ca
ca

m
u

la
tt

a
1
2
.6

4
.1

3
.1

2
.6

[2
7
,

5
4
,

5
5
,

1
9
1
]

in
[1

1
]

C
y
n
o
m

o
lg

u
s

m
o
n
k
ey

M
a

ca
ca

fa
sc

ic
u

la
ri

s
1
4
.3

6
.2

2
.3

2
.9

[2
7
,

3
0
,

1
0
0
]

in
[1

1
]

D
o
g

C
a

n
is

fa
m

il
ia

ri
s

2
7
.3

8
.7

3
.1

1
.8

[6
,

1
7
,

4
4
,

8
1
,

8
8
,

9
8
,

1
2
7
,

1
3
5
,

1
4
1
,

1
7
1
,

1
7
5
,

2
0
3
,

2
0
4
]

in
[1

1
]

E
u
ro

ka
n
g
a
ro

o
M

a
cr

o
p

u
s

ro
bu

st
u

s
2
9
.4

1
6
.2

1
.8

1
.5

[1
2
1
]

in
[1

1
]

G
o
a
t

C
a

p
ra

h
ir

cu
s

3
2
.9

8
.9

3
.7

1
.3

[8
8
]

in
[1

1
]

H
u
m

a
n

H
o

m
o

sa
p

ie
n

s
3
3
.7

7
.1

4
.7

1
.2

[4
,
7
,
1
1
,
1
6
,
4
4
,
5
9
,
9
1
,
1
1
1
,
1
2
7
,

1
4
5
,

2
0
2
]

in
[1

1
]

S
h
ee

p
O

vi
s

a
ri

es
4
0
.0

8
.4

4
.8

2
.1

[2
4
,

4
4
,

5
1
,

8
8
,

1
2
5
]

in
[1

1
]

P
ig

S
u

s
sc

ro
fa

4
2
.1

1
0
.8

3
.9

1
.4

[8
8
,

1
6
9
,

2
0
0
]

in
[1

1
]

L
la

m
a

L
a

m
a

gl
a

m
a

4
5
.9

1
0
.9

4
.2

1
.0

[4
,

4
1
,

6
0
]

in
[1

1
]

C
a
m

el
C

a
m

el
u

s
d

ro
m

ed
a

ru
s

6
2
.6

1
8
.6

3
.4

1
.0

[9
2
,

1
2
6
]

in
[1

1
]

C
a
tt

le
B

o
s

ta
u

ru
s

6
9
.1

1
9
.1

3
.6

1
.0

[8
8
,

9
5
]

in
[1

1
]

H
o
rs

e
E

qu
u

s
ca

ba
ll

u
s

7
5
.9

2
8
.6

2
.7

0
.8

[4
8
,

5
8
,

8
8
,

9
5
,

1
2
4
]

in
[1

1
]

G
ir

a
ff

e
G

ir
a

ff
a

ca
m

el
o

pa
rd

a
li

s
9
1
.0

5
5
.9

1
.6

1
.7

[1
9
3
]

in
[1

1
]

A
si

a
n

el
ep

h
a
n
t

E
le

p
h

a
s

m
a

xi
m

u
s

1
3
4
.0

4
8
.4

2
.8

0
.5

[9
,

8
9
]

in
[1

1
]

A
fr

ic
a
n

el
ep

h
a
n
t

L
o

xo
d

o
n

ta
a

fr
ic

a
n

a
1
4
9
.5

5
2
.6

2
.8

0
.7

[8
9
]

in
[1

1
]

[1] C. Weischedel, A. Tuganov, T. Hermansson, J. Linn, M. Wardetzky Construction of discrete shell models by geometric
finite differences (Fraunhofer ITWM, Kaiserslautern, Germany), Technical Report 220 (2012).

[2] W. M. van Rees, E. Vouga, L. Mahadevan Growth patterns for shape-shifting elastic bilayers Proceedings of the National
Academy of Sciences, USA 114, 11597-11602 (2017).

[3] F. P. Mall, On the muscular architecture of the ventricles of the human heart, The American Journal of Anatomy 2,
211-266 (1911).

[4] R. A. Greenbaum, S. Y. Ho, D. G. Gibson, A. E. Becker, R. H. Anderson, Left ventricular architecture in man, British
Hear Journal 45, 248-263 (1981).

[5] F. Torrent-Guasp, Estructura y funcion del corazon, Revista Espanola de cardiologia 51, 91-102 (1998).



5

TABLE S2. Heart geometry and heart rate in marine mammals and birds. (*) The hummingbird heart wall thickness and the
blue whale left ventricle radius are estimated from the value of R and the best fit h = 0.21×R1.15 indicated in Fig. S3.
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FIG. S3. Left and right panels shows typical wall thickness h of the left ventricle and the experimentally measured heart rate
fe as a function of the typical radius R of the left ventricle, respectively. The reported values are the averaged ones (see S.I.).
The best fit is given by h = ChR

1.15, where h and R are expressed in millimeters (dashed line), and the dimensional constant
Ch = 0.21mm−.15. The corresponding prediction in terms of heart rate is given by fe = ft = CfR

−0.78, where fe and R are
expressed in Hertz and meters respectively (dashed line), and the dimensional constant Cf = 0.11Hz.m1.78. The values of
these parameters are averaged over the diastole and the systole. Green circles are terrestrial mammals, blue squares are marine
mammals and magenta triangles are birds.
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