
SUPPLEMENTARY MATERIALS: MURPHY—A SCALABLE
MULTIRESOLUTION FRAMEWORK FOR SCIENTIFIC

COMPUTING ON 3D BLOCK-STRUCTURED COLLOCATED GRIDS∗

THOMAS GILLIS† AND WIM M. VAN REES‡

SM1. Implementation details - filters bank. In this section we detail the
exact construction of the filter banks, as used in the software. From an implementation
perspective, two approaches have been considered in the literature: the step-by-step
implementation of the lifting scheme, as in [SM4], or the filter-based approach as in
[SM7]. Although the operation count is smaller in the first approach and a factor
2 has been reported in the complexity [SM2], we follow the second approach which
provides significant simplifications especially in multiple dimensions. Further, the
memory layout in the implementation is achieved more naturally when interlacing
the scaling and detail coefficients:

(SM1.1) uL =
[
. . . λL

k−1 , γL
k−1 , λL

k , γL
k , λL

k+1 , γL
k+1 , . . .

]
.

This does not affect the Ga and Ha filters used in the analysis, but requires the
definition of two new filters Js and Ks to replace Hs and Gs during the synthesis
operation, such that

(SM1.2) λL+1
2k = Js uL λL+1

2k+1 = Ks uL ,

where the array uL in the left equation is implicitly assumed to be centered on λL
k ,

and in the right equation on γL
k . This change of perspective is strictly equivalent

to the classical Hs/Gs filters and has been done to simplify the implementation.
Considering this new approach, the filter coefficients for wavelet 2.0, wavelet 4.0, and
wavelet 6.0 are given in Table SM1.1, and the coefficients for wavelet 2.2, wavelet 4.2,
and wavelet 6.2 are given in Table SM1.2.

SM2. Algorithms and implementation. In this section we describe in detail
the different algorithms as implemented in our presented software framework. We refer
to section 3 for additional explanations and context regarding the different steps. In
Algorithm 1 and Algorithm 2 we detail the implementation of the ghosting procedure,
while in Algorithm 3 we expose the implementation of the adaptation of the grid.

SM2.1. Ghost computation. We describe here the technicalities of the ghost
computation implementation. To facilitate the discussion, we introduce some notation
inspired by the p4est naming convention. Any block b is part of the total set of blocks
B within the grid, which are distributed among multiple MPI ranks. In this section
we understand b to contain the cartesian grid data of size N3

b , as well as a ghost
region on the same level as b extending Ng points in each dimension on each side of
the block, where Ng is determined from the PDE requirements or wavelet support,
depending on the operation. A subset of B is the mirror group M, defined as the set
of blocks that are the neighbor of at least one other block on another rank, and thus

∗Supplementary material for SISC MS#M141676.
https://doi.org/10.1137/21M141676X

†Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
02139 USA (tgillis@mit.edu).

‡Corresponding author. Department of Mechanical Engineering, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (wvanrees@mit.edu).

SM1

https://doi.org/10.1137/21M141676X
mailto:tgillis@mit.edu
mailto:wvanrees@mit.edu

SM2 THOMAS GILLIS AND WIM M. VAN REES

Table SM1.1
Non-lifted interpolating wavelet filter coefficients as operated on interleaved scaling and detail

coefficients. The filters Ha and Js are centered on (even) scaling coefficients, and the filters Ga

and Ks are centered on odd scaling coefficients and detail coefficients, respectively.

Ha 1

Ga − 1
2 1 − 1

2

Js 1

Ks 1
2 1 1

2

(a) wavelet 2.0

Ha 1

Ga 1
16 0 − 9

16 1 − 9
16 0 1

16

Js 1

Ks − 1
16 0 9

16 1 9
16 0 − 1

16

(b) wavelet 4.0

Ha 1

Ga − 3
256 0 25

256 0 − 75
128 1 − 75

128 0 25
256 0 − 3

256

Js 1

Ks 3
256 0 − 25

256 0 75
128 1 75

128 0 − 25
256 0 3

256

(c) wavelet 6.0

have to be accessed through MPI communications. For each block b, we further define
6 different neighbor sets. All neighbors that exist on the same level as b fall in the
group G0, all neighbors that are coarser than b fall in the group G−, and all neighbors
that are finer than b fall in the group G+. Each of these group can either exist on the

same rank as b, in which case they are denoted as ‘local’ G0/−/+
L , or on another rank

in which case they are denoted as ‘global’ G0/−/+
G . The ghost point computation is

divided into two parts. For a block b, the first step combines the values of coarser
neighbors G−

G/L and same level neighbors G0
G/L with a coarse perspective of the data

in b to be able to compute a local refinement of the ghost region and retrieve the
required ghost points (see Algorithm 1). This step implements the process outlined
in the main section in subsection 2.2.2. In the second step, block b uses the refined
region of step 1 (including ghosts) to coarsen again, leading to coarse ghost points
that block b then communicates to neighbors G−

G/L (see Algorithm 2).

Part 1: Coarser and same-level neighbors. First, due to the continuity in memory
needed by the RMA window (our current memory allocation does not guarantee
continuity for a given field across blocks), we start by a copy of all the b ∈M into the
buffer reserved for the communication, bufRMA. The ghost values from same-level
neighbors are trivially obtained by accessing the values needed by the ghost region
through a memory copy for G0

L and using MPI Get() for G0
G.

To obtain ghost values from coarser and same-level neighbors of our current block
b, we have to use the refinement operation as described in subsection 2.2. This
operation relies on the grid values of G− and the even values of our current block
b and G0. We proceed by gathering all the required values for the computation of
the ghost into a temporary buffer b̃ (whose size is 1/8th of the block-size, extended
with a coarsened representation of the ghost region). The contribution of the coarser
neighbors are first obtained through a copy or MPI Get() of the required values into b̃,
and we gather the even values of the same-level neighbors, together with the even data
of the current block. The data inside b̃ associated with fine-level neighbors is left blank
and ignored throughout this process. Once all the needed data are gathered into b̃, we

SUPPLEMENTARY MATERIALS: MURPHY SM3

Table SM1.2
Lifted interpolating wavelet filter coefficients as operated on interleaved scaling and detail co-

efficients. The filters Ha and Js are centered on (even) scaling coefficients, and the filters Ga and
Ks are centered on odd scaling coefficients and detail coefficients, respectively.

Ha − 1
8

1
4

3
4

1
4 − 1

8

Ga − 1
2 1 − 1

2

Js − 1
4 1 − 1

4

Ks − 1
8

1
2

3
4

1
2 − 1

8

(a) wavelet 2.2

Ha 1
64 0 − 1

8
1
4

23
32

1
4 − 1

8 0 1
64

Ga 1
16 0 − 9

16 1 − 9
16 0 1

16

Js − 1
4 1 − 1

4

Ks 1
64 − 1

16 − 1
8

9
16

23
32

9
16 − 1

8 − 1
16

1
64

(b) wavelet 4.2

Ha − 3
1024 0 11

512 0 − 125
1024

1
4

181
256

1
4 − 125

1024 0 11
512 0 − 3

1024

Ga − 3
256 0 25

256 0 − 75
128 1 − 75

128 0 25
256 0 − 3

256

Js − 1
4 1 − 1

4

Ks − 3
1024

3
256

11
512 −

25
256 −

125
1024

75
128

181
256

75
128 −

125
1024 −

25
256

11
512

3
256 −

3
1024

(c) wavelet 6.2

apply any domain boundary conditions at the coarse level. Finally, we perform the
refinement operation locally on the rank associated with b and read out the computed
ghost values within the regions overlapping with G0 and G− from the refined buffer.

Part 2: Fine-level neighbors. In the second part of the algorithm, we use the
data in b and its ghost points computed in part 1 to compute coarse-level ghost
points for G−, with the individual steps described in Algorithm 2. We first apply
any specified domain boundary conditions on b if required, and then perform the
substitution step as detailed in subsection 2.2.4. We then coarsen b along the lines
described in subsection 2.2 and store the coarsened data into b̃. Once the coarsening
is completed, block b copies the required coarse-level ghost points to G−

L or issues a
MPI Put() for G−

G to write into the coarser neighbor’s memory. When completed, we
are left with the application of the boundary conditions as all the ghost informations
are now complete.

With these two steps, all block interfaces in the domain can be handled. In the
way explained above, the ghost reconstruction would correspond to a tree traversal
from the coarsest to the finest levels in part 1, and back up to the coarsest level in
part 2. However, choosing Nb larger than the support of the wavelet filters together
with the 2:1 constraint in resolution jumps guarantees that our algorithm for ghost
reconstruction parallelizes efficiently across the different levels, with only independent
synchronizations for each block in the MPI Win Wait() call of Algorithm 1 independent
of the level on which it exists.

SM4 THOMAS GILLIS AND WIM M. VAN REES

Algorithm 1: Ghosting - Part 1

1 bufRMA ← copy(b ∈M)

2 MPI Win Post()

3 MPI Win Start()

4 foreach b ∈ B do
5 b ← copy(G0

L), MPI Get(G0
G)

6 b̃ ← copy(G−
L), sample(G0

L)

7 b̃ ← MPI Get(G−
G), MPI Get(sample(G0

G))

8 end

9 MPI Win Complete()

10 MPI Win Wait()

11 foreach b ∈ B do

12 b̃ ← sample(b)

13 b̃ ← BoundaryCondition()

14 b ← WaveletRefine(b̃)

15 end

Algorithm 2: Ghosting - Part 2

1 MPI Win Post()

2 MPI Win Start()

3 foreach b ∈ B do
4 b ← BoundaryCondition()

5 b ← WaveletSubstitution()

6 b̃ ← WaveletCoarsen(b)

7 G−
L ← copy(b̃)

8 G−
G ← MPI Put(b̃)

9 end

10 MPI Win Complete()

11 MPI Win Wait()

12 foreach b ∈ B do
13 b ← bufRMA

14 b ← BoundaryCondition()

15 end

SM2.2. Grid adaptation. The adaptation as detailed in Algorithm 3 is an
iterative procedure starting on a grid Bk, where the iteration k is divided in multiple
steps:

1. Ghost values computation and detail computation: the ghost values are up-
dated dimension by dimension first on the field used for the detail computa-
tion and then on the rest of the fields present on the grid.

SUPPLEMENTARY MATERIALS: MURPHY SM5

2. In WaveletCriterion(b ∈ Bk) the detail coefficients are communicated and
computed, either directly for scalar fields or on a component-by-component
basis for vector and tensor fields.

3. Every block gets a corresponding status that expresses its desired evolution
given the detail coefficient values and the refinement ϵr and coarsening ϵc
tolerances:
(a) M ADAPT FINER: if any of the detail coefficient is ≥ ϵr for any dimension,
(b) M ADAPT COARSER: if every detail coefficient is ≤ ϵc for every dimension,
(c) M ADAPT SAME: if no other status is assigned.

4. Once all blocks have their desired status assigned, we check compliance
against our grid adaptation policy to ensure that the grid adaptation is valid
and consistent with the multiresolution theory; if needed, we change the sta-
tus of individual block to enforce compliance. The policy consists of the
following rules:
(a) we give priority to the refinement: if a block’s coarser neighbor wants to

refine, the latter cannot be coarsened;
(b) the need of a fine block to be refined has to be “propagated” to its

coarser neighbor: if a block has a finer neighbor which wants to refine,
the latter must refine first to not break the 2:1 condition; similarly, if a
block has a coarser neighbor, that neighbor has to be refined first;

(c) if a block has been refined in a previous iteration, it cannot be coarsened.
In addition, we enable the option to enforce possible user-defined bounds on
the minimum and/or maximum level permitted, if needed; these bounds are
not used in the results of this work.

5. Once each block has received its final status, we use the p4est library to create
the meta-structure associated with a new set of blocks B∗

k.
6. Refine or coarsen the blocks as needed to obtain the updated grid Bk+1

through the WaveletInterpolate() function.
7. Partition the grid using p4est .
8. Synchronize the executed adaptation step of each block to its neighbors.
9. Update the adapted fields in WaveletUpdateAfterCoarsening(b ∈ Bk+1) to

enforce that fine blocks receive updated scaling coefficients if one or more
neighbors have been coarsened (subsection 2.2.1).

10. Obtain the number of adapted blocks over the whole grid (implemented
through a non-blocking reduce operation). If no blocks have been adapted, we
have reached the final grid with ||γ||∞ ≤ ϵr. Else, move to the next iteration
k + 1.

Throughout these steps, we rely on p4est functions to support the coarsening,
the refinement, and the partitioning of the grid; however, this is mostly limited to
handling the metadata, as we have implemented the block refinement, coarsening and
partitioning ourselves to exploit asynchronous and non-blocking MPI calls.

SM3. Time integration scheme. As a time integrator we are using the RK3-
TVD [SM5, SM6] also know as RK3-SSP. This is an explicit in time, 3 step Runge-
Kutta scheme, which only requires two temporary buffers. The integration for u̇ =
f(t, u) from time tn to tn+1 with ∆t = tn+1− tn is given by the three stage equations:

y1 = ∆tf (tn, un) + un , y2 =
1

4
[∆tf (t+∆t, y1) + y1] +

3

4
un ,(SM3.1)

un+1 =
2

3

[
∆tf

(
t+

∆t

2
y2

)
+ y2

]
+

1

3
un.

SM6 THOMAS GILLIS AND WIM M. VAN REES

Algorithm 3: grid adaptation

1 while adapt do
2 Ghost(b ∈ Bk)

3 WaveletCriterion(b ∈ Bk)

4 SyncStatus()

5 EnforceStatusPolicy(b ∈ Bk)

6 p4estCoarsen()

7 p4estRefine()

8 Bk+1 ← WaveletInterpolate(b∗ ∈ B∗
k+1)

9 p4estPartition()

10 SyncStatus()

11 WaveletUpdateAfterCoarsening(b ∈ Bk+1)

12 Bk ← Bk+1

13 end

SM4. Finite differences scheme. For the spatial discretization of the deriva-
tives in the advection equation, we rely on the CONS-3 scheme, which is a fixed-weight
version of a WENO schemes. First, given a divergence-free velocity field, the linear
advection equation is considered in conservative form:

(SM4.1)
∂ϕ

∂t
+ u · ∇ϕ = 0 ⇔ ∂ϕ

∂t
+∇ · (u ϕ) = 0 ,

with flux function f = u ϕ. We consider a 1D version of this equation, discretized on
a uniform grid, i.e. the grid cell i spans

[
xi−1/2 ; xi+1/2

]
:

(SM4.2)
∂ϕi

∂t
= −

(
fi+1/2 − fi−1/2

) 1

h
,

where fi±1/2 is the flux at the cell boundary. Here we follow [SM8, section 2.1] to
derive a conservative finite-difference form for the flux reconstruction. To maintain
stability [SM8, section 2.1] the flux terms must be decomposed into a positive f+ and
negative part f− such that

(SM4.3)
∂f+

∂ϕ
> 0 and

∂f−

∂ϕ
< 0 .

For our equations in 1D we find f+ = uϕ if u > 0 and f− = uϕ if u < 0. Since
the velocity information at the interface is not directly available, we use a simple
reconstruction, ui+1/2 = 1/2 (ui+1 + ui−1). This approximation gives the sign of
the velocity at the interface from the velocity in each grid cell, which determines the
choice between f+ and f− at each cell interface.

The actual flux computation can be done in different ways, leading to essentially
non-oscillatory (ENO) and weighted ENO (WENO) interpolation formulas. Using
three points in the flux calculation, one can choose between two stable stencils to
compute f+

i+1/2

(SM4.4) S0 : f+
i+1/2 = −1/2 f+

i−1+3/2 f+
i S1 : f+

i+1/2 = 1/2 f+
i +1/2 f+

i+1 .

SUPPLEMENTARY MATERIALS: MURPHY SM7

Further, one can associate a smoothness indicator to each stencil β0 =
(
f+
i − f+

i−1

)2
and β1 =

(
f+
i+1 − f+

i

)2
. The standard ENO approach relies on the β indicators to

choose the best stencil, i.e. we choose either S0 or S1 to evaluate the flux. The WENO
technique instead combines the stencils together relying on weights associated to each
of them (w0 and w1 respectively) in order to obtain the most accurate evaluation
possible.

In the case of the stencils S0 and S1 one can combine them together to reach
a third-order stencil using the “ideal” weights w0 = γ0 = 1/3 and w1 = γ1 = 2/3.
By doing so, one obtains the conservative third-order stencil CONS-3 we used in the
manuscript. Along similar lines, the fifth order conservative stencil CONS-5 can be
derived from the optimal weights of WENO-5. Tables Table SM4.1 and Table SM4.2

Table SM4.1
WENO stencils - order 3. Setting the weights equal to the γ’s leads to the third-order CONS-3

scheme.

f+
i+1/2

S+
0 = −1/2fi−1 + 3/2fi β+

0 = (fi − fi−1)
2

γ+
0 = 1/3

S+
1 = 1/2fi + 1/2fi+1 β+

1 = (fi+1 − fi)
2

γ+
1 = 2/3

f−
i−1/2

S−
0 = 1/2fi−1 + 1/2fi β−

0 = β+
0 = (fi − fi−1)

2
γ−
0 = 2/3

S−
1 = 3/2fi − 1/2fi+1 β−

1 = β+
1 = (fi+1 − fi)

2
γ−
1 = 1/3

Table SM4.2
WENO stencils - order 5. Setting the weights equal to the γ’s leads to the fifth-order CONS-5

scheme.

f+
i+1/2

S+
0 = 1/3fi−2 − 7/6fi−1 + 11/6fi

β+
0 = 1

4 (fi−2 − 4fi−1 + 3fi)
2
+ 13

12 (fi−2 − 2fi−1 + fi)
2

γ+
0 = 1/10

S+
1 = −1/6fi−1 + 5/6fi + 1/3fi+1

β+
1 = 1

4 (−fi−1 + fi+1)
2
+ 13

12 (fi−1 − 2fi + fi+1)
2

γ+
1 = 3/5

S+
2 = 1/3fi + 5/6fi+1 − 1/6fi+2

β+
2 = 1

4 (−3fi + 4fi+1 − fi+2)
2
+ 13

12 (fi − 2fi+1 + fi+2)
2

γ+
2 = 3/10

f−
i−1/2

S−
0 = −1/6fi−2 + 5/6fi−1 + 1/3fi

β−
0 = β+

0 = 1
4 (fi−2 − 4fi−1 + 3fi)

2
+ 13

12 (fi−2 − 2fi−1 + fi)
2

γ−
0 = 3/10

S−
1 = 1/3fi−1 + 5/6fi − 1/6fi+1

β−
1 = β+

1 = 1
4 (−fi−1 + fi+1)

2
+ 13

12 (fi−1 − 2fi + fi+1)
2

γ−
1 = 3/5

S−
2 = 11/6fi − 7/6fi+1 + 1/3fi+2

β−
2 = β+

2 = 1
4 (−3fi + 4fi+1 − fi+2)

2
+ 13

12 (fi − 2fi+1 + fi+2)
2

γ−
2 = 1/10

SM8 THOMAS GILLIS AND WIM M. VAN REES

summarize the flux definitions and optimal weights γ for each of these schemes. For
non-smooth fields the weights can be adapted locally based on the β smoothness
indicators, and we implemented the WENO-Z version [SM1, SM3] in our code –
however for the results in this manuscript we only use the fixed-weight schemes.

SM5. Weak scalability analysis. In this section we provide more details on
the scalability of the different sub-operations discussed in section 6 of the main text.
In Figure SM5.1 we show the breakdown of the timings during the ghost computation,
where the hatched area represent purely computational operations that are expected
to scale perfectly. In Figure SM5.2 we decompose similarly the operations involved in
the stencil computation, and in Figure SM5.3 we do the same for the grid adaptation.

MPI PS
0.08 secMPI Get/Put

0.38 sec

MPI CW

0.10 sec

comput.
0.04 sec

(a) 1 node - 32 ranks

MPI PS

0.14 sec
MPI Get/Put

0.37 sec

MPI CW

0.15 sec

comput.0.04 sec

(b) 128 node - 4, 096 ranks

MPI PS

0.18 sec

MPI Get/Put 0.37 sec

MPI CW

0.16 sec

comput.0.04 sec

(c) 512 node - 16, 384 ranks

Fig. SM5.1. Breakdown of the time spent during ghost reconstruction in a weak scalability test.
The hatched region indicates operations only involving computations and no communications. The
regions marked with “MPI PS” and “MPI CW” represent the calls to perform the active synchroniza-
tion, “MPI Get/Put” contains the put and get accesses, and “comp.” is the time spent during the
wavelet-based refinement and coarsening required to compute the ghost values.

ghost

0.60 sec
inner

0.85 sec

outer

1.03 sec

(a) 1 node - 32 ranks

ghost

0.71 sec
inner

0.83 sec

outer

1.01 sec

(b) 128 node - 4, 096 ranks

ghost

0.75 sec
inner

0.83 sec

outer

1.01 sec

(c) 512 node - 16, 384 ranks

Fig. SM5.2. Breakdown of the time spent during stencil computations in a weak scalability
test. The hatched regions indicates operations only involving computations and no communications.
The regions marked “inner” and “outer” are the computation of the stencil on the the inner and
outer points in a block respectively, and “ghost” represents the computation of the ghost values
overlapping with the “inner” computations as detailed in Figure SM5.1.

SUPPLEMENTARY MATERIALS: MURPHY SM9

criterion

0.20 sec

interp.

0.33 sec

ghost

0.46 sec

partition
0.01 sec sync0.02 sec reset ghost0.02 sec

(a) 1 node - 32 ranks

criterion
0.20 sec

interp.

0.33 sec

ghost
0.53 sec

partition

0.02 sec

sync

0.14 sec
reset ghost

0.18 sec

(b) 128 node - 4, 096 ranks

criterion
0.20 sec

interp.

0.33 sec
ghost

0.55 sec

partition

0.03 sec

sync

0.25 sec

reset ghost

0.49 sec

(c) 512 node - 16, 384 ranks

Fig. SM5.3. Breakdown of the time spent during grid adaptation operations in a weak scalability
test. The hatched regions indicates operations only involving computations and no communications.
The region marked “interp.” represents the coarsening/refinement of the blocks through the wave-
lets, “criterion” stands for the computation of the detail coefficients to evaluate the desired status
of each block (refine, compress, or unaltered), “reset ghost” includes the reinitialization of the
ghost meta-data including the MPI Win create and MPI Win free calls, “sync” contains the syn-
chronizations and reductions on the block statuses to enforce the adaptation policy, “partition” is
the load balancing of the grid and the re-distribution of the blocks, and “ghost” represents the com-
putation of the ghost points needed for the coarsening/refinement of the blocks and the computation
of the detail coefficients.

REFERENCES

[SM1] R. Borges, M. Carmona, B. Costa, and W. S. Don, An improved weighted essentially
non-oscillatory scheme for hyperbolic conservation laws, Journal of Computational Physics,
227 (2008), pp. 3191–3211, https://doi.org/https://doi.org/10.1016/j.jcp.2007.11.038, https:
//www.sciencedirect.com/science/article/pii/S0021999107005232.

[SM2] I. Daubechies and W. Sweldens, Factoring wavelet transforms into lifting steps, Jour-
nal of Fourier Analysis and Applications, 4 (1998), pp. 247–269, https://doi.org/10.1007/
BF02476026.

[SM3] W.-S. Don and R. Borges, Accuracy of the weighted essentially non-oscillatory conserva-
tive finite difference schemes, Journal of Computational Physics, 250 (2013), pp. 347–372,
https://doi.org/https://doi.org/10.1016/j.jcp.2013.05.018, https://www.sciencedirect.com/
science/article/pii/S0021999113003501.

[SM4] G. Fernandez, S. Periaswamy, and W. Sweldens, Liftpack: a software package for wave-
let transforms using lifting, in Proc.SPIE, vol. 2825, 10 1996, https://doi.org/10.1117/12.
255250.

[SM5] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathemat-
ics of Computation, 67 (1998), pp. 73–85, https://doi.org/10.1090/S0025-5718-98-00913-2.

[SM6] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time
discretization methods, SIAM Review, 43 (2001), pp. 89–112, https://doi.org/10.1137/
S003614450036757X.

[SM7] D. Rossinelli, B. Hejazialhosseini, W. van Rees, M. Gazzola, M. Bergdorf, and
P. Koumoutsakos, MRag-I2d: Multi-resolution adapted grids for remeshed vortex meth-
ods on multicore architectures, Journal of Computational Physics, 288 (2015), pp. 1–18,
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2015.01.035.

[SM8] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws, ICASE 97-65, NASA, November 1997.

https://doi.org/https://doi.org/10.1016/j.jcp.2007.11.038
https://www.sciencedirect.com/science/article/pii/S0021999107005232
https://www.sciencedirect.com/science/article/pii/S0021999107005232
https://doi.org/10.1007/BF02476026
https://doi.org/10.1007/BF02476026
https://doi.org/https://doi.org/10.1016/j.jcp.2013.05.018
https://www.sciencedirect.com/science/article/pii/S0021999113003501
https://www.sciencedirect.com/science/article/pii/S0021999113003501
https://doi.org/10.1117/12.255250
https://doi.org/10.1117/12.255250
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.1137/S003614450036757X
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2015.01.035

	Implementation details - filters bank
	Algorithms and implementation
	Ghost computation
	Grid adaptation

	Time integration scheme
	Finite differences scheme
	Weak scalability analysis
	References

