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Supplementary Information

SI-1 Inverse coordinates and bijective mapping

SI-1.1 On the star-shaped (SS) and non-star-shaped (NSS) particles and their
bijectivity

Here we define SS particles as those particles for which a bijective map is obtained using the radial mapping
technique. Since the difference between SH and rSOH is simply a rescaling of the aspect ratio, particles
that are SS can be parametrized with a bijective map for either of these two techniques. There is, however,
a subtle difference between these two radial approaches, and the hyperbolic mapping (hSOH) discussed in
the main text. To illustrate this, Figure SI-1A shows a manually generated SS stone, and SI-1B shows a
manually generated NSS stone. Each subfigure shows a hyperbolic mapping (left panel) as well as a radial
mapping (right panel). The radial and hyperbolic mappings slide the surface sampled points onto the target
spheroid along the corresponding coordinate lines, shown with blue-dashed lines in each panel. As shown
in this example, in most cases a (N)SS stone (i.e. (non-)bijective under radial mapping) will give a (non-
)bijective hyperbolic mapping as well. However, given the curvature of the hyperbolic coordinate lines, this
is not always guaranteed and could even depend on the chosen domain parameter e. Therefore, we always
check for each stone whether a bijective map exists for the applied mapping.

To do so, we assume that the input surface normals (green arrows) always point outward of the stone bulk
(away from the gray shading). In this case, the spheroidal parameterization directors for SS surfaces will all
point outward as well. If one or more of the normals flip direction, then the mapping of the triangulated
surface is nonbijective or the surface is nonmanifold. This can also be expressed through the difference
between the normal of the surface at a point, and the normal of the spheroid at the same point is larger than
π/2, we have a nonbijective mapping. It should be noted that nonmanifold surfaces can cause normal flips,
but in this paper, we assume that all the input meshes are manifold and the normals of the input surface
are consistent (all point inwards or all point outwards).

This yields a simple numerical check for the bijectivity of discrete manifold surfaces. To numerically check
that, we define a map n : M → S2, where n is the Gaussian map and n(pi) is the normal vector at a given
point pi that lies on M. The sign of the computed normals can be found via the signed area of each face.
The mapping is bijective when all the normals point outward.

SI-1.2 Analytic inverse spheroidal coordinates

For completeness, this section shows the derivation of the exact oblate and prolate spheroidal inverse co-
ordinates. This is important for computing the proposed hyperbolic mapping. Analogous to radial vectors
in spherical coordinates, the normal directors of a spheroid are hyperbolic sections. For radial mappings,
we can normalize the directors of each point on the input surface resulting in a spheroidal image of the
surface denoted E . In this paper, we use this analytic approach to normalize the directors and compute the
parameterization of a surface onto a target spheroid.

On the complex plane, we assume that the oblate coordinates are connected by the relation ρob + iz, where
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Figure SI-1: A cross-sectional view through a star-shaped stone (A) and non-star-shaped stone (B), subject
to hyperbolic mapping (left) and radial mapping (right). The color-coded dots on the target spheroid are
the result of sliding the sampled points from the discretized input surface along the coordinate lines onto
the spheroidal space (blue-dashed lines; hyperbolic sections for hyperbolic mapping and straight lines for the
radial mapping). In this example, both mappings are bijective in A, whereas both mappings are non-bijective
in B.

ρob =
√
x2 + y2. Now, we use the definition of the oblate spheroidal coordinates:

x(ζ, η, ϕ) = e cosh ζ cos η cosϕ,

y(ζ, η, ϕ) = e cosh ζ cos η sinϕ,

z(ζ, η) = e sinh ζ sin η,

(1)

We can rewrite ρob for the oblate coordinates as ρob = e cosh ζ cos η and it follows from that:

ρob + iz = e (cosh ζ cos η + i sinh ζ sin η) . (2)
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We also know that the trigonometric and hyperbolic functions can be written in terms of Euler’s formula
such as:

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
, (3)

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
. (4)

By comparison, we can also write sinhx = −i sin(ix) and cosx = cosh(ix). Substituting all these identities
in Eq. (2) we obtain:

ρob + iz = e cosh(ζ + iη). (5)

The latter can be used for computing both ζ and η coordinates such that:

η = ℑ
{
cosh−1

(
ρob + iz

e

)}
, ζ = ℜ

{
cosh−1

(
ρob + iz

e

)}
. (6)

Similar to the above, we can derive the prolate coordinates. Though, for the prolate spheroids the complex
plane is rotated by π/2. So, the complex plane relation for prolate coordinates becomes iρpr(η, ϕ) + z.
Similarly, we obtain:

η = ℑ
{
cosh−1

(
iρpr + z

e

)}
, ζ = ℜ

{
cosh−1

(
iρpr + z

e

)}
. (7)

These analytic formulae can be used to compute the hyperbolic mapping onto any spheroid when normalizing
the hyperbolic normal directors by ζ = ζ0. This approach is also used as a starting point for the discussion
in SI-1.1.

SI-1.3 Radial-based approximation of inverse spheroidal coordinates

In this section, we derive a radial-based approximation of the inverse spheroidal coordinates given the analytic
ones explained in SI-1.2. This radial inversion is used for computing η̂-coordinates that we used for the radial
mapping to replace the η-coordinates (hyperbolic curves). To demonstrate this, we here consider a simple,
but not less general, case in the elliptic coordinates in the plane ϕ = 0, which can be written in the parametric
form:

x(ζ, η) = e cosh ζ cos η,

z(ζ, η) = e sinh ζ sin η,

where ζ and η are the exact spheroidal coordinates associated with Cartesian coordinates x and z. In this
radial mapping approach, we propose to normalize these coordinates such that:

x̂(ζ, η) =
x(ζ, η)

e cosh ζ0
=

cosh ζ

cosh ζ0
cos η, (8)

ẑ(ζ, η) =
z(ζ, η)

e sinh ζ0
=

sinh ζ

sinh ζ0
sin η, (9)

where ζ0 defines a target elliptic section. From this, we can introduce the coordinate η̂, such that:

tan η̂ =
ẑ(ζ, η)

x̂(ζ, η)
(10)

=
sinh ζ

cosh ζ

cosh ζ0
sinh ζ0

sin η

cos η
(11)

=
tanh ζ

tanh ζ0
tan η. (12)
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Figure SI-2: An overlay of the polar coordinates system on top of the elliptic one. The linear radials
asymptotically approach the hyperbolic directors in the elliptic coordinate system. Solid lines represent the
elliptic system with hyperbolic directors and confocal ellipses, while the dashed lines represent the radial
directors with confocal circles.

Rewriting ζ = ζ0 + ϵ and expanding in ϵ, we obtain :

tan η̂ =
tanh (ζ0 + ϵ)

tanh ζ0
tan η = tan η

[
1 +

ϵ

sinh ζ0 cosh ζ0
− ϵ2

cosh2 ζ0
+O(ϵ3)

]
. (13)

From Eq. (13), we can see that for points that fall on the ζ0-ellipse (or spheroid in 3D) η̂ = η. For points
away from the target shape the difference between η and η̂ increases with ζ − ζ0. Consequently, choosing
η̂ instead of η can be seen as a linearization (first-order approximation) in the parametric difference ζ − ζ0.
Figure SI-2 shows how the linear radials converge to the hyperbolic directors of the elliptic coordinates. In
general, we approach polar coordinates from the elliptic ones when e → 0 while cosh ζ → sinh ζ.

The approach is generalized for spheroids by replacing x(ζ, η) by ρ(ζ, η, ϕ) that can be either normalized by
e cosh ζ0 or e sinh ζ0 for oblate and prolate surfaces, respectively, in the spheroidal space.

SI-1.4 Radial and hyperbolic mappings with the elliptic Fourier descriptors
(EFD)–2D counterpart examples

To visualize the differences between the radial and hyperbolic mappings proposed here, we use the elliptic
Fourier descriptor (EFD) approach (Kuhl and Giardina, 1982; Mollon and Zhao, 2012) to study the recon-
struction of 2D closed contours. We further study the effect of these mappings on the orthogonality of the
constructed basis functions as they directly affect the quality of the analysis and reconstruction. Here we
have generated an SS contour that resembles a 2D cross-section of a stone and sampled it uniformly with a
set of points (constant arc length between the points).

In Figure SI-3, we show the results of mapping the points using a hyperbolic map (A) and a radial map (B).
The mapped points are again visualized using an arbitrary “target ellipse”. Further, we use a similar least
squares approach as in 3D to integrate the Fourier basis functions. This also allows us to further investigate
the orthogonality of the discrete basis as a function of the sampling approaches. The results, on the same
figure, show that the hyperbolic mapping favors sampling points near the poles (high-curvature areas), while
the radial mapping favors sampling denser far from the poles (low-curvature areas). The effect of these
mappings is shown in the middle column of sets (A) and (B) where we see oscillations occurring near the
pole areas in the radial mapping due to the poor regularization in that area and weak sampling. Moreover,
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the right column of the figure shows the corresponding orthogonality matrix for the constructed Fourier basis
using η for the hyperbolic mapping and η̂ for the radial one where the error for the radial basis shows more
off-orthogonality error.

Target ellipseA)

Surface boundary

B)

R-RMSE = 0.081545

R-RMSE = 4.78E-05

Figure SI-3: A comparison between the radial and hyperbolic mappings for 2D contours. (A) the left column
shows the hyperbolic mapping onto an ellipse and the middle column is the corresponding reconstruction at
nmax = 20 (the solid black line) as well as the right column is the orthogonality error matrix. (B) the left
column same as the (A) but for the radial mapping. The blue-hashed lines in the middle column correspond
to the original input surface contour. For this example, we used 141 points (for the herein renders we used
only 51 points) to represent each contour and we sampled the η-coordinate with equal increments on each
contour; the shown scatter on the left side does not represent the real count of the used points.

To further investigate the effect of the point distribution after mapping, we artificially distributed the source
points in three different ways. In the first approach, we created source points so that the η coordinate is
uniformly sampled after mapping (see Fig. SI-4A). In the second approach, we created source points more
densely near the pole area (see Fig. SI-4B). For the third one, we created most of the points near the low
curvature areas (see Fig. SI-4C). After reconstructing the three cases, we find that the best results were
obtained by the first approach. However, the results of the second approach were very close to the first one,
while the third one deteriorated much faster for the same number of sampled points. This demonstrates
that approaches that favor sampling more uniformly or even denser near the poles are in general better
than those oversampling the low-curvature regions. This supports the main results in the manuscript that
hyperbolic-based mapping is more beneficial than radial-based mapping.

Finally, to consider a more realistic example, we used random sampling on the input surface itself. By fixing
the random seed number, we tested both the hyperbolic and radial sampling approaches onto the same
target spheroid. Figure SI-5 shows the numerical differences between the hyperbolic and radial mapping
and the arc-length distortion for the resulting target spheroid. The hyperbolic sampling was generally more
preserving in terms of the arc length (equivalent to area-preserving in the 3D case) and orthogonality.
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R-RMSE = 4.74E-05 R-RMSE = 4.94E-05 R-RMSE = 0.012801
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Surface boundary
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Figure SI-4: Comparing the effect of clustering sampled points in different regions. (A) uniformly sampled
target spheroid with equal elliptic-arc length. (B) Densely sampling the target ellipse near high curvature
areas (the poles). (C) Densely sampling the target ellipse near low curvature areas. The underneath insets
show the reconstruction results using nmax = 20 and with 161 sampled points for each contour. The herein-
shown contours do not reflect the real number of sampled points and are mere visualization contours for the
effect of sampling target ellipses.

R-RMSE = 0.089296

)B

R-RMSE = 6.31E-05

)A

Figure SI-5: Reconstructing contours with radial and hyperbolic mappings of a sampled 161 random points
from the 2D contour of the surface with a fixed seed number 5. (A) shows the randomly sampled stone using
hyperbolic mapping and the resulting reconstruction. (B) same as (A) but with radial mapping.
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SI-2 Supplemental results

SI-2.1 Stones reconstruction examples

In this section, we present the rest of the results for the chosen stones from the three datasets. Figure SI-6
is a continuation of Fig. 6 in the main text, where we compare the reconstruction via the traditional SH and
the newly proposed SOH-based approaches for Dataset 1. Similarly, Fig. SI-7 is also a continuation of Fig. 8
in the main text, to compare the reconstruction results between the same abovementioned approaches for
Dataset 2.

Figure SI-8 is a continuation of Fig. 10 in the main text where we show the results of the reconstruction
using c-rSOH approach for the non-star shaped stones in Dataset 3.
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A-RMSE = 0.002247 A-RMSE = 0.003960

A-RMSE = 0.003148 A-RMSE = 0.004701

A-RMSE = 0.002044 A-RMSE = 0.004025

A-RMSE = 0.003079 A-RMSE = 0.004900

A-RMSE = 0.003379 A-RMSE = 0.005294

A-RMSE = 0.004376 A-RMSE = 0.007019

c-rSOH (proposed)

A-RMSE = 0.002939

A-RMSE = 0.000883

A-RMSE = 0.002849

A-RMSE = 0.001064

A-RMSE = 0.002553

A-RMSE = 0.001152

A-RMSE = 0.002362

hSOH (proposed)

A-RMSE = 0.002169

A-RMSE = 0.001684

A-RMSE = 0.002228

A-RMSE = 0.001818

A-RMSE = 0.002087

A-RMSE = 0.002200

A-RMSE = 0.002551

Figure SI-6: Reconstruction of a selected set of SS rubble stones (Saloustros et al., 2023) via the conformal
spheroidal approach (c-rSOH, second column), hyperbolic spheroidal approach (hSOH, third column), radial
spheroidal approach (rSOH, fourth column), and traditional spherical harmonics (SH, fifth column). The
codenames and the fitted aspect ratios (AR) for the stones are shown on the far left annotations. Each
reconstructed stone shows the normalized average distances (A-RMSE) below. Boldfaced A-RMSE high-
lights the best reconstruction accuracy.
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Input surfaces rSOH (proposed) SH (traditional)

A-RMSE = 0.001216 A-RMSE = 0.001703

A-RMSE = 0.001425 A-RMSE = 0.001474

A-RMSE = 0.003496 A-RMSE = 0.003664

A-RMSE = 0.001028 A-RMSE = 0.001985

A-RMSE = 0.000884 A-RMSE = 0.001260

A-RMSE = 0.001452 A-RMSE = 0.001570

c-rSOH (proposed)

A-RMSE = 0.000507

A-RMSE = 0.000502

A-RMSE = 0.001265

A-RMSE = 0.000416

A-RMSE = 0.000635

A-RMSE = 0.000526

hSOH (proposed)

A-RMSE = 0.000872

A-RMSE = 0.000905

A-RMSE = 0.001332

A-RMSE = 0.000769

A-RMSE = 0.000580

A-RMSE = 0.000971

B6
AR = �.��

A-RMSE = 0.001180 A-RMSE = 0.001454A-RMSE = 0.000852 A-RMSE = 0.000860

Figure SI-7: Reconstruction of a selected set of SS aggregates (Thilakarathna, 2020) through the conformal-
and hyperbolic as well as radial approaches. The first column contains the input surfaces, while the second,
third, and fourth are the reconstruction via the spheroidal harmonics c-rSOH, hSOH, and rSOH, respectively,
as well as the traditional spherical harmonics (SH) in the fifth column. The left-hand texts show the
annotation per stone and the fitted aspect ratio (AR) for the spheroidal coordinates. Each reconstructed
stone shows the normalized average distances (A-RMSE) below. Boldfaced A-RMSE highlights the best
reconstruction accuracy.
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A-RMSE = 0.000279 A-RMSE = 0.000364

A-RMSE = 0.001237 A-RMSE = 0.001043

A-RMSE = 0.000331 A-RMSE = 0.000409
Figure SI-8: Reconstruction of a selected set of rubble stones (Suhr et al., 2020b). using the c-rSOH approach.
Each reconstructed stone shows the normalized average distances (A-RMSE) below.
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SI-2.2 Aspect ratio a/c versus RMSE

Figure SI-9 shows the results of the reconstruction accuracy using the rSOH approach for stones of the first
dataset (oblate (A) and prolate (B) particles) when varying AR (rSOH is AR-dependent). The estimates of
the least-squares strategy in Section 3.2 of the main text give a reasonable solutions for SS particles. From
the figure, we notice that the closer the spheroid is to a sphere the larger the reconstruction error. Although
not optimal, the spheroidal fitting provides a conveniently fast and good reconstruction making it a valid
approach for practical usage for SS particles.

-

A) B)

Figure SI-9: Optimization curves for R-RMSE vs. AR for the first dataset retrieved from Saloustros et al.
(2023) and reconstructed via the rSOH in Fig. 6 in the main text, and Fig SI-6 above. (A) is the reconstruction
for oblate-like particles a/c > 1 and (B) for prolate-like ones where a/c < 1. Red crosses mark the optimal
AR and blue crosses are for the LS fit.

Similar to the presented results of the first dataset, Fig. SI-10 shows an example of the R-RMSE variation
with the rSOH approach along with the AR. This figure also explains how insignificant changes in the R-
RMSE do reflect some considerable changes in the shape descriptors (see the inset of the same figure) that
will undoubtedly affect the estimated fractal dimension of that stone. Figure SI-11 summarizes the results
for all the tested stones in the second dataset (Thilakarathna, 2020). The results, however, show some
discrepancies between the fit and the optimal AR for the stones B3 and B7. This indeed corresponded to
minor osculations as depicted in Fig. SI-7 for the rSOH approach. Nevertheless, the reconstruction quality
is still better than the traditional spherical harmonics with radial parameterization.

For the third dataset, the error sensitivity was approached slightly differently from the former two datasets.
We studied the effect of the maximum number of smoothing iterations used for the cMCF approach on
the final reconstruction RMSE. Figure SI-12(A) shows the stone K 1 (Suhr et al., 2020a) and the stages
of mapping the stone (see Section 3.2.4 of the main text). Figure SI-12(B) shows the relation between the
cMCF iterations and the reconstruction accuracy of the stone. We can also see that the shape descriptors
scatter is less than the former two datasets as the AR itself is not changing much due to iterations as shown
in the two insets of the same figure.

As shown in Fig. SI-13(A), most of the stones show better results once we flow the surface with 2−4 iterations
only before applying the radial mapping. As a result, we obtained very good results for more challenging
stones like the railway ballast rubbles. Fig. SI-13(B) shows how the AR changes with iterations for both
oblates (AR > 1) and prolates (AR < 1).
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SI-2.3 Conformal parameterization and reconstruction of a visual benchmark

Figure SI-14 depicts the parameterization of the Max Planck bust benchmark surface. For this NSS surface,
we used the cMCF approach (Kazhdan et al., 2012). The step size (each time step is an iteration j) for the
solver was set to δ = 0.0005.

As can be seen in the figure, the surface evolution passes through intermediate stages at each time step
(diffeomorphisms) that are equivalent to the input surface (conformal equivalence). The further we flow the
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Figure SI-10: The radial normalized R-RMSE vs. the aspect ratio (AR) for stone B6 (Thilakarathna, 2020)
reconstructed via rSOH. The inset shows the variation of the shape descriptors as we change the AR from
1.14 → 3.04 (the interval was spaned by 50 iterations). The optimal AR was observed to be 1.74, while
the one obtained from the least-squares fit was 1.90. As we approach a sphere AR = 1.0 or AR = 3.0 the
solution diverges faster. Notice that the optimal error is not 0.0 due to the truncation error (nmax = 20)
and the projection error for finding Fourier weights.

-

Figure SI-11: rSOH optimization curves for R-RMSE versus AR for the dataset retrieved from Thilakarathna
(2020) and reconstructed in Fig. 8 in the main text, and Figure SI-7 above for prolate-like particles where
a/c < 1. Red crosses mark the optimal AR and blue crosses indicate the aspect-ratio of the least-squares fit.
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surface (more iterations) it converges into a sphere, however, with large area distortion. Over time, these
almost-spheroidal intermediate shapes become convex and can be used as a point to radially map, see Section
3.2.2 of the main text, the surface into a spheroid without being NSS.

Input Surface Conformal di�eomorphisms Radial parameterization
A)

- AR = �.���

B)

2

Figure SI-12: (A) depicts the conformal-based parameterization approach for the mesh of stone K 1 (Suhr
et al., 2020a); the same stone but different view from Fig. 10 in the main text. (B) Optimization curves for
R-RMSE vs. the curvature flow iteration with a time step δ = 0.0005 for the dataset retrieved from Suhr
et al. (2020b) and reconstructed in Fig. 10 in the main text, and Fig. SI-8 above. The analysis results of
this figure all belong to stone K 1 from the third dataset.
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Combining the cMCF approach with the radial projection mapping, see Section 3.2.4 of the main text,
becomes handy for mapping NSS objects. Figure SI-15 shows the results of the harmonic decomposition
of the herein-proposed visual benchmark. Similar to the SPHARM (Brechbühler et al., 1995) and Shaqfa
et al. (2021) the reconstruction at n = 1 results in an ellipsoidal shape that can be used for estimating the
reconstruction wavelength.

In Fig. SI-15, we have flown the surface using the first ten time steps (j = 10), and after that, we applied
the proposed radial mapping. We have determined this number of iterations as we obtain an optimal
reconstruction at this number of iterations. Again, the process of finding an optimal spheroidal size is not
trivial, and it is hard to find without posing the problem as an optimization problem. Finally, we include two
videos in the supplemental material that show the cMCF flow and the reconstruction of the same surface.
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Figure SI-13: Optimization curves for the reconstruction error with respect to the maximum iterations used
in the cMCF approach. (A) shows the radial normalized R-RMSE with the cMCF used iterations before
applying the radial mapping and analysis process. The used time step here is δ = 0.0005 for the dataset
retrieved from Suhr et al. (2020b). (B) shows the change of AR with iterations for oblate and prolate stones.
The visual reconstruction results are depicted in Fig. 10 in the main text, and Fig. SI-8 above.
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j = �

B)

j = �

C)

j = �
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E)
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Figure SI-14: The flow of Max Planck bust via the cMCF parameterization (Kazhdan et al., 2012) at different
j iterations up to 128 [insets (A) → (F)]. As the flow progresses, the surface converges into a sphere S2. The
surfaces of each subset were rescaled to conserve the original surface area of the surface. Notice, at j = 4
[inset (C)] the surface became star-shaped and can be radially mapped into a spheroid (i.e., E4).

A) B) C) D) E) F)

n = � n = � n = �� n = �� n = �� n = ��
Figure SI-15: Reconstruction of Max Planck bust as a visual benchmark via the spheroidal harmonics. For
the mapping, we used the cMCF whence j = 10 and δ = 0.0005. With these settings, we were able to be
convergent up to nmax = 70 degrees.

SI-15



References
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