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Methods 

Materials: All elastomeric inks were created by first separately mixing (FlackTek, 120 s at 2000 rpm) the 

appropriate amount of base and catalyst for two types of PDMS, namely SE 1700 (Dow Corning) with 

Sylgard 184 (Dow Corning). The neat inks were obtained by combining the resulting pre-mixtures at 

concentrations of 85% w/w SE 1700 and 15% w/w Sylgard 184, followed by a mixing step (FlackTek, 

240 s at 2350 rpm). The filled inks were obtained by combining the SE 1700 and Sylgard 184 pre-mixtures 

with glass fibers (Fibre Glast, 1/32 inch Glass Fibers, diameter ~ 16 𝜇m, length ~ 230 𝜇m)1 at 

concentrations of 68% w/w SE 1700, 12% w/w Sylgard 184, and 20% w/w glass fibers, followed by a 

mixing step (FlackTek, 240 s at 2350 rpm). Given the presence of fumed silica in SE 1700 (~ 26.5% 

w/w)2, the resulting palette of inks contain fumed silica in concentrations ranging from 20% to 22% w/w. 

As a rheological control, we also created a non-printable mixture (FlackTek, 240 s at 2350 rpm) of 80% 

w/w Sylgard 184 and 20% w/w of glass fibers. For rheology samples, we replaced the crosslinker with an 

appropriate concentration of viscosity matched silicone oils (Sigma Aldrich) to avoid any potential 

crosslinking effects on the rheological measurements. Notably, the printing process lasts less than ~90 

minutes, much shorter than the 8-hour pot life of the inks. As such, these crosslinking effects do not occur 

during the printing process.  Inks used to visualize multi-material 4D printing (Movie M2 and Fig. 4d) 

were dyed with four different fluorophores (Risk Reactor Inc.). 

To create functional lattices, we used a liquid metal ink composed of an emulsion of liquid metal 

(eutectic Gallium Indium (eGaIn), 5N Plus) droplets dispersed into a PDMS (Sylgard567, Dow Corning) 
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matrix. Specifically, this conductive ink is synthesized by speed-mixing (Flaktek, 4 min at 2350 rpm) a 

75% v/v mixture of bulk eGaIn with each of the two parts of PDMS. Next, the two resulting emulsions 

are mixed together (Flaktek, 4 min at 2350 rpm).  The resulting liquid metal ink was then loaded into a 3 

cc, Luer-Lok syringes (Nordson, EFD) directly following, centrifuged (300 s at 3500 rpm) to remove 

bubbles prior to printing. 

 

Ink Rheology: Rheological characterization is carried out using a DHR-3 controlled-stress rheometer (TA 

Instruments, New Castle, DE, USA) equipped with a 40 mm diameter plate geometry and a gap distance 

of 1.6 mm. Materials are equilibrated for 30 s at room temperature before flow and amplitude sweep 

experiments are conducted. In flow sweeps (Fig. S1a), the materials are sheared at rates of 0.01 s -1 to 10 

s -1. Shear storage (G′) and loss (G′′) moduli (Fig. S1b) are measured as a function of shear stress at a 

frequency of 1Hz during amplitude sweeps. Unlike the control formulation, each ink used in this study 

exhibits a clear plateau modulus, yield stress, and shear thinning response (Fig. S1), which is required for 

4D printable formulations due to its fumed silica content. For each of these inks, the plateau modulus 

(G′$), yield stress (𝜏&), and viscosity (𝜂) exhibit a moderate, yet consistent, decrease with increasing 

concentration of crosslinker. This is expected, since the crosslinker has a significantly lower viscosity than 

the base for both SE 1700 and Sylgard 1842,3. A modest decrease in G′$, 𝜏&, and 𝜂 is also observed for 

increasing concentration of glass fibers. This trend is expected4,5, since the glass fibers (diameter ~ 16 𝜇m, 

length ~ 230 𝜇m)1 are significantly larger in size compared to fumed silica particles (~ 7 to 25 nm)6, 

effectively resulting in a bimodal mixture. 

 

Multi-Material 4D Printing: For printing experiments, all inks were loaded into separate 10 cc, Luer-Lok 

syringes (Nordson, EFD) directly following their synthesis. Upon loading, the inks were then centrifuged 

(300 s at 3500 rpm for neat inks, and 120 s at 2000 rpm for filled inks) to remove bubbles prior to printing. 

Each syringe was then mounted to one of four independently controlled z-axes of a multi-axis motion 

system (ABG 1000, Aerotech Inc.), equipped with a tapered nozzle with a 200 𝜇m inner diameter 

(Nordson, EFD), and connected to an Ultimus V pressure controller (Nordson, EFD). Custom, open source 

Python libraries (Mecode)7 were used to define the print paths of each ink and to coordinate printhead 

motion with ink extrusion. All samples were printed onto Teflon substrates. Typical pressures and print 

speeds used were 60 psi and 20 mm/s for the neat inks and 72 psi and 16 mm/s for the filled inks. For 

reference, the time it takes to print the lattice for the face (Fig. 5) is approximately 90 minutes.   



 3 

 

Filler Alignment: To characterize the alignment of short glass fibers, the low 𝛼 layer of a representative 

bilayer strip (40 mm long and 15 mm wide, 𝑡* = 𝑡, = 0.4	mm, 1:20 filled∥ low 𝛼 and 1:10 neat high 𝛼) 

was imaged with a Zeiss microscope system (Discovery V20 with an AxioCam ERc 5s camera and a CL 

1500 ECO light source) with the longitudinal edge of the bilayer aligned with the horizontal frame of the 

microscope. The resulting image was then processed in ImageJ, starting with a grayscale conversion, 

followed by a background removal (level 50) and a vertical FFT filter to remove any frequencies created 

by the filaments and by glass fiber alignment along its short axis. The processed image is shown in Fig. 

1b. The alignment distribution (Fig. 1c) was then obtained using ImageJ’s directionality plugin. 

 

Thermal Expansion and Elastic Modulus Measurements: Samples (50 mm long, 5 mm wide, and 5 mm 

tall) were printed for characterizing 𝛼 for each of our inks (Fig. S2a and b). After printing, each sample 

was cured in an oven (Thermo Scientific LB305750M) at 50℃ for 48 h, followed by a thermal cycle on 

a hot plate (IKA RET basic) at 200℃ for ~15 minutes to ensure curing of the adhesive ingredient. 

Following this procedure, we loaded the samples into an oven (SHEL LAB SVAC2) with a glass viewport 

for optical observation. The samples were positioned on precleaned glass slides (Thermo Scientific 2950-

001), which are placed on a stainless-steel shelf in the oven. A thin layer (~ 20 µm) of mineral oil (Sigma-

Aldrich 161403) was applied to the slides to provide lubrication between the surfaces of the samples and 

the glass. A calibrated stainless-steel ruler (GEI 2029A-15) was placed next to the samples as a size 

reference. A digital camera (Nikon D5500) with a macro lens (Sigma 105 mm, f/2.8) was set on a tripod 

and positioned to view the samples from the side. The oven temperature was increased at a rate of ~ 

0.5°C/min from room temperature (~20°C) to 160°C. A remote trigger was used to photograph the samples 

as the temperature was increased. All images contained the sample and the ruler in the same field of view. 

Image analysis software (ImageJ) was used to measure the end-to-end length of the sample, using the ruler 

to calibrate each image. The average resolution of all images used for analysis was determined to be 9.88 

µm/pixel. The length data was converted to thermal swelling strain, 𝜖<=>?@AB = 𝐿 𝐿D − 1⁄  and plotted versus 

the change in temperature, ∆𝑇 = 𝑇 − 𝑇0. For each sample, 𝛼 was determined by fitting the data to the 

linear relationship 𝜖thermal = 𝛼∆𝑇 via the ‘lsqnonlin’ function in MATLAB. The raw data from these 

experiments are given in Fig S2c. A summary of the resulting 𝛼 for each sample is given in Fig. 1e, with 

the error bars representing the 95% confidence interval of the fit. 

Tensile test samples (gauge lengths ~9.5	mm, widths ~4.0	mm, and thicknesses ~0.9	mm), were 
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printed to characterize the elastic modulus for each ink. After printing, each sample was cured in an oven 

(Thermo Scientific LB305750M) at 50℃ for 48 h, followed by a thermal cycle on a hot plate (IKA RET 

basic) at 200℃ for ~15 minutes to ensure curing of the adhesive ingredient. Following this procedure, 

each sample was tested under uniaxial tension in a single-axis mechanical tester (Instron 5566) at an 

engineering strain rate of 0.026	sN* for engineering strains from 0 to 1 (Fig. S3a). The resulting 

engineering stress/strain (𝜎/𝜖) data is represented in Fig. S3b. The elastic modulus (𝐸) of each sample 

was determined by fitting the low strain data (0 ≤ 𝜖 ≤ 0.4) to the linear relationship 𝜎 = 𝐸𝜖 via the 

‘lsqnonlin’ function in MATLAB. A summary of the resulting 𝐸 for each sample is given in Fig. 1f, with 

the error bars representing the 95% confidence interval of the fits. To confirm that the low strain range is 

maintained in our printed bilayers, we can use the expression for the maximum stress in material 𝑖 of the 

bilayer (𝜎@ATU ) occurring at the bearing surface between materials 𝑖 and 𝑗8: 

𝜎@ATU = 𝛿𝜅 YZ[\]\
^_`[\]\a]b_[b]b^

c]\d]\_]be
f    (S1) 

From this equation, we can find the maximum strain at the bearing surface through: 

𝜖@AT = max ijklm
n

[n
, jklm

a

[a
p     (S2) 

Evaluating this expression over all bilayer combinations of our inks results in a maximum value of 𝜖@AT ≈

0.03 ≪ 0.4, thus confirming our low strain elastic modulus approximation. 

 

Bimetallic Strip: Eq. (1) relies on several assumptions reported in detail in Timoshenko’s original paper8. 

Briefly, the standard assumptions of Euler-Bernoulli beam theory apply, so that plane sections originally 

normal to the axis of the beam remain plane and normal after deformation. Further, the equations assume 

uniform material properties throughout each layer, perfect bonding between the layers, and coefficients 

of thermal expansion that do not change as a function of temperature. Lastly, the specific form of Eq. (1) 

is obtained using an assumption of rectangular cross-section, although the equations can be expressed in 

terms of arbitrary cross-sectional area moment of inertia8.  

For our 4D printed structures, the Euler-Bernoulli assumptions may need to be relaxed given that 

their layer-based thickness ratios can reach 5% for some samples. We have no reason to doubt the 

uniformity of the material properties within each rib layer, given the experimental procedure described 

above. The layers are bonded on the molecular level, since the same base elastomer is used in all inks. Of 

course, for high curvature changes, we cannot rule out the appearance of some friction between the layers. 

As for any temperature-dependency of the coefficients of thermal expansion, Fig. S2 shows some non-
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linearity in the thermal strain as a function of temperature. However, our CTE values are determined by a 

fitting process of this experimental data across a large temperature range (see above and Fig. S2), so we 

expect this effect to be masked by the fit. Lastly, the cross-sectional shape of our layers likely deviates 

from the assumed square shape. While the nozzle has a circular cross-section, the viscoelastic nature of 

the material and the effects of gravity the layers induce a non-circular, possibly top-bottom asymmetric, 

shape. We chose to not take this into account, since this would at most change the prefactor in the second 

moment of area, e.g. from *
*,
≈ 0.08  for a rectangular cross-section to u

cZ
≈ 0.05 for an elliptical shape 

within the same bounding box. Lastly, we note on this topic that the experimental results and theoretical 

predictions based on Equation (1) (Fig S4 here, and Fig 2c in the main text) agree sufficiently well for us 

to continue with this form of the equation.  

 

Bilayer Curvature Characterization: Simple bilayer constructs of various material combinations and 

thicknesses were printed for comparison with Timoshenko’s theory and to test thermal cycling. These 

samples each had printed widths and lengths of ~12	mm and ~40	mm, respectively. After printing, each 

sample was cured in an oven (Thermo Scientific LB305750M) at 50℃ for 48 hours, followed by a thermal 

cycle on a hot plate (IKA RET basic) at 200℃ for ~15 minutes to ensure curing of the adhesive ingredient. 

Following this procedure, for the data shown in Fig. S4b, each sample was loaded into an oven equipped 

with a viewing window (Across International, AccuTemp-09w), which was then set to a prescribed 

temperature that was monitored with a k-type thermocouple connected to a digital multimeter (Fluke 179). 

Upon reaching an equilibrium temperature for 0.5 h, a side view calibrated image of the curved bilayer 

was captured (Canon EOS 5D Mark III). The curvature of each sample was then extracted from each 

image using a custom MATLAB script that fits a circle to the side view of the bilayer via ‘lsqnonlin’. A 

summary of the resulting data is shown in Fig. S4b, with the error bars representing the 95% confidence 

interval of the fits. The thermal cycling data shown in Fig. S4c was obtained by loading a cured bilayer 

sample (1:10 filled∥ low 𝛼 ink, 1:10 neat high 𝛼 ink, 𝑡*~0.08	mm, 𝑡,~0.35	mm) into a thermal cycling 

unit equipped with a viewing window (TPS, TUJR-A-WF4). The temperature of the unit was then cycled 

between 20℃ and 130℃ with a heating and cooling rate of 5	℃ min.⁄  with a dwell of 1.33 h to ensure 

thermal equilibrium. Calibrated sideview images of the bilayer were captured (Canon EOS 5D Mark III) 

throughout the cycling experiment at 77 s intervals. The curvature of each sample was then extracted from 

each image using a custom MATLAB script that fits a circle to the side view of the bilayer via ‘lsqnonlin’. 

A summary of the curvature extracted at 130℃ for each cycle is shown in Fig. 2c. 



 6 

 

Linear Growth Characterization of Homogeneous Lattices: Homogeneous lattices of varying 𝐿D  and 𝜃D 

were printed to test growth capabilities and compare them with the theory. These 2 × 2-cell printed lattices 

had a fixed low 𝛼 ink (1:10 filled∥), high 𝛼 ink (1:10 neat), and number of filaments along the rib width 

and height (𝑁z = 𝑁{ = 4). Prior to curing, the configuration of the as-printed lattices was captured using 

a calibrated image (Canon EOS 5D Mark III). Following as-printed imaging, samples were cured in an 

oven (Thermo Scientific, Hermatherm 0MH100-S) at 275℃ for 0.75 h. After curing, the samples were 

removed from the oven and transferred to a room temperature substrate where they were allowed to cool 

and consequently change shape. The transformed configuration of the lattices was captured using the same 

procedure as the as-printed configuration. The pre- and post- transformation images were then analyzed 

using a custom MATLAB script to compare the relative position of the lattice nodes, thereby extracting 𝑠 

for each lattice. The results are summarized in Fig. 2c, where the error bars represent the standard 

deviation of 𝑠 for the 12 ribs of a given lattice. 

 

Curvature Characterization of Spherical Cap Lattices: Heterogeneous square (𝑁~ = 𝑁& = 𝑁) lattices of 

various 𝐿D , 𝑁, 𝑁z, and 𝑁{ were printed to change shape into prescribed (see Details of Spherical Cap 

Lattice Design, below) spherical cap geometries. These printed lattices had a fixed low 𝛼 ink (1:10 filled∥) 

and high 𝛼 ink (1:10 neat). Following the printing process, samples were cured in an oven (Thermo 

Scientific, Hermatherm 0MH100-S) at 275℃ for 45 minutes. After curing, the samples were removed 

from the oven and transferred to a room temperature substrate where they were allowed to cool and 

consequently change shape. Following shape transformation, calibrated top and side view images of the 

transformed spherical caps were then captured (Canon EOS 5D Mark III). A custom MATLAB script was 

used to extract the 3D position of the lattice nodes for each sample and fit the node locations to a spherical 

surface using ‘lsqnonlin’, thereby extracting the spherical curvature for each lattice. The results are 

summarized in Fig. S7b and Tbl. S1. The error bars in Fig. S7b represent the 95% confidence interval of 

the fit. 

 

Hemispherical Patch Antennas: A hemispherical patch antenna was realized by innervating a selected 

number of ribs of a two-material lattice with a printed liquid metal ink. The two materials used for the 

lattice are identical to those used for the heterogeneous square lattices and the lattice parameters are 𝑁~ =

𝑁& = 5, 𝐿D = 12.9	mm and  𝑁z = 𝑁{ = 4. The antenna is produced by printing the first two layers of the 
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lattice followed by printing the liquid metal ink in the center of a subset of the lattice ribs. Next, the liquid 

metal features are sealed, and the top two layers are printed to complete the lattice. The printed functional 

lattices are polymerized at a high temperature and cooled to room temperature to transform their shape 

into a spherical cap geometry. The dispersed liquid metal droplets are coalesced mechanically within the 

ribs of the lattice by rolling across the structure using a polyvinyl chloride tube.  

Electrical connections are made by first creating a pilot hole by puncturing the side the corner 

nodes with a tin-plated copper wire (diameter of approximately 0.4 mm). Next, a short segment of a thinner 

(diameter of approximately 0.2 mm) silver wire is fed into the rib until it is fixed to the structure by 

friction. This procedure is repeated on the opposite corner of the lattice. A resistance measurement (Fluke 

179) of 50	Ω across confirmed that the liquid metal wiring is conductive. To facilitate further electrical 

measurements, a longer headphone wire is soldered to the silver wire at one of the corners of the lattice 

and the other wire is removed. The shape-shifting patch antenna is formed by placing the structure upright 

onto an aluminum ground plane separated by a thin (approximately 0.1 mm) silicon carbide sheet. The 

assembly is then placed inside a thermal cycling unit equipped with a viewing window and a breakout 

port for making electrical connections (TPS, TUJR-A-WF4). The wire connected to the lattice is fed from 

the thermal cycling unit through the breakout port and connected to a precision LCR meter (Agilent 

E4980A, with a probe frequency of 2 MHz and a probe voltage of 1V). Another wire is connected to the 

ground plane and fed through the gasket of the front door of the thermal cycling unit (away from the patch 

antenna wire to avoid stray capacitance) and connected to the precision LCR meter to complete the circuit. 

To demonstrate the shape-shifting patch antenna, we heated the thermal cycling unit at a rate of 3.5℃ ∙

minN* and tracked the temperature along with side view images of the structure (Canon EOS 5D Mark 

III) as well as the capacitance between the hemispherical patch antenna and the ground plane. This data is 

recorded each minute. After the experiment, we removed the lattice while keeping all electrical 

connections fixed and recorded a tare capacitance of 14.48 pF, which is subtracted from our measurements 

to obtain the true capacitance between the hemispherical patch antenna and the ground plane. From the 

true capacitance, we estimated the fundamental resonant frequency (𝑓*$) of the patch antenna through the 

following equation for a rectangular patch antenna9 

𝑓*$ =
𝑐

2𝐿��𝜀�
 

where 𝜀� = 1.0 is the effective relative permittivity (taken to be 1.0 since the patch antenna is separated 

primarily by air), 𝑐 = 3.0 × 10�m ∙ sN* is the speed of light, and 𝐿� = 𝐿 + 2∆𝐿 is the effective length 
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showing the field fringing at the end of the patch antenna; where 

∆𝐿 = 0.412ℎ
0.8
0.242

𝑊 ℎ⁄ + 0.264
𝑊 ℎ⁄ + 0.813 

𝐿 = 𝑊 = 116.1	mm; where 𝐿 and 𝑊 are the effective length and width of the patch antenna (the liquid 

metal wiring is innervated throughout the ribs comprising a 3 × 3 lattice interior to the overall 5 × 5 

lattice). ℎ, the effective height of the hemispherical patch antenna above the ground plane can be estimated 

from the equation for a planar, two electrode capacitor: 

ℎ = 𝜀$
𝐿𝑊
𝐶  

where 𝜀$ = 8.85 × 10N*,	F ∙ mN* is the permittivity of free space and 𝐶  is the measured capacitance 

between the hemispherical patch antenna and the ground plane. The results of 𝑓*$ are presented in Fig. 4b 

of the manuscript. 

 

Shape-shifting kinetics: We consider the time scale required for our lattices to reach their equilibrium 

shape during thermal cycling. On one hand, the lattice ribs will require a finite amount of time 𝜏� to expand 

in response to a given temperature, which can be approximated by10: 

𝜏� ≈
�D

������
          (S3) 

where 𝑐� is the speed of sound in the ribs. Using the conservative value of  𝑐� ≈ 1030	m ∙ sN* , which is 

for PDMS11, rather than the significantly higher value for glass (~4200	m ∙ sN*)12, and conservative 

values for our lattice structures (𝐿D = 0.02	m, 𝛼 = 4.4 × 10N�	℃N*, and Δ𝑇 = 250℃), results in 𝜏� ≈

0.2	ms. On the other hand, their thermal response time is limited by how quickly the thermal energy (i.e., 

temperature) of the bilayer can be increased or decreased in response to ambient conditions. For this, we 

consider a bilayer of length, 𝐿 = 10	mm with a rectangular cross-section of width, 𝑊 = 0.4	mm and 

height, 𝐻 = 0.4	mm. The solution to the dynamic average temperature, 𝜑@(𝑡) of the bilayer can be 

approximated as13: 

𝜑@_(𝑡) ≈
�k(])N��
�k($)N��

= 𝜑@�B_ iZ��]
��a ,

��
,�
p ∙ 𝜑@�B_ iZ��]

� a
, ��
,�
p ∙ 𝜑@�B_ iZ��]

��a
, ��
,�
p     (S4) 

Here 

𝜑@�B_ iZ��]
��a ,

��
,�
p ≈ 𝐷𝑒N

£¤a¥¦
§a        (S5) 

is the first order term in the infinite series solution to the dimensionless average temperature for a one-

dimensional plate (shown in the width direction as an example), 𝐷 and 𝜇 are the respective first order 
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expansion coefficient and eigenvalue of the system, which are dependent on the Biot number, 𝐵U =

𝜁𝑊 2𝜆⁄ , 𝑐 is the bilayer specific heat capacity, 𝜌 is the bilayer density, 𝜁 is the average heat transfer 

coefficient between the bilayer and its surroundings (modeled as constant on all faces of the bilayer), 𝜆 is 

the thermal conductivity of the bilayer, 𝜑@(0) is the initial average bilayer temperature, and 𝜑� is the 

temperature of the surrounding medium. The values used for the bilayer material parameters are 𝜌 =

1.18	 g cm`⁄ , 𝑐 = 1019	J ∙ kgN* ∙ KN*, and 𝜁 = 0.15	W ∙ mN* ∙ KN*. To capture the extreme case of curing 

at high temperature (275℃) and cooling down to room temperature (25℃), we set 𝜑@(0) = 275℃. We 

estimated the speed of the response, which depends on the ambient temperature set during cooling and the 

composition of the surrounding medium, both of which can be varied experimentally. Using air as the 

medium, the structure is cooled to 25℃ either by placing it at room temperature or in a freezer held at 

−40℃ for a shorter period of time. We can either immerse the lattice in a saline solution or leave it in air. 

Finally, we can cool the structure through natural or forced convection. Considering this broad parameter 

space, the resulting thermal response time can be as low as ~70	ms (saline solution at 0℃ under forced 

convection) or as high as 1,372	s (air at 25℃ under natural convection). We summarize the thermal 

response times for each scenario considered in Tbl. S2.  

 

Linear Growth Derivation.  We explain how to characterize the growth factors as described in Eq. 2 of 

the main text. The initial, printed state is a rib in the form of a circular arc with opening angle 𝜃D connecting 

two nodes a distance 𝐿D  apart, as shown in Fig. 2a. The curvature of the circular arc can be computed as: 

�̃� 	= ,	³´µd¶· ,⁄ e
�D

       (S6) 

and the arclength is then given by: 

						LA?¹ =
¶·

º»
= 		 ¶·	�D

,	³´µd¶· ,⁄ e
       (S7) 

For completeness, we note that the following limit holds: 

lim
¶→$

¶
	³´µ(¶ ,⁄ )

= 2        (S8) 

so that LA?¹ = 	𝐿D  when 𝜃D = 0, as expected. When the rib undergoes a given change in curvature 𝛿𝜅, the 

post-transformation curvature is 𝜅 = �̃� + 𝛿𝜅. To compute the post-transformation distance between the 

nodes 𝐿, we assume that the arclength of the rib remains constant so that 𝐿A?¹ = 𝜃D/�̃� 		= 𝜃/𝜅 where 𝜃	is 

the opening angle of the rib after the curvature change. We then find an expression for 𝐿 as: 

𝐿 =
,³´µi½ap

º
	         (S9) 
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Reformulating the above expression in terms of 𝜃D,	𝐿D , and 𝛿𝜅 alone then gives rise to Eq. 2 in the main 

text, which expresses the growth factor 𝑠 = 𝐿/𝐿D  in terms of the initial sweep angle 𝜃D and the non-

dimensional rib curvature change 𝛿𝜅	𝐿D. In Fig. S5, furthermore, we analyze this equation by plotting the 

growth factor as a contour plot for the parameter region 0 ≤ 	𝛿𝜅	𝐿D ≤ 4.5 and −𝜋 ≤ 	𝜃D ≤ 𝜋. Within this 

region, the maximum possible growth occurs at 𝜃D = 	−𝜋 and 	𝐿D𝛿𝜅 = 2, when 𝑠 = 	𝜋/2. The minimum 

growth is 𝑠 = 	0 which is achieved on the parametric curve expressed by: 

𝐿D𝛿𝜅 = (2𝜋 − 𝜃D)	,	³´µd¶
· ,⁄ e	
¶·

       (S10) 

again for −𝜋 ≤	𝜃D ≤ 𝜋 and 𝛿𝜅 > 0. Within this range of 	𝜃D, the smallest possible non-dimensional 

curvature 𝐿D𝛿𝜅 that achieves 𝑠 = 	0 is 𝐿D𝛿𝜅 = 2, at	𝜃D = 𝜋. This value is significant, because for curvatures 

𝐿D𝛿𝜅 ≥ 2 the ratio of maximum possible growth over minimum possible growth, which sets the domain of 

shapes that can be grown, reaches infinity, implying that any smooth target metric field can be achieved, 

up to a scaling factor that determines the actual dimensions of the grown object (see also the inverse-

design process section).  

In reality, however, the ribs have a finite width, and they would overlap if we chose 𝜃D = 𝜋. The actual 

maximum absolute sweeping angle 𝜃D@AT < 𝜋, instead depends on the required minimum edge-to-edge 

gap size. Based on the geometry of the ribs as circular arcs, it can be shown that 

𝜃D@AT = 4	 tanN* Y1 −
𝜆 + 𝑤
𝐿D

f,	 

where 𝜆 is the desired edge-to-edge gap size and 𝑤 is the width of the ribs (so that each rib has half-width 

𝑤/2). In the idealized case, we simplify using 𝜆 = 𝑤 = 0 to find 𝜃D@AT = 𝜋. In our experiments, however, 

we limit the range of opening angles according to 𝜃D@AT  defined in this equation, using 𝜆 to be 

approximately equal to 𝑤 to prevent adjacent ribs from fusing together. Once 𝜃D@AT  is determined, it can 

be substituted into relation S10 to find the corresponding minimum value of 𝐿D𝛿𝜅 at which arbitrary shapes 

can theoretically be achieved.  

 

Spherical Cap Lattice Design. We design the spherical cap lattices as follows. For each test case we first 

choose the number of filaments across the width (𝑁z), the lattice spacing (𝐿D), the bilayer materials, and 

the number of cells in the square lattice (𝑁~ = 𝑁& = 𝑁). Each of these parameters results in a fixed value 

of 𝛿𝜅 as computed with Eq. 1 of the main text. For the corresponding non-dimensional curvature change 

𝐿D𝛿𝜅, the growth factor of each rib 𝑠, as a function of 𝜃D is given by Eq. 2 of the main text. To design the 
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lattices, we then first evaluate the required linear growth factor 𝑠U for each rib, and then invert Eq. 2 to 

find the corresponding initial sweeping angle 𝜃DU.  

To find the growth factors 𝑠U, we consider a spherical cap projected onto the plane using the 

stereographic projection. In this case, the analytic form of the isotropic continuous growth field 𝑠(𝑟) is: 

𝑠(𝑟) = 2 Å�
ÅÆ

*
*_(Ç/ÅÆ)a

       (S11) 

where 𝑅� is the radius of the resulting spherical cap, and 𝑅É sets the dimensions of the planar map. For 

each of our lattices, the goal is to find 𝑅� and 𝑅É to fully exploit the expansion and contraction capabilities 

of the individual ribs. We start by using Eq. 2, together with the  −|𝜃ËÌ~| ≤ 	𝜃D ≤ |𝜃ËÌ~| range of the 

possible sweep angles, to compute the maximum and minimum possible growth factors (denoted 𝑠ËÌ~ 

and 𝑠ËUÍ respectively) of any individual rib. We then want to compute 𝑅� and 𝑅É so that these growth 

factors are applied to the innermost and outermost ribs, respectively. To do so, we note that for any given 

lattice with cell size 𝐿D  and linear dimension 𝑁, the mid-points of the closest ribs to the center are located 

at 𝑟ËUÍ =
�D

,
 . Similarly, the mid-points of the farthest ribs from the center are located at 𝑟ËÌ~ =

𝐿D	ÎiÏ
,
p
,
+ iÏN*

,
p
,
. We then solve the equations 𝑠(𝑟ËÌ~	) = 𝑠ËÌ~ and 𝑠(𝑟ËUÍ	) = 𝑠ËUÍ for the unknown 

dimensions 𝑅� and 𝑅É, which gives us the fully specified analytic growth field 𝑠(𝑟) so that the innermost 

ribs expand with 𝑠ËÌ~ and the outermost ribs contract with 𝑠ËUÍ. For the other ribs, we evaluate this 

growth field at their mid-points to compute the rib growth factors 𝑠U. Finally, we use Newton’s method to 

numerically invert Eq. 2 in the main text for each rib, to obtain the initial sweep angles 𝜃DU. The 

corresponding spherical cap has a theoretical curvature of 𝜅] = 	𝑅�N*.  

We show the effect of 𝐿D𝛿𝜅 on the maximum possible opening angle of the spherical cap using a 

simplified analysis and visual representation in Figure S6. Here we combine Eq. 2 in the main text with 

Eq. S11 above. Following the explanation above, we set  𝑟ËUÍ = 0 for convenience, and consider the 

growth of a disk of radius 𝑟ËÌ~	into a spherical cap. The expression for the opening angle as a function of 

𝐿D𝛿𝜅 then reduces to 

𝜑 = 𝜋 −	cosN* i3 − �
,_�DÑº

p     (S12) 

which is independent of the radius of the initial disk. This expression is plotted in Figure S6, both against 

the non-dimensional expression 𝐿D𝛿𝜅 as well as the dimensional value of 𝐿D  using the characteristic 

properties of the materials considered here to compute 𝛿𝜅. We observe that for  𝐿D𝛿𝜅 ≥ 2, as explained 

above and in Fig. S5, we can theoretically obtain infinite reduction in linear size of a single rib, which 
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would result in a fully closed sphere with 𝜑 = 𝜋. 

 

Spherical Cap Scaling Analysis 

For in-plane loadings of the printed planar lattices, Gibson & Ashby14 provides an estimate of the scaling 

of the effective stiffness of the lattice: 

𝐸�ÒÒ
𝐸 ~	Y

𝑤
𝐿D
f
`
, 

where the third power is obtained by assuming that the primary mode of in-plane deformation is caused 

by bending of the lattice ribs, where 𝑤 = 𝑤Ò𝑁z, with 𝑤Ò  the width of a single filament and 𝑁z the number 

of filaments across the width of the ribs, in our case.  

For the 3D spherical cap, we derive a scaling of the sagging deflection using an energetic analysis 

of a one-dimensional cantilever beam of length 𝐿Ó. For a tip deflection 𝑑�, the curvature is proportional 

to 𝜅�~𝑑�/𝐿Ó, , so that the bending energy scales as 𝑈Ó~𝐸	𝐼Ó	𝜅�,	𝐿Ó	~	𝐸	ℎ`𝑤	𝑑�,/𝐿Ó` . The work done by the 

gravitational force, on the other hand, scales as 𝜌Ó𝑔	ℎ	𝑤	𝐿Ó𝑑Ø, with 𝜌Ó𝑔 the specific weight of the beam. 

Equating the two and solving for 𝑑Ø gives: 

𝑑Ø~ i
�ÙÚ
[
p i�Ù

£

{a
p       (S13) 

Substituting the representative lattice length scale 𝐿Ó~	𝑁𝐿D	and dividing each side by 𝐿Ó leads to the 

scaling relation mentioned in the main text.  

To explain the experimental results of the spherical cap, we use some simple scaling relations that 

relate the strain generated through thermal expansion, to the buckling of the lattice. For a single beam of 

length 𝐿Ó, bending into a curvature 𝜅Ó induces an internal bending strain energy 𝑈Ó~𝐸	𝐼Ó	𝜅Ó,	𝐿Ó, where 

𝐸 is the Young's modulus and 𝐼Ó the second moment of area of the cross-section. This curvature 𝜅Ó 

corresponds to linear order to an in-plane compression of 𝛿Ó~	𝑤Û(𝑥)𝐿Ó~	𝜅Ó,𝐿Ó` , with 𝑤(𝑥) the deflection 

of the beam. The work done by a lateral force	𝑃Ó is then 𝑊Þ = 𝑃Ó	𝛿Ó. Equating this work with the bending 

energy then gives: 

𝑃Ó	~	
[	ßÙºÙ

a 	�Ù
ºÙ
a �Ù

^ 	~𝐸	ℎ	𝑤 i {
�Ù
p
,
      (S14) 

where we used that 𝐼Ó~ℎ`𝑤	with ℎ the thickness and 𝑤 the width of the beam. In our case, the internal 

force is generated from the thermal expansion with strain 𝜖 so that 𝑃Ó~𝐸	𝐴	𝜖	~	𝐸	ℎ	𝑤	𝜖. Plugging this 

into the above relationship and solve for 𝜖 gives the critical strain required for buckling of the beam: 
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𝜖	~	i {
�Ù
p
,
       (S15) 

For our lattice the representative length 𝐿Ó~	𝑁𝐿D  leading to the scaling law discussed in the main text. 

 

General Inverse Design: The inverse design process of a general, non-trivial shape starts with a three-

dimensional triangle mesh of the target shape’s mid-surface. We use a numerical algorithm15 to 

conformally project the target shape onto the plane. Since the projected planar outline is arbitrarily 

oriented, we compute the closest fitted rectangle to the outline and rotate the system so that the largest 

axis of the rectangle aligns with the 𝑥	axis of the global coordinate system.   

Independently, we choose our lattice materials and number of printed layers per rib, so that we can 

evaluate the single value 𝛿𝜅 that every rib in the lattice will achieve. We also choose an initial rib length 

𝐿D  and number of cells in the 𝑥 dimension of the lattice, 𝑁~. Given these values we rescale our planar shape 

projection so that the longest dimension of its rectangular outline is equal to 𝑁~𝐿D, and construct a lattice 

that covers the rectangle. We then remove those ribs of the lattice that do not cover at least 50% of the 

planar projection, and subsequently remove those ribs whose nodes are not connected to at least one other 

rib. This provides us with the geometric definition of a lattice fitting the target shape’s planar projection. 

From the projection of the target shape we can compute the analytically required growth and 

curvature field at any location. In particular, by reparametrizing the surface using the (𝑥, 𝑦) coordinates 

of the plane, the conformal projection provides us with a function 𝒎(𝑥, 𝑦) that maps any point in the plane 

to a three-dimensional coordinate vector in space. From 𝒎(𝑥, 𝑦) we can compute the tangent vectors 

𝒎~(𝑥, 𝑦) and 𝒎&(𝑥, 𝑦) on the target surface, where subscripts denote partial derivatives with respect to 

the specified parameter. We can also compute the unit normal vector field 𝒏ä(𝑥, 𝑦) = (𝒎~(𝑥, 𝑦) 	×

	𝒎&(𝑥, 𝑦))/å𝒎~(𝑥, 𝑦) 	× 	𝒎&(𝑥, 𝑦)å. These together give rise to the first and second fundamental form of 

the target surface, 𝑎�(𝑥, 𝑦) = 𝑑𝒎�𝑑𝒎	and 𝑏�(𝑥, 𝑦) = −𝑑𝒏ä�𝑑𝒎. Here 𝑑 denotes the differential operator 

so that if a function 𝑓: ℝÍ →	ℝË, the differential 𝑑𝑓 is a 𝑚	 × 𝑛 matrix where the 𝑖th column consists of 

𝜕𝑓/𝜕𝑥U. These quadratic forms allow us to characterize the required change in length and curvature of 

infinitesimal vectors between the planar projection and the three-dimensional shape. In particular, for a 

parametric vector 𝑑𝒖 defined at coordinates (𝑥, 𝑦), the length change when transformed onto the target 

surface is:    

    𝑠î = (𝑑𝒖�𝑎�	𝑑𝒖)/(𝑑𝒖�𝑑𝒖)      (S16) 

and the normal curvature on the target surface in direction 𝑑𝒖 is: 
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𝜅îÍ = (𝑑𝒖�𝑏�	𝑑𝒖)/(𝑑𝒖�𝑎�	𝑑𝒖)     (S17) 

Discrete versions of these quadratic forms on triangle meshes are given and further detailed elsewhere16,17. 

For each rib of our lattice, we then use the Eq. S16 to average the growth field along their lengths, which 

results in a single scalar average growth factor per rib. We do the same for the normal curvature using Eq. 

S17 to obtain a single scalar average normal curvature for each rib.  

At this point, we have derived for each rib i in the lattice (of specified dimensions) the required 

growth factor, 𝑠U, and normal curvature, 𝜅UÍ. We have not, however, explicitly chosen the size of the target 

geometry into which we grow, so that the global size of the target shape is an open degree of freedom. We 

set this degree of freedom so that the growth field on our lattice best fits the extent of growth available to 

the ribs. To do so, we define the required growth ratio of the target geometry as 𝑔Ç�ï = max
U
𝑠U /minU 𝑠U	, 

which is independent of the size of the target shape; any global rescaling of the growth factors would leave 

𝑔Ç�ï unaltered. We compare this ratio with the achievable growth ratio, 𝑔ðÌ]]U�� = 𝑠ËÌ~/𝑠ËUÍ	, computed 

by evaluating Eq. 2 across the range of allowable sweep angles −|𝜃ËÌ~| ≤ 	𝜃D ≤ |𝜃ËÌ~|, after substituting 

our lattice’s value of 𝐿D	𝛿𝜅. If the required growth ratio 𝑔Ç�ï	is larger than the achievable growth ratio 

𝑔ðÌ]]U�� , the shape can not be grown with the input lattice characteristics and we need to revisit our choice 

of parameters. In particular, increasing 𝑔ðÌ]]U��  can be achieved by increasing 𝐿D	𝛿𝜅 ; note that once its 

value 𝐿D	𝛿𝜅 ≥ 2, we have 𝑠ËUÍ = 0 so the achievable growth ratio becomes infinity (see main text). This 

means that for such lattices, any smooth shape can be grown, up to a global scaling factor. In practice, we 

maximize 𝐿D	𝛿𝜅 by choosing the largest possible lattice side length 𝐿D  given a desired resolution 𝑁~, so that 

the largest dimension of the lattice 𝐿D	𝑁~ stays within the limits posed by the experimental setup (in our 

case the size of the print bed). Simultaneously, we maximize 𝛿𝜅 by reducing the rib half-width to the 

minimum filament size for our inks. Once we have a lattice for which 𝑔ðÌ]]U�� ≤ 𝑔Ç�ï, we scale the desired 

target shape size by altering our growth factors with a uniform factor 𝑓. This rescaling is necessary to 

make sure that max
U
(𝑓𝑠U) ≤ 𝑠ËÌ~ and  min

U
(𝑓𝑠U) ≥ 𝑠ËUÍ. If 𝑔ðÌ]]U�� = 𝑔Ç�ï , the choice of 𝑓 is unique, but 

for 𝑔ðÌ]]U�� < 𝑔Ç�ïwe still have a degree of freedom in this scaling factor. Here we generally set  𝑓 =

2/(max
U
𝑠U + minU 𝑠U) so that the average growth factor, after rescaling, is equal to 1. 

Next, we need to choose the multiplex bilayer design for each rib, given the required in-plane 

growth as well as normal curvature. We do this by comparing the required normal curvature 𝜅UÍ	to the 

possible out-of-plane curvature values of each multiplex design option as shown in Fig. 3. However, a 

complication here is that once we change the multiplex bilayer design to achieve the desired out-of-plane 
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curvature, the in-plane 𝛿𝜅 changes as well, which affects the range of in-plane growth that can be achieved. 

In this work we prioritize the in-plane growth and choose only multiplex bilayer designs that can achieve 

the desired in-plane growth, compromising the out-of-plane curvature if necessary.  Finally, we compute 

𝜃DU. For each rib we compute the respective value of 𝐿D𝛿𝜅 using the assigned multiplex materials, and Eq. 

1 in the main text. We then use Newton’s method to numerically invert Eq. 2 in the main text given the 

required scaled growth factor 𝑓𝑠U, to obtain the sweep angles 𝜃DU, which are fed to the printer. 

 

Generating Gauss’s Face. To create the three-dimensional model of Gauss’s mask, we start with a 

photographic reproduction of an 1840 painting by Danish painter Christian Albrecht Jensen, which now 

is available in the public domain (Fig. 4a). We feed this image in an open-source, online Artificial 

Intelligence 3D face reconstruction software18. This software uses a trained convolutional neural network 

to generate a three-dimensional model of the face in the corresponding image. We then make some 

substantial manual alterations to the AI-generated output mesh. Firstly, we extract the face surface from 

the output shape, and regularize the underlying triangle mesh. Secondly, we manually add a forehead 

starting from 1/4th of an ellipsoidal surface properly dimensioned to fit the face and attached to the model. 

Lastly, we manually smooth some individual features to regularize the curvature of the target shape. The 

resulting three-dimensional surface mesh, and its conformal projection to the plane, can be downloaded 

in STL format from the supplementary information. 

 

Face Reconstruction and Error Analysis: To generate a 3D reconstruction of the experimentally 

transformed face, we first placed the lattice in an aquarium full of salt water (~240	g/L of NaCl). We 

then attached a laser scanner (Keyence, LJ-V7080) to an automated gantry (Aerotech Inc.). Through a 

customized set of commands, we scanned the immersed lattice, along with a calibration disc, and 

synchronized the position data of the gantry with the laser scanner, resulting in the 3D reconstruction of 

the transformed face. Following this step, we imported the scanned data into an open source point cloud 

processing software (CloudCompare). Here we processed and denoised the point cloud by performing a 

density computation and discarding isolated points. We then imported the target shape mesh in the same 

software, scaled it to its pre-computed physical size given the lattice dimensions and the global scaling 

factor, and aligned the bounding boxes of the point cloud with the scaled target mesh. To perform the 

distance computation, we performed a finer alignment of the point cloud with the target mesh according 

to the Iterative Closest Point (ICP) algorithm (translation and rotation only). We then computed the closest 
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distance for each point in the point cloud to the target mesh according to the built-in routine of 

CloudCompare and exported the histogram data of this quantity. We finally loaded the colored point cloud 

and target mesh in the open source rendering software Blender to generate the images in the main text. 
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Figure S1. Ink rheology. a) Log-log plots of the apparent viscosity as a function of shear rate for the glass 
fiber-filled, base silicone resin (left) and the neat (middle) and filled (right) silicone inks. b) Log-log plots 
of the storage (G′, closed circles) and loss (G′′, open circles) moduli as a function of shear stress for the 
filled silicone resin (left) and the neat (middle) and filled (right) silicone inks. All legend labels denote the 
weight ratios of crosslinking agent to base. 
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Figure S2. Thermal expansion (𝛼) measurements. a) Image of 𝛼 test specimens being printed using the 
1:10 neat ink. b) Representative image of the as-printed (25℃, top) and expanded (160℃, bottom) states, 
where the measured lengths are used to calculate 𝛼. The ink used to construct these samples is the 1:10 
neat. c) Measured swelling strains for neat (top), filledñ (middle) and filled∥ (bottom) inks. Circles, x-
marks, pluses, stars, and squares represent data for 1:10, 1:20, 1:30, 1:40, and 1:50 weight ratios of 
crosslinker- to-base silicone inks, respectively. 
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Figure S3. Elastic modulus measurements. a) Images of printed tensile test specimens at 0% (top) and 
100% (bottom) strain. Scale bars correspond to 5 mm. The ink used for these specimens is the 1:10 filled∥. 
b) Stress versus strain curves of tensile test specimens for neat (left), filledñ (middle) and filled∥ (right) 
inks. Circles, x-marks, pluses, stars, and squares represent data for 1:10, 1:20, 1:30, 1:40, and 1:50 weight 
ratios of crosslinker-to-base silicone ink, respectively. 
 

 
Figure S4. Printed bilayers. a) Schematic of printed bilayer with defined parameters: initial curvature (�̃�), 
layer thicknesses (𝑡* and 𝑡,), linear 𝛼s (𝛼* and 𝛼,), elastic moduli (𝐸* and 𝐸,) of the high and low 𝛼 layers 
(1 is the low 𝛼 material and 2 is the high 𝛼 material), imposed temperature difference (∆𝑇 < 0), and final 
curvature (𝜅) under applied temperature difference. b) Phase plot of attainable temperature sensitivity of 
dimensionless curvature (gray shaded area) with validated experimental data (colored circles). Lines are 
theoretical predictions (Eq. 1). c) Experimental curvature of a thermally cycled bilayer as a function of 
cycle number. 



 21 

Figure S5. a) A single rib in the lattice is characterized by initial linear length 𝐿D  and opening angle 𝜃D 
(top), and transforms to a length 𝐿 and opening angle 𝜃 after a curvature change of 𝛿𝜅 (bottom). b) The 
growth of such a rib quantified in a contour plot, showing the linear growth factor 𝑠 as a function of the 
internal opening angle 𝜃D (horizontal axis) and non-dimensional curvature change 𝐿D𝛿𝜅 (vertical axis). 
 
 

 
Figure S6. (a) For a planar lattice growing into a spherical cap (using stereographic projection), the graph 
shows the maximum opening angle 𝜑 (in radians) of the cap as a function of the initial linear length 𝐿D  and 
maximum curvature change of 𝛿𝜅. The vertical dashed line corresponds to 𝐿D𝛿𝜅 = 2, above which a rib 
can theoretically shrink to point as shown in Figure S5, resulting in 𝜑 = 𝜋. (b) The same graph but using 
a dimensional x-axis corresponding to the material properties of ribs consisting of 1:10 filled∥ and 1:10 
neat materials. Using a cross-section with two filaments in width (𝑁z = 2, orange) enables arbitrary 
opening angles above 𝐿D ≈ 14	mm, when doubling the number of filaments in the cross-section (𝑁z = 4, 
blue) this critical side length increases to 𝐿D ≈ 28	mm. 
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<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

� � �� �� �� �� ��
���

���

���

���

���

���

���

L̃ (KK)
<latexit sha1_base64="ityX2hyeTBjTmY7Ahz/HrajVswQ=">AAAB/3icbVDLSgNBEJyNrxhfUcGLl8UgRJCwGwU9Br148BDBPCAbwuykkwyZ2V1mesWw7sFf8eJBEa/+hjf/xsnjoNGChqKqm+4uPxJco+N8WZmFxaXllexqbm19Y3Mrv71T12GsGNRYKELV9KkGwQOoIUcBzUgBlb6Ahj+8HPuNO1Cah8EtjiJoS9oPeI8zikbq5Pc85KILyXXqHRc9hHtMpEyPOvmCU3ImsP8Sd0YKZIZqJ//pdUMWSwiQCap1y3UibCdUIWcC0pwXa4goG9I+tAwNqATdTib3p/ahUbp2L1SmArQn6s+JhEqtR9I3nZLiQM97Y/E/rxVj77yd8CCKEQI2XdSLhY2hPQ7D7nIFDMXIEMoUN7fabEAVZWgiy5kQ3PmX/5J6ueSelMo3p4XKxSyOLNknB6RIXHJGKuSKVEmNMPJAnsgLebUerWfrzXqftmas2cwu+QXr4xvsH5YJ</latexit>

'
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>

Nw = 2
<latexit sha1_base64="AmFbZbaNGIU1mb9gzGWuxcmN8dE=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IsniWAekCxhdtJJhszOLjOzSljyEV48KOLV7/Hm3zhJ9qCJBQ1FVTfdXUEsuDau++3kVlbX1jfym4Wt7Z3dveL+QUNHiWJYZ5GIVCugGgWXWDfcCGzFCmkYCGwGo5up33xEpXkkH8w4Rj+kA8n7nFFjpeZd94lckUq3WHLL7gxkmXgZKUGGWrf41elFLAlRGiao1m3PjY2fUmU4EzgpdBKNMWUjOsC2pZKGqP10du6EnFilR/qRsiUNmam/J1Iaaj0OA9sZUjPUi95U/M9rJ6Z/6adcxolByeaL+okgJiLT30mPK2RGjC2hTHF7K2FDqigzNqGCDcFbfHmZNCpl76xcuT8vVa+zOPJwBMdwCh5cQBVuoQZ1YDCCZ3iFNyd2Xpx352PemnOymUP4A+fzB9mbjpc=</latexit>

Nw = 4
<latexit sha1_base64="QFzYWZ7N4ZCXM2FmxNWxkkh0eeE=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Y0IsQ9OJJIpgHJEuYnUySIbOzy0yvEpZ8hBcPinj1e7z5N06SPWhiQUNR1U13VxBLYdB1v52V1bX1jc3cVn57Z3dvv3Bw2DBRohmvs0hGuhVQw6VQvI4CJW/FmtMwkLwZjG6mfvORayMi9YDjmPshHSjRF4yilZp33SdyRSrdQtEtuTOQZeJlpAgZat3CV6cXsSTkCpmkxrQ9N0Y/pRoFk3yS7ySGx5SN6IC3LVU05MZPZ+dOyKlVeqQfaVsKyUz9PZHS0JhxGNjOkOLQLHpT8T+vnWD/0k+FihPkis0X9RNJMCLT30lPaM5Qji2hTAt7K2FDqilDm1DehuAtvrxMGuWSd14q31eK1essjhwcwwmcgQcXUIVbqEEdGIzgGV7hzYmdF+fd+Zi3rjjZzBH8gfP5A9yjjpk=</latexit>

(a) (b)

'
<latexit sha1_base64="/4dUX6CHoVoH6b+YzkTtnptXav4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21oNhuSbKEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TJJqypo0EYnuhMQwwSVrWm4F6yjNSBwK1g7H93O/PWHa8EQ+2aliQUyGkkecEuukdm9CtBrxfrniVb0F8Drxc1KBHI1++as3SGgaM2mpIMZ0fU/ZICPacirYrNRLDVOEjsmQdR2VJGYmyBbnzvCFUwY4SrQrafFC/T2RkdiYaRy6zpjYkVn15uJ/Xje10W2QcalSyyRdLopSgW2C57/jAdeMWjF1hFDN3a2Yjogm1LqESi4Ef/XlddKqVf2rau3xulK/y+MowhmcwyX4cAN1eIAGNIHCGJ7hFd6QQi/oHX0sWwsonzmFP0CfP3yYj6o=</latexit>
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Figure S7. Heterogeneous bilayer lattices can morph into freestanding spherical caps. a) Tradeoff between 
bending energy and gravitational energy to form freestanding structures in air. Insets are side-view images 
of various printed hemispherical caps placed onto substrates in air after a ∆𝑇 of −250℃. b) (left) 
Prediction error as a function of internal strain 𝜖�ÇU]  (∆𝑇 = −250℃). (Top-Right) Representative lattice 
with a large 𝜖�ÇU] (6.2 × 10NZ) that does not exhibit out of plane buckling. (Bottom-Right) Representative 
lattice with small 𝜖�ÇU] (1.5 × 10NZ) that exhibits out of plane buckling and a low prediction error. The 
low and high 𝛼 materials used in these lattices are 1:10 filled∥ and 1:10 neat, respectively (see Methods 
and Table S1). Scale bars are 5 mm in length. 
 

 

 



 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. Saddle shaped lattice. Similar to the spherical caps discussed in the main text, imposing a 
metric corresponding to a negative Gaussian curvature results in a saddle shape of the transformed lattice. 
The low and high 𝛼 materials used in these lattices are 1:10 filled∥ and 1:10 neat, respectively (see 
Methods), and 𝐿D = 6.0	mm).  Scale bars correspond to 5 mm. 
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Figure S9. Polymorphing lattice. a) A planar lattice programmed to transform into a spherical cap 
(positive Gaussian curvature) through a negative temperature change. b) The spherical cap-shaped lattice 
is immersed into a solvent (i.e., hexane) to induce swelling of the PDMS matrix. c) After 46 sec in hexane, 
the lattice swells beyond its printed configuration to adopt a saddle shape geometry (negative Gaussian 
curvature). The low and high 𝛼 materials used in these lattices are 1:10 filled∥ and 1:10 neat, respectively, 
and 𝐿D = 12.9	mm (see Methods). We printed the lattice with small notches (shown in a) to help transition 
between shapes.  Scale bars correspond to 20 mm. 
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Figure S10. A flow chart showing the general workflow for designing a lattice that transforms into an 
arbitrary target shape. The input parameters are given inside the boxes with blue boundary: 𝐿D  denotes the 
initial size of the lattice cells,	𝑁~ denotes the number of cells along the largest dimension of the flattened 
target shape, and 𝑁z and 𝑁{ denote the number of printed filaments along the width and height of the ribs, 
respectively. 
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Table S1. Description of printed spherical caps.    

Note: The dimensionless sagging deflection and critical strain are computed from the theoretical analysis 
explained in the main text and the methods, using the design parameters of each lattice. The prediction error is 
computed by comparing curvature measurements of the experimental samples with the curvature of target 
shapes. 

 

 

Table S2. Calculated thermal response times for printed lattices. 
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Movie M1. Thermal cycling of a 4D printed homogeneous lattice, where 𝐿D = 20	mm, 𝜃D = 171° and the 
inks used are 1:10 filled for low 𝛼 and 1:10 neat for high 𝛼. 
 
Movie M2. Printed lattice that exhibits polymorphic shapes. A heterogeneous lattice (𝐿D = 12.9	mm) 
composed of two inks (1:10 filled for low 𝛼 and 1:10 neat for high 𝛼) morphs a spherical cap geometry 
due to differential contraction upon cooling (∆𝑇 = −250℃).  When immersed in hexane, this lattice 
undergoes differential expansion via solvent swelling and morphs into a saddle geometry.    
 
Movie M3. Shape-shifting patch antenna fabricated by multi-material 4D printing. 
 
Movie M4. Multiplex bilayer lattice fabricated by multi-material 4D printing, which is designed to morph 
into the geometry of Gauss’ face. Four inks are co-printed to produce this lattice, i.e., 1:10 filled (Ink 1), 
1:10 neat (Ink 2), 1:30 filled (Ink 3), and 1:20 neat (Ink 4). Each ink is dyed with a different fluorophore 
to aid in visualization of the printing process.  
 
Movie M5. Multiplex bilayer lattice fabricated by multi-material 4D printing that has morphed into the 
geometry of Gauss’ face upon immersion into an aquarium containing a salt water solution (~240	g/L of 
NaCl). 
 
 
Files for printing Gauss’s face 
 
Direct URL to the deposited data https://github.com/wimvanrees/face_PNAS2019  which contains: 
 
the three-dimensional surface mesh used as target shape for Gauss’ face,  and the conformal projection 
of this face to the plane. Both files are in the standard STL format for triangulated surfaces. The 
numbering of the faces is consistent between the two files, which provides the necessary information to 
reconstruct the mapping between the two shapes.  
 
File names: 
 
File Gauss_face_3D.stl Triangle mesh in STL format containing the version of Gauss’ face used as a 
target shape in our face transformation demonstration.   
 
File Gauss_face_2D.stl Triangle mesh in STL format containing the conformal planar projection of the 
3D face mesh, used to compute the required length changes and rib normal curvatures in our face 
transformation demonstration. 
 


