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Appendix A. Larva’s geometry

The geometrical aspect of the swimmer is characterized by the half width w(s) of the
body along its length, defined as:

w(s) =



wh

√
1 −

(
sb − s

sb

)2

0 6 s < sb

(−2(wt − wh) − wt(st − sb))

(
s− sb
st − sb

)3

+

(3(wt − wh) + wt(st − sb))

(
s− sb
st − sb

)2

+ wh sb 6 s < st

wt − wt

(
s− st
L− st

)2

st 6 s 6 L

where L is the body length, sb = 0.0862L, st = 0.3448L, wh = 0.0635L and wt =
0.0254L. In the three-dimensional case, the geometry is described in terms of elliptical
cross sections with width w(s) and height h(s), where h(s) is given by
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Here we use the following parameter pairs: (s1, h1) = (0.284L, 0.072L), (s2, h2) = (0.844L, 0.041L)
and (s3, h3) = (0.957L, 0.071L).

Appendix B. Definition of efficiency

We define the efficiency as follows:

η =
Euseful
Eflow

, (B 1)

where Euseful is the kinetic energy of the fish:

Euseful =
1

2
mŪ2, (B 2)

with Ū the mean velocity of the fish during the simulation time (Tprep + 2Tprop) and m
the fish mass.

The term Eflow represents the total energy delivered to the fluid,∫ Tprep+2Tprop

τ=0
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where Pflow is the total instantaneous power delivered to the fluid, which accounts for
rate of change of kinetic energy and dissipation due to viscous stresses:
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with Ωf denoting the spatial region occupied with fluid, and u2 = u · u.
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Since we have a computational domain with free-space boundary conditions, the veloc-
ity field is not completely contained within the computational domain and the evaluation
of the above integrals is not trivial. We will discuss the contribution of the velocity field
outside our computational domain for each of the two terms in the right hand side of
equation B 4.

For the first term we first note that, for a divergence-free velocity field, the following
kinematic identity holds (Winckelmans & Leonard 1993):∫

Ω

u · u dΩ =
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Ψ · ω dΩ. (B 5)

Here Ψ is the streamfunction, defined as the solution of the Poisson equation

∇2Ψ = −ω, (B 6)

hence u = ∇×Ψ. The integral on the right-hand side can be computed in Fourier space
from a compact vorticity field, and thus the kinetic energy in a domain with free-space
boundary conditions can be computed as a function of the vorticity field only. To get
the kinetic energy in the fluid domain only, we subsequently subtract the kinetic energy
within the fish from this sum. Finally, the time derivative of the integral is computed as
a first order finite difference between two timesteps.

In the current case, however, the velocity field inside the swimmer is not divergence free
(due to the deformation velocity field of the swimmer - for more details refer to Gazzola
et al. (2011)). The integral in equation B 5 therefore is an incomplete measure of the
total kinetic energy since it neglects the contribution of the potential to the velocity field.
After initial tests comparing the influence of the potential, however, we observed that
this contribution to both the total kinetic energy as well as its time-derivative was several
orders of magnitude smaller than the contribution from the stream function. To save in
computational costs we therefore chose to neglect the contribution from the potential
and base the efficiency on the kinetic energy due to the vorticity-induced velocity only.

The second integral in Eq. B 4 represents the viscous dissipation term. By systemati-
cally increasing the domain size, we found that the contribution this increase is negligible
and we therefore compute this integral only inside the computational domain.
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