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This paper reviews the result of the Mesh Motion test suite, assembled as part of
the 2024 High Fidelity CFD Verification Workshop. This test suite extends studies of
two geometries introduced in the previous iteration of the workshop, internal flow in a
deforming cylinder geometry and external flow over a heaving and pitching airfoil. The
extensions consist of redefining the cylinder motion to study volume scaling terms, to break
problem symmetries, and to study the convergence of spatial and temporal errors and their
impact on long-time stability of both cases. Five groups participated in the workshop,
using various spatial and temporal discretizations. The results indicate agreement between
several groups to a greater extent than in previous workshops. The discussion identifies
reasons for differences and makes suggestions for further studies.

I. Introduction

The most recent High-Fidelity Computational Fluid Dynamics (CFD) Verification Workshop, previously
known as the High-Order Workshop [1], was held at the 2024 AIAA SciTech conference. The goals of this
workshop are; (1) to support new research in the area of high-fidelity CFD methods; (2) to identify pacing
items for high-fidelity methods; and (3) to facilitate collaboration among CFD researchers and practitioners.
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The workshop consists of several test suites, each of which addresses a broad area relevant to CFD. One of
these suites concerns mesh motion, and this is the topic of the present paper.

Fluid problems with moving or deforming domains are found in many aerospace applications, such as
fluid-structure interaction, turbomachinery, store separation, and rotor-craft simulations. As part of the
High-Fidelity CFD Verification Workshop, the Mesh Motion suite of problems supports code verification
activities and seeks to resolve outstanding technical challenges, including data-set agreement, observed rates-
of-convergence, and long-time stability. The suite tests the accuracy of flow solvers for problems with moving
and deforming domains. For the last two workshops, the suite has included two canonical classes of problems:
one involving a deforming cylinder and the other a moving airfoil [2]. In the latest iteration, we have evolved
the test suite to target volume scaling terms, to break problem symmetries, and to study the convergence of
spatial and temporal errors and their impact on long-time stability.

In the following sections, the moving cylinder and airfoil test cases are presented along with their ex-
tensions for the most recent workshop. The submissions of the participants are described, including their
discretization and treatment of mesh motion. A comparison of the results from all the groups identifies simi-
larities and areas in need of further investigation. Furthermore, the discussion suggests additional directions
in which the test suite can evolve for the next workshop.

II. Mesh motion overview

Due to the difficulty in demonstrating agreement between different groups and high-order convergence
for moving boundary problems, we have continued to include flow inside a moving and deforming cylinder in
addition to flow over a dynamic NACA0012 airfoil. Furthermore, a more complex combined motion for the
cylinder has been employed for the latest workshop. For the sake of completeness, both cases are summarized
next.

A. Flow in a cylinder

The reference geometry for this problem is a circular cylinder for which several types of motion are prescribed.
The center of motion coincides with the geometric center of the cylinder, and the fluid domain of interest is
the cylinder interior volume. Figure 1 shows a diagram of the problem geometry and the fluid domain.

∆θ(t)
rcyl

∆h(t)

(a) Geometry diagram. (b) Fluid domain.

Figure 1: Cylinder problem description.

1. Cylinder test cases

Two cylinder test cases are defined. Cylinder Case 1 is a short-time version of the 2022 Cylinder Motion-4,
extended to include non-unit geometry mapping Jacobian. Wall boundary conditions are used. Cylinder
Case 2 is a long-time study designed to measure the buildup of any errors associated with not satisfying the
geometric conservation law.

Relevant constants for all motions are listed in Table 1. Aθ is a rotation amplitude, Aa is an amplification
factor for the deformation of a circle into an ellipse, Ag is a volume deformation amplitude, and rcyl is the
initial radius of the cylinder for all motions. The transformation of the cylinder deforming into an ellipse
such that the interior area remains constant during deformation is facilitated by the function

ψ(t) = 1 + (Aa − 1)α(t) (1)
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rcyl 0.5

Aθ π

Aa 1.5

Ag 0.15

Table 1: Cylinder motion constants.

which varies from 1 to Aa over t = [0, 2], where α(t) is a time-activation function that is defined differently
for each test case in the sections below. Next, a parameterized function η is defined as

η(λ, ω, τ) = sin (ωλ+ τ (1− cos (ωλ))) (2)

which is designed to break spatial and temporal symmetries due to the fact that the integral of η over a
period ω does not equal 0 for appropriate values of τ . The parameter λ represents the independent variable
(e.g. t or θ) whereas ω and τ represent the function frequency and shape characteristics. A subsequent
function fg is defined here to prescribe a deformation that ensures non-unit geometry mapping Jacobians
(g ̸= 1), while utilizing the η function to break spatial and temporal symmetries. This is given as

fg(t, r0, θ0) =

(
16r40 +

t6

t6 + 0.01
η(t, 10, 0.7)

(
cos

(
32πr40

)
− 1

))
η(θ0, 1, 0.7) (3)

which was designed with the following properties in mind:

1. Initial prescribed deformation on the cylinder boundary r0 = 0.5 at time t = 0, but the boundary
deformation is not time-varying. In this way, non-trivial (g ̸= 1) deformations exist on the wall
boundary, yet the static nature of the deformation function on the wall ensures the physical problem
is not modified; allowing data to be compared against prior workshop results.

2. Symmetry-breaking spatial perturbation η(θ0, 1, 0.7).

3. Symmetry-breaking temporal perturbation η(t, 10, 0.7).

4. Smooth start-up rapidly reaching an asymptotically periodic region around t = 1 via window function
t6/(t6 + 0.01).

The prescribed deformation takes the form of a perturbation in θ as

θg(t, r0, θ0) = θ0 +Agfg(t, r0, θ0) (4)

A composite motion (translation, rotation, deformation) is then formed by representing primitive motions
as transformation matrices and composing them by matrix multiplication. Note, translation is not a linear
transformation in (x, y)-space. However, translation can be accommodated by augmenting the transfor-
mation to (x, y, 1)-space. In contrast to the previous workshop motion where the primitive motions were
operating on (x0, y0), the new motion operates on the deformed coordinates (r0 cos(θg), r0 sin(θg)). The
prescribed motion is composed asxy

1

 =

1 0 0

0 1 α(t)

0 0 1


cos(Aθα(t)) − sin(Aθα(t)) 0

sin(Aθα(t)) cos(Aθα(t)) 0

0 0 1


ψ(t) 0 0

0 1
ψ(t) 0

0 0 1


r0 cos (θg(t))r0 sin (θg(t))

1

 (5)

2. Cylinder Case 1: short-time composite with deformation extension

The motion for Cylinder Case 1 is defined as a composite of three primitive motions; including translation,
rotation, and deformation with the addition of the deformation function (fg) described above. The time-
activation function α(t) for this case is given as

α(t) = t3 (8− 3t) /16 (6)
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which varies from 0 to 1 on the interval t = [0, 2]. Case 1 shall be run from t = 0 until t = 1. The intent
of this case in the test suite is to break any intrinsic symmetries in the flow field that may cause symmetric
error contributions to cancel each other out; causing certain implementation errors to pass a test undetected.
Figure 2 shows an example of the short-time problem along with the determinant of the Jacobian mapping
g. Figure 2a portrays a notional initial mesh. Note, that the motion includes a deformation at t = 0, which
is shown in Figure 2b and notable in Figure 2e. The final time t = 1 is also shown in Figures 2c and 2f.

(a) Example original mesh (b) Deformed mesh: t = 0 (c) Deformed mesh: t = 1

(d) Original g: t = 0 (e) Deformed g: t = 0 (f) Deformed g: t = 1

Figure 2: Cylinder Case 1: short-time version of a composite motion extended for g ̸= 1

3. Cylinder Case 2: long-time study of conservation

The motion for Cylinder Case 2 has the same form as that of the composite motion for Cylinder Case 1, but
with a different α(t) function. To allow for long-time simulations, α(t) is a ramped sine:

α(t) = αmax sin(ωαt)
t6

t6 + t6ref
, (7)

where αmax = 0.3, ωα = 6, and tref = 1. The purpose of the term with t6 in the equation is to start the
sinusoidal motion slowly and smoothly at t = 0. Case 2 shall be run for a longer time, from t = 0 until t = 40.
Running this motion for a long time will test to what extent mass conservation errors, which may arise in
formulations that do not explicitly enforce the geometric conservation law [3], build up in the solution.

4. Governing equations and flow conditions

The governing equations for this problem are 2D compressible Navier-Stokes with a constant ratio of specific
heats equal to 1.4, a Prandtl number of 0.72 and a constant viscosity. For cases running with wall boundaries,
the cylinder interior is prescribed with a no-slip, adiabatic wall boundary condition. The initial condition at
time t = 0 is given by the conserved-variable state vector

u|t0 = [ρ, ρv1, ρv2, ρE]|t0 = [1, 0, 0, 50.]

For this test suite, a single Reynolds number Re = 1000 should be simulated. The reference velocity is
chosen to be 1.0 and the reference length scale is the cylinder diameter, d = 2rcyl = 1.0.
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B. Heaving-pitching airfoil

These cases involve a NACA 0012 airfoil undergoing a smooth flapping-type motion, starting from rest at
zero angle of attack and ending at a one chord length higher position at the end of the motion at time T .
Two motions are considered at one Reynolds number, Re = 1000, based on the chord length. The geometry
consists of a NACA 0012 airfoil with chord length c = 1, with geometry modified to give zero trailing edge
thickness:

y(x) = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), x ∈ [0, 1].

The far-field boundary should be located at least 100 chord-lengths away from the airfoil.

1. Airfoil Motions

h(t)

θ(t)

c
c/3

The airfoil undergoes a smooth upward motion of one chord
length for the duration of T = 2 time units, by heaving and
pitching about a point located at the airfoil 1/3 chord location
(see figure). We consider two different motions with different
properties. The underlying functions for the motions are given
here:

α(t) = t3 (8− 3t) /16

β(t) = −t6 + 6t5 − 12t4 + 8t3

Table 2 presents the two motion descriptions in terms of
vertical and angular displacements, where Bθ = 80π/180.

Motion 1 Motion 2

∆h(t) α(t) α(t)

∆θ(t) 0 Bθ · β(t)

Table 2: Heaving-pitching airfoil prescribed-motion test cases, t ∈ [0, 2]

2. Governing equations and flow conditions

The governing equations for this problem are the 2D compressible Navier-Stokes equations with a constant
ratio of specific heats equal to 1.4, a Prandtl number of 0.72 and a constant viscosity. Two boundary
conditions are imposed: far-field characteristic conditions at the outer domain and no-slip adiabatic wall
condition on the moving airfoil.

The free-stream Mach number is horizontal and two Mach number cases are requested M∞ = [0.01, 0.2].
The Mach numberM = 0.01 case has been added to approximate incompressibility and facilitate comparison
between participants (both for compressible and incompressible methods). The Reynolds number based on
the chord of the airfoil is Re = 1000. The initial condition at time t = 0 is the steady-state solution for the
initial position h = 0, θ = 0. To simplify post-processing, we assume convenient units in which the airfoil
chord is c = 1 and the free-stream density and speed are unity, so that the free-stream conservative state
vector is

[ρ, ρu, ρv, ρE] =
[
1, 1, 0, 0.5+1/[M2γ(γ − 1)]

]
.

III. Participant methodologies

The mesh motion test suite received results from five groups: University of Michigan, University of
California - Berkeley, University of Kansas, Air Force Research Laboratory, and the Massachusetts Institute
of Technology. Each group has provided a brief description of their methodology, which are described below.
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A. University of Michigan

The UM solver, xflow [4], uses a discontinuous Galerkin (DG) finite-element spatial discretization with the
Roe convective flux [5] and the second form of Bassi and Rebay [6] for the viscous treatment. The state
is approximated on an unstructured mesh using full-order or tensor-product polynomials of order p. The
nonlinear solver is a Newton-Raphson method with the generalized minimum residual (GMRES) linear solver,
preconditioned by element-line Jacobi or ILU smoothers with a coarse-level correction. In time, the solver
supports many discretizations, including diagonally-implicit Runge-Kutta (DIRK) and modified extended
backward difference formulas (MEBDF) [7]. Motion of the geometry and mesh is implemented in an arbitrary
Lagrangian-Eulerian (ALE) formulation [3, 8], with analytical, blended mappings. The quadrature rules are
increased to more accurately integrate the various terms in the discretization, whose nonlinearity increases
with that of the mapping. No geometric conservation law is used. Figures 3 and 4 show the first three
cylinder and airfoil mesh refinements used to generate the results.

(a) 20 elements (b) 80 elements (c) 320 elements

Figure 3: Cylinder meshes used by the UM group

(a) 520 elements (b) 1963 elements

(c) 7781 elements

Figure 4: Airfoil meshes used by the UM group

B. University of California, Berkeley

The UCB results are produced using the 3DG package, with a C++ kernel and interfaces to Python and
MATLAB. The discretization is a high-order nodal DG method with the Compact DG method [9] for the
viscous terms. The parallel implicit solvers are based on the methodology in [10] with Newton-GMRES
solvers, block-ILU preconditioners, Minimum Discarded Fill (MDF) element ordering, and parallelization
using MPI and Jacobian-weighted domain partitioning. The deforming domains are handled using the
mapping-based ALE formulation in [3]. The curved triangular meshes for the cylinder are produced using an
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in-house code, see Figure 5. The airfoil meshes use quadrilateral elements, see Figure 6, and are generated
using the Gmsh software [11] combined with in-house routines for boundary layers and element curving.

1 ref 2 ref 3 ref 4 ref

Figure 5: Cylinder meshes used by the UCB group

0
re
fs

2
re
fs

Figure 6: Airfoil meshes used by the UCB group

C. University of Kansas (KU)

The KU flow solver, hpMusic [12], is based on the flux reconstruction (FR) or correction procedure via
reconstruction (CPR) method [13–15]. A review of the FR/CPR method was presented in [16]. Since
hpMusic is a general-purpose production large eddy simulation (LES) solver, the time marching scheme
involves only two time levels and the geometric conservation law is satisfied. This requirement also dictates
that the scheme can only be at most 2nd-order in time. Given the meshes at time level n and n+1, the
grid velocity is computed with these meshes discretely. Also, the mesh at n+1/2 is obtained by averaging
the meshes at n and n+1. In the residual evaluation, the metrics at n+1/2 are used to ensure 2nd order
accuracy in time. Both explicit and implicit time-integration methods have been implemented in hpMusic.
The explicit method is the 2nd-order Runge-Kutta scheme while the implicit method is the Crank-Nicolson
scheme with an LU-SGS solver. Sample meshes for the cylinder and the NACA0012 airfoil are displayed in
figure 7 and figure 8

D. Air Force Research Laboratory: overset discontinuous Galerkin method

The AFRL methodology employs an overset discontinuous Galerkin spatial discretization, which utilizes a
tensor-product Legendre polynomial basis and quadrature-based integration[17]. Diffusion terms are dis-
cretized utilizing the second scheme of Bassi and Rebay[6]. For solving problems on moving and deforming
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(a) 20 elements (b) 80 elements (c) 320 elements

Figure 7: Cylinder meshes used by the KU group

(a) 978 elements

Figure 8: Airfoil meshes used by the KU group
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domains an arbitrary Lagrangian-Eulerian (ALE) approach is utilized that follows from the works of Persson
et al.[3] and Fidkowski[18]. Displacements and velocities are prescribed directly for all time-levels and no
treatment or enforcement of the geometric conservation law is applied. Two unique methodological aspects
of the spatial discretization are the treatment for overset boundaries as well as the treatment for the gradient
of the determinant of the ALE deformation mapping Jacobian (g). The treatment of advective terms across
abutting overset boundaries is identical to the interior scheme. However, the treatment of diffusion terms
follows the approach of Galbraith[19] and it is not identical to the interior scheme and this approach is not
well-characterized for the ALE methodology. The gradient of the determinant of the ALE mapping Jacobian
(∇g) is computed by first projecting g to the modal basis. The modal representation is then differentiated
and evaluated for ∇g. This approach introduces a component of error due to the approximation of g in a
truncated modal basis. The impact of this approach on overall accuracy for the ALE method is unclear.
A third-order, diagonally-implicit Runge-Kutta method is used for temporal discretization and marching in
time. The nonlinear discrete systems are solved using Newton’s method with a flexible version of the gener-
alized minimum residual (FGMRES) linear solver and incomplete lower-upper factorization preconditioners
with zero fill-in (ILU0) and restricted additive Schwarz preconditioning across partition boundaries.

(a) 20 elements - h0 (b) 420 elements - h2 (c) 6720 elements - h4

Figure 9: Multi-block Cylinder meshes used by the AFRL group (after displacement applied at t = 0).
Four grid blocks oriented across vertical and horizontal symmetry boundaries.

E. Massachusetts Institute of Technology: sharp immersed finite difference method

The MIT group’s solver is based on the vorticity-velocity formulation of the incompressible Navier-Stokes
equations, discretized using a conservative second-order finite difference scheme. The no-slip boundary
conditions on the body are enforced using a second-order sharp immersed interface method. The discretized
vorticity and velocity are defined on a uniform rectangular computational grid, and integrated in time using a
third-order low-storage Runge Kutta scheme. For the airfoil case, free-space domain boundary conditions are
enforced by computing the stream function field from a convolution of the vorticity field with an unbounded
Lattice Green’s Function kernel. To enforce no-through flow, the Dirichlet boundary condition on the
streamfunction ψ is obtained by integrating ∂sψ = us · n along the surface. Details of the methodology are
provided in [20, 21].

For the cylinder motions defined here, we derived some additional expressions to express the boundary
kinematics in Eulerian form. In addition, we compute forces and work integrands from a set of boundary
integrals that do not require explicit knowledge of the pressure field, which is advantageous in the vorticity-
velocity formulation. These derivations and expressions are provided in the Appendix. For these simulations,
we use a rectangular domain of size 1.5D × 2D, with D = 2r0 the reference diameter of the cylinder. The
reported resolutions vary from D/h = 128 to D/h = 1024, with h the linear grid spacing. The timestep varies
accordingly associated with the CFL condition, so that the number of timesteps is resolution-dependent.
The nDOF quantity reported in convergence plots below is computed as the total number of grid points in
the rectangular domain.

For the airfoil motion, the boundary conditions on ψ are readily obtained given the imposed rigid-body
motion. For this case, forces are obtained from a control volume analysis as described in [20, 21]. Moreover,
instead of initializing the airfoil simulations from a steady-state solution as in the workshop description, we
simulate an impulsively started flow for t = 3 time units without airfoil motion, before starting the motion.
For all airfoil simulations, we use a rectangular domain of size 7c× 3c, with c the airfoil chord length. The
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reported resolutions vary from c/h = 192 to c/h = 512 with h the linear grid spacing. Similar to the cylinder,
the nDOF quantity reported in convergence plots below is computed as the total number of grid points in
the rectangular domain.

IV. 2024 Workshop Results

The mesh motion test suite resources, data-sets, and reference material are all hosted in a git repo on
GitHub: https://github.com/HighFidelityCFDVerificationWorkshop/2024MeshMotion.

A. Flow in a cylinder

Tables 3 – 5 list the metadata for the datasets submitted by each participant. This includes time-integration
scheme, number of time-steps in a dataset, mesh-sizes, and the number of degrees of freedom being solved
for in a computational unit for different spatial orders of accuracy.

Time Integrator Order t0 t1 t2 t3 t4 t5 t6

U. of Michigan MEBDF3 4 64 128 256 512 1024

U.C. Berkeley DIRK3 3 64 128 256 512 1024 2048 4096

University of Kansas CN-LUSGS 2 1600 25600 51200

AFRL DIRK3 3 10 20 40 80 160 320

MIT (Incompressible) LS-RK3 (explicit) 3 unreported

Table 3: Cylinder data-set time-steps per time-index meta-data

h0 h1 h2 h3 h4 h5

U. of Michigan 20 80 320 1280

U.C. Berkeley 28 96 384 1536 6144 24576

University of Kansas 28 96 352 1344 5248

AFRL 20 105 420 1680 6720 26880

MIT (Incompressible) 49152 196608 786432 3145728

Table 4: Cylinder mesh-size per mesh-index meta-data

p1 p2 p3 p4

U. of Michigan 4 9 16 25

U.C. Berkeley 3 6 10

University of Kansas 9 16 25

AFRL 4 9

MIT (Incompressible) 1

Table 5: Degrees of freedom per computational unit (e.g. DOF/element) for prescribed spatial accu-
racy

1. Cylinder Motion 1: short-time composite with deformation extension

The reference integrated outputs for Cylinder Motion-1 from each participant are summarized in Table 6. A
significant achievement is that three groups agree to 5-digits for Y-Impulse and to 6-digits for Work, which
is an improvement over agreement achieved in previous workshops. Additionally, the University of Kansas
methodology has significant differences relative to the U.C. Berkeley and University of Michigan approaches,
which are very similar to each other. Obtaining such strong agreement between approaches with significant
methodological differences further strengthens the workshop results. This test case is also more complex
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than previous iterations of the workshop due to its more complicated interior prescribed deformation. The
MIT contribution is an incompressible result, which is a useful reference point for future studies, but without
a second incompressible data-set we are unable to make comparisons for the accuracy of this result.

Y-Impulse Work

U. of Michigan -0.591592227558552 -0.3063148341462194

U.C. Berkeley -0.591592091988115 -0.3063147255793583

University of Kansas -0.591591980034782 -0.3063144309126535

Air Force Research Laboratory -0.591606196358035 -0.3062983580802984

MIT (Incompressible) -0.5886924434684133 -0.28786809721431866

Table 6: Cylinder Motion-1 Integrated Quantities

Figure 10 shows spatial and temporal convergence datasets that measure the error in integrated outputs
as spatial and temporal discretizations are refined. The truth-values utilized in order to measure error
were obtained from the reference dataset contributed by U.C. Berkeley since it was the most spatially and
temporally resolved. The convergence results from U.C. Berkeley and the University of Michigan exhibit
similar convergence characteristics. There is a clear improvement in spatial convergence for those datasets
going from P1 to P2 results. However, it is unclear if significant benefit is observed in spatial convergence for
P3 and higher datasets. A similar effect is observed in the University of Kansas datasets, where a significant
improvement in spatial convergence is observed going from P2 to P3 results. However, the K.U. P4 results
do not exhibit an improvement in spatial convergence over the P3 dataset. Other works have demonstrated
clear benefit of higher-order spatial accuracies for moving-domain problems, which may indicate that the
stalled spatial order of convergence is related to the problem description. The AFRL dataset exhibits
spatial convergence, but at a noticeably degraded rate in comparison to the other participant datasets. In
data analysis, it was noted that the AFRL data set is not conserving mass, which is an outstanding issue.
As described in the previous section, the AFRL methodology has several differences related to handling
of interior deformation, which may be a source of unresolved error, which were not apparent in previous
workshops that utilized a simpler form of interior deformation. Figure 22 in Appendix A shows the spatial
convergence studies broken out by participant for improved clarity.

Time-histories for Y-Force and the Work integrand are presented in Figure 11. Note, that these histories
do not exhibit symmetries that would result in zero or very small integrated outputs that are more challenging
to assess convergence. This is by design and an improvement in the present workshop test case over iterations
of this problem in previous workshops. All participant datasets exhibit excellent agreement in the presented
time-histories.

2. Cylinder Motion 2: long-time study of conservation

The Motion-2 long-time version of the cylinder problem was initially proposed in order to study geometric
conservation law (GCL) and aspects of GCL across varying spatial and temporal resolutions. However,
it was discovered that for a problem consisting of strictly wall boundary conditions (i.e. no inflow or
outflow boundary conditions that exchange mass with some exterior state) overall mass is strictly conserved.
Pointwise errors in conservation may exist as a result of deformations (depending on particular approach
and methodology), however overall mass should be conserved and constant over time. As a result, no
global conservation error exists that could accumulate to drive an instability that would cause the numerical
problem to blow up. In the end, there was very little remaining from the original set of objectives for this
problem that were left to study. Two participants submitted dataset contributes and their reference values
for integrated quantities are presented in Table 7. Only a single digit of agreement is observed in this case.
The driving reason for discrepancy is the much longer simulation time and much greater time-resolution
requirement. The associated increase in computational time made obtaining a robust set of data for spatial
and temporal convergence studies challenging.

Figure 12 presents the spatial convergence study data for the Cylinder Motion-2 problem. Due to the
relatively sparse quantity of data for this problem, it is difficult to make strong conclusions other than that
a modification of the problem is warranted to support the original goal of studying conservation errors and
the impact of GCL associated with moving-mesh formulations.
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(a) Y-Impulse error - coarser time resolutions at increas-
ing opacity’s.

(b) Y-Impulse error - finest time resolution

(c) Work error - coarser time resolutions at increasing
opacity’s.

(d) Work error - finest time resolution

Figure 10: Cylinder Motion-1 Spatial Convergence: Left column - time-discretization resolution studies plotted
as increasingly opaque data sets. Increased opacity associated with less time-resolution. Right column
- finest temporal resolution data-sets only for each group. (Truth data set: University of California,
Berkeley)

The Cylinder Motion-2 time-histories for outputs are shown in Figure 13, which show the long-time
oscillatory responses. The form of the time-histories agrees well between the University of Michigan and
U.C. Berkeley results. However, upon greater inspection, discrepancies exist in the time-history peaks, which
is indicative of data-sets that are not completely converged in space or time.

B. Heaving + pitching airfoil

Tables 8 – 10 list the metadata for the airfoil datasets submitted by each participant. This includes time-
integration scheme, number of time-steps in a dataset, mesh-sizes, and the number of degrees of freedom
being solved for in a computational unit for different spatial orders of accuracy.
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(a) Y-Force (b) Work integrand

Figure 11: Cylinder Motion-1 Time Histories (finest space-time resolution data-sets from each par-
ticipant)

Y-Impulse Work

U. of Michigan -0.4326945641157678 -26.59341218705967

U.C. Berkeley -0.4837021105624421 -25.88307185260841

Table 7: Cylinder Motion-2 Integrated Quantities

Time Integrator Order t0 t1 t2 t3 t4 t5

U. of Michigan ESDIRK5 5 8 16 32 64 128 256

U.C. Berkeley DIRK3 3 100 200 400 800

University of Kansas SSP-RK2 2 2000

MIT (incompressible) LS-RK3 (explicit) 3 unreported

Table 8: Airfoil data-set time-steps per time-index meta-data

h0 h1 h2 h3

U. of Michigan 520 1963 7781 15882

U.C. Berkeley 1150 4232 16240 63632

University of Kansas 978

MIT (incompressible) 774144 1376256 3096576 5505024

Table 9: Airfoil mesh-size per mesh-index meta-data

1. Airfoil Motion 1: Heaving, M = 0.2

The reference integrated quantities from participant datasets are presented in Table 11. Two participant
datasets agree to 4 and 5 digits in Y-Impulse and Work outputs respectively. The agreement observed for this
case is improved over the iteration of this test case in previous workshops, where the most recent previous
study achieved 3-4 digits of agreement.
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(a) Y-Impulse error - coarser time resolutions indicated
as increasing opacity’s.

(b) Y-Impulse error - finest time resolution

(c) Work error - coarser time resolutions indicated as in-
creasing opacity’s.

(d) Work error - finest time resolution

Figure 12: Cylinder Motion-2 Spatial Convergence: Left column - time-discretization resolution studies plotted
as increasingly opaque data sets. Increased opacity associated with less time-resolution. Right column -
finest temporal resolution data-sets only for each group. (Truth data set: U.C. Berkeley)

p1 p2 p3 p4

U. of Michigan 3 6 10 15

U.C. Berkeley 4 9 16 25

University of Kansas 3 6 10

MIT (incompressible) 1

Table 10: Degrees of freedom per computational unit (e.g. DOF/element) for prescribed spatial
accuracy

Figure 14 shows spatial convergence studies of integrated outputs for the Airfoil Motion-1 (Heaving,
Compressible) case. Both University of Michigan and U.C. Berkeley datasets exhibit good and similar
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(a) Y-Force (b) Work integrand

Figure 13: Cylinder Motion-2 Time Histories (finest space-time resolution data-sets from each par-
ticipant)

Data set Y-Impulse Work

U. of Michigan h3− p3− t3 -2.3692144378342 -1.6577365673152817

U.C. Berkeley h3− p3− t3 -2.3691970230034 -1.6577242816820728

University of Kansas h0− p3− t0 -2.3839808944492 -1.6672975838590667

Table 11: Airfoil Motion-1 (Heaving, Compressible) Integrated Quantities

convergence behavior. Figure 24 in Appendix A shows the individual convergence datasets broken out more
clearly, where it is apparent that the U.C. Berkeley set of data is very strongly time-converged due to
only very minor discrepancies observable between the lower time-level datasets plotted. The University of
Michigan data set has a more marked manifestation of temporal error in the study. The temporal error can
be seen to be strongly reduced in the finest temporal resolution data set, but the temporal error has likely
not been completely driven below the spatial discretization error for the finest resolution data set. Finally,
the University of Kansas submission for this case did not include a comprehensive set of spatial and temporal
resolution data sets for study. Yet, for the resolution of the dataset that was submitted, it aligns well with
the error exhibited by the University of Michigan and U.C. Berkeley datasets of similar resolution.

2. Airfoil Motion 2: Heaving + Pitching, M = 0.2

The reference integrated quantities from participant datasets are presented in Table 12. Two participant
datasets agree to 2 and 3 digits in Y-Impulse and Work outputs, respectively. This level of agreement is
inline with results for this test case from previous workshops.

Figure 16 shows spatial and temporal convergence studies for these participant datasets, where it appears
that additional spatial and temporal resolution are both required in order to achieve greater agreement and
confidence for this test case. Figure 25 in Appendix A shows convergence studies split out for each participant
dataset that present spatial and temporal convergence in a clearer manner.

Figure 17 shows reference time-histories for outputs in this test case. For the two participant datasets,
excellent agreement is observed and no particular discrepancies are apparent. This motivates the hypothesis
that the lack of deep agreement in integrated quantities between participant datasets is likely due to lack of
completely converged spatial and temporal discretizations.
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Data set Y-Impulse Work

U. of Michigan h3− p3− t5 0.8645357323858702 -2.3030939915850963

U.C. Berkeley h3− p3− t3 0.8629848210439535 -2.3042337019067958

Table 12: Airfoil Motion-2 (Heaving+Pitching, M = 0.2) Integrated Quantities

3. Airfoil Motion 3: Heaving, M = 0.01

The reference integrated quantities from participant datasets are presented in Table 13. Two participant
datasets agree to 2 and 1 digits in Y-Impulse and Work outputs respectively. As a low-Mach number problem,
this is a new test-case for the test suite. It is worth noting that the U.C. Berkeley contribution is from a
compressible solver, which utilizes a tailored preconditioning strategy to converge the low-Mach problem.
The MIT dataset in contrast is an incompressible code. To compare, the initial condition for internal energy
is adjusted in order to roughly target a M = 0.01 flow condition (See Appendix B). For this reason, we do
not necessarily expect deep agreement between the contributed datasets in this test case, but it provides a
point-of-reference for verifying other incompressible solvers that accommodate mesh motion.

Figure 18 shows convergence histories for this low-Mach, heaving-airfoil test case. The U.C. Berkeley
dataset includes a substantial quantity of spatial and temporal resolution data that are converging to a
truth value. The incompressible MIT dataset appears to be converging to the highly resolved Ma = 0.01
result from the U.C. Berkeley dataset, but at a relatively slow rate. However, the MIT methodology as
an immersed geometry method is not as well-suited for evaluating convergence utilizing this approach since
there are immersed degrees-of-freedom that are inactive and the uniform mesh is not tailored to a near-body
region of interest.

Data set Y-Impulse Work

U.C. Berkeley h3− p3− t3 -2.267601626075732 -1.5899144490947763

MIT (incompressible) h4− p1− t1 -2.291792064944407 -1.6047038655207724

Table 13: Airfoil Motion-3 (Heaving, M = 0.01) Integrated Quantities

4. Airfoil Motion 4: Heaving + Pitching, M = 0.01

Only the U.C. Berkeley data set contained results for this test case and reference integrated quantities are
presented in Table 14. Just as in the Heaving-M0.01 test-case, as a low-Mach number problem, this is a new
test-case for the test suite. Since there was only a single group that submitted results, there is relatively little
to be said regarding the correctness of the integrated quantities due to lacking an analytical truth-value or
truth-by-consensus mechanism. However, Figure 20 shows spatial and temporal convergence histories that
indicate this data set does appear to be approaching a converged value. Figure 21 shows the time-history
for outputs in this test case, which is useful as a qualitative reference for future groups that might pursue
this test-case, but without additional participant data sets to make a comparison against there is not any
further conclusion that can be made.

Y-Impulse Work

U.C. Berkeley 0.9926402969555639 -2.297032901609105

Table 14: Airfoil Motion-4 (Heaving + Pitching, M = 0.01) Integrated Quantities

V. Discussion and Conclusions

A. Summary of accomplishments

The Mesh Motion test suite developed for the 2024 High Fidelity CFD Verification Workshop extended
two test cases introduced in a previous workshop: the cylinder and airfoil. The motion of the cylinder was
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modified to break symmetries and test non-unity volume scaling terms, while the airfoil case was kept mostly
the same with the exception of an additional lower Mach number condition simulation.

Although not all participants ran all of the cases, the test suite can be considered a success in that a high
level of agreement was observed among the groups for certain cases. For the Cylinder Motion-1 case, three
participants computed outputs that agreed to six digits of accuracy, while for the Airfoil Motion-1 case, four
digits of agreement were observed between two participants. Although the cylinder motion was not trivial,
the availability of source code with the motion reduced the possibility of implementation errors. In addition
to time-integrated quantities, time histories also showed agreement between the participants. The agreement
is even more significant when considering that the participants methodologies differed in discretization and
treatment of the mesh motion.

B. Challenges and outstanding issues

Mesh motion test cases have been part of the high-order and high-fidelity workshops since the first one in 2012.
One of the goals of these workshops has been to study not just the relative merits of high versus low order, but
to also assess whether theoretical aspects of high order, including convergence rates, are attained in practical
cases. In the present study, high-order convergence was not thoroughly investigated, and care was not taken
to ensure that the case specifications were amenable to arbitrarily high-order accuracy. The stagnation of
the observed convergence rates in the cylinder case was likely due to high-order derivative discontinuities in
the mesh motion specification. The airfoil case further suffers from a geometric singularity at the trailing
edge. Adaptive mesh refinement can address the geometric singularities, and future comparisons will ideally
incorporate adapted meshes. The mesh motion specification should also be made as smooth as possible to
demonstrate optimal rates in space and time.

Another outstanding issue in mesh motion is a study of the importance of a geometric conservation law.
Observations by some of the participants suggest that errors introduced by a lack of strict geometric con-
servation are comparable to other discretization errors due to the inherent finite-dimensional approximation
space. In addition, these errors diminish with increasing order. However, possible destabilizing effects of, for
example, mass conservation errors, have not been studied in the present suite of cases, at least not to a satis-
factory conclusion. Future work should focus on designing long-time simulations in which mass conservation
errors play a more prominent role.

An additional topic that warrants further investigation is more complex boundary conditions. These
could include walls that are isothermal or on which a non-adiabatic heat flux is imposed, and sliding meshes.
Finally, the comparisons would benefit from data obtained from additional discretizations, including estab-
lished CFD codes.
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(a) Y-Impulse error - coarser time resolutions indicated
as increasing opacity’s.

(b) Y-Impulse error - finest time resolution

(c) Work error - coarser time resolutions indicated as in-
creasing opacity’s.

(d) Work error - finest time resolution

Figure 14: Airfoil Motion-1 (Heaving, Compressible) Spatial Convergence: Left column - time-
discretization resolution studies plotted as increasingly opaque data sets. Increased opacity associated
with less time-resolution. Right column - finest temporal resolution datasets only for each group. (Truth
data set: U.C. Berkeley)
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(a) Y-Force (b) Work integrand

Figure 15: Airfoil Motion-1 Time Histories (finest space-time resolution data-sets from each partici-
pant)
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(a) Y-Impulse error - coarser time resolutions indicated
as increasing opacity’s.

(b) Y-Impulse error - finest time resolution

(c) Work error - coarser time resolutions indicated as in-
creasing opacity’s.

(d) Work error - finest time resolution

Figure 16: Airfoil Motion-2 (Heaving + Pitching, M = 0.2) Spatial Convergence: Left column - time-
discretization resolution studies plotted as increasingly opaque data sets. Increased opacity associated
with less time-resolution. Right column - finest temporal resolution data-sets only for each group. (Truth
data set: U. C. Berkeley)
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(a) Y-Force (b) Work integrand

Figure 17: Airfoil Motion-2 (Heaving + Pitching, M = 0.2) Time Histories (finest space-time resolution
data-sets from each participant)
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(a) Y-Impulse error - coarser time resolutions indicated
as increasing opacity’s.

(b) Y-Impulse error - finest time resolution

(c) Work error - coarser time resolutions indicated as in-
creasing opacity’s.

(d) Work error - finest time resolution

Figure 18: Airfoil Motion-3 (Heaving, M = 0.01) Spatial Convergence: Left column - time-discretization
resolution studies plotted as increasingly opaque data sets. Increased opacity associated with less time-
resolution. Right column - finest temporal resolution data-sets only for each group. (Truth data set: U.
C. Berkeley)
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(a) Y-Force (b) Work integrand

Figure 19: Airfoil Motion-3 (Heaving, M = 0.01) Time Histories (finest space-time resolution data-sets
from each participant)
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(a) Y-Impulse error - coarser time resolutions indicated
as increasing opacity’s.

(b) Y-Impulse error - finest time resolution

(c) Work error - coarser time resolutions indicated as in-
creasing opacity’s.

(d) Work error - finest time resolution

Figure 20: Airfoil Motion-4 (Heaving + Pitching, M = 0.01) Spatial Convergence: Left column - time-
discretization resolution studies plotted as increasingly opaque data sets. Increased opacity associated
with less time-resolution. Right column - finest temporal resolution data-sets only for each group. (Truth
data set: U. C. Berkeley)
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(a) Y-Force (b) Work integrand

Figure 21: Airfoil Motion-4 (Heaving + Pitchin, M = 0.01) Time Histories (finest space-time resolution
data-sets from each participant)

26 of 33

American Institute of Aeronautics and Astronautics
Distribution Statement A: Approved for Public Release; Distribution is Unlimited. AFRL-2024-3283

D
ow

nl
oa

de
d 

by
 6

7.
18

6.
13

2.
21

3 
on

 J
ul

y 
28

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

36
96

 



A. Appendix A: Participant Convergence Studies

A. Flow in a cylinder

1. Motion-1: short-time

(a) U.C. Berkeley

(b) University of Michigan

(c) University of Kansas

(d) Air Force Research Laboratory

Figure 22: Cylinder Motion-1 (short-time) Convergence for Y-Impulse, Work, Total Mass, and Ini-
tial Y-Force. Time-discretization resolution plotted as increasingly opaque data-sets. In-
creased opacity associated with less time-resolution. (U.C. Berkeley as truth data)

2. Motion-2: long-time

B. Heaving + Pitching Airfoil

27 of 33

American Institute of Aeronautics and Astronautics
Distribution Statement A: Approved for Public Release; Distribution is Unlimited. AFRL-2024-3283

D
ow

nl
oa

de
d 

by
 6

7.
18

6.
13

2.
21

3 
on

 J
ul

y 
28

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

36
96

 



(a) U.C. Berkeley

(b) University of Michigan

Figure 23: Cylinder Motion-2 (long-time) Convergence for Y-Impulse, Work, Total Mass, and Ini-
tial Y-Force. Time-discretization resolution plotted as increasingly opaque data-sets. In-
creased opacity associated with less time-resolution. (U.C. Berkeley as truth data)
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(a) U.C. Berkeley

(b) University of Michigan

(c) University of Kansas

Figure 24: Airfoil Motion-1 (Heaving, Compressible) Convergence for Y-Impulse, Work, Total Mass,
and Initial Y-Force. Time-discretization resolution plotted as increasingly opaque data-
sets. Increased opacity associated with less time-resolution. (U.C. Berkeley as truth data)
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(a) U.C. Berkeley

(b) University of Michigan

Figure 25: Airfoil Motion-2 (Heaving+Pitching, Compressible) Convergence for Y-Impulse, Work,
Total Mass, and Initial Y-Force. Time-discretization resolution plotted as increasingly
opaque data-sets. Increased opacity associated with less time-resolution. (U.C. Berkeley
as truth data)
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B. Appendix B: Details and modifications supporting incompressible test
cases

A. Initial condition for a nearly incompressible cylinder testcase

For an ideal gas the sound speed, internal energy, and Mach number are related to the primitive variables
via

c =

√
γ
p

ρ
, e =

1

γ − 1

p

ρ
, M =

u

c
. (8)

After some algebra to eliminate the sound speed,

e =
u2

γ(γ − 1)M2
or M =

√
γ(γ − 1)e

u2
. (9)

While u varies throughout the simulation, we assume here that e is roughly constant, so that the maximum
Mach number can be obtained from the initial internal energy and the maximum velocity. The latter can be
estimated by running an incompressible simulation, which yields maximum velocity magnitudes of u1 = 2.10
and u2 = 4.90 for cylinder cases one and two respectively. For a target Mach number of M = 0.01, the
resulting initial internal energy values are be

e1 = 7.88× 104 and e2 = 4.29× 105. (10)

In this nearly incompressible limit the maximum kinetic energy density of the flow k = 1
2ρu

2 is much smaller
than the internal energy, so that any change in internal energy due to mechanical or viscous effects from the
flow should be negligible. Thus the initial internal energy is a good estimate for the internal energy at any
point in the simulation, justifying our earlier assumption.

B. Details of MIT setup for the deforming cylinder

Below we specify the details of implementing the cylinder test case boundary deformation in the vorticity-
velocity incompressible flow formulation of the MIT group. Here the focus is only on the boundary motion,
as this is the only input to the simulation. We further define the force and work integrand expressions in
terms of wall vorticity and wall vorticity flux, which avoids the need to evaluate the pressure explicitly.

We label the material points of the boundary by an angular coordinate θ, and define the position of
each material point at time t as x(t, θ). Let k indicate the out-of-plane unit vector. As preliminaries, note
the arc length of a boundary segment of reference length dθ located at reference coordinate θ is given by
ds = |∂θx(t, θ)|dθ. Further, the normal and tangential unit vectors on the boundary at x(t, θ) are

τ (t, θ) =
∂θx(t, θ)

|∂θx(t, θ)|
, n(t, θ) = τ (t, θ)× k̂. (11)

Finally, the velocity of point θ at time t is u(t, θ) = ∂tx(t, θ).

1. Boundary motion in Eulerian coordinates

To describe the cylinder boundary motion, we define the rotation and deformation matrices

R(γ) =

[
cos(γ) − sin(γ)

sin(γ) cos(γ)

]
, D(t) =

[
ϕ(t)

ϕ(t)−1

]
(12)

and note that the time derivatives of the deformation matrix are given explicitly by

D′(t) =

[
ϕ′(t)

−ϕ(t)−2ϕ′(t)

]
, D′′(t) =

[
ϕ′′(t)

2ϕ(t)−3ϕ′(t)2 − ϕ(t)−2ϕ′′(t)

]
. (13)

Define also the undeformed position x0(θ) = [r0 cos(θ), r0 sin(θ)]. The position of each boundary point
defined by material coordinate θ and time t is then

x(t, θ) = R(θb(t))D(t)x0(θ) + xc(t). (14)
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This expression can be easily inverted to obtain the material coordinate θ(t,x) from a given Eulerian bound-
ary point at x, at a given time t.

Dropping the t and θ dependence for simplicity, the velocity of the boundary is then given by

ub = udef + ωbk̂× (x− xc) + uc, with udef(t, θ) = R(θb(t))D
′(t)x0(θ). (15)

After defining the body acceleration ac(t) = u′
c(t), the angular acceleration αb(t) = ω′

b(t), and the deforma-
tion acceleration adef(t, θ) = R(θb(t))D

′′(t)x0(θ), the boundary acceleration can be written as

ab = adef + αbk̂× (x− xc)− ω2
b (x− xc) + 2ωbk̂× udef + ac, (16)

where the terms in order represent the acceleration of the deformation, the angular acceleration, the cen-
trifugal force, the coriolis force, and the body acceleration.

2. Streamfunction

In terms of arc-length parametrization s(t, θ), we seek a boundary stream function satisfying ∂sψ(t, s) =
u(t, s) · n(t, s), which can be guaranteed with the definition

ψ(t, θ′) =

∫ θ′

0

∂tx(t, θ)× ∂θx(t, θ) dθ (17)

Evaluating the integrals we find that, up to rigid body motion,

∂tx(t, θ)× ∂θx(t, θ) = r20
ϕ′(t)

ϕ(t)

[
cos2(θ)− sin2(θ)

]
= −r20

ϕ′(t)

ϕ(t)
cos(2θ) (18)

The corresponding contribution of the surface deformation to the streamfunction can be found by integrating
once with respect to θ, giving

ψ(t, θ) = −r
2
0

2

ϕ′(t)

ϕ(t)
sin(2θ). (19)

Adding this to the rigid body contribution of the boundary motion, we obtain the the full streamfunction

ψ(t,x) = uc(t)× (x− xc(t))−
1

2
ωb(t)∥x− xc(t)∥2 −

r20
2

ϕ′(t)

ϕ(t)
sin(2θ(t,x)). (20)

3. Force expression

For an incompressible fluid with a no-slip boundary condition, the surface traction can be written as

f = −pn+ νωτ + 2νk× ∂sub. (21)

Integrating gives F =
∮
S
f ds with F = Fp+Fv, where the integral of the third term in equation (21) is zero

for area preserving deformations. The viscous force,

Fv = ν

∮
S

ωτ ds , (22)

can be computed directly from the surface vorticity. For the pressure force we can write

Fp = −
∮
S

pn ds =

∮
(x× k)∂sp ds (23)

=

∮
(x× k) (ν∂nω − ab · τ ) ds , (24)

which can be evaluated from the computed vorticity flux and the acceleration defined above.
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4. Work integrand expression

The power applied to a deforming body by fluid forces can be written as the surface integral

P =

∮
S

ub(t, s) · f(t, s) ds , (25)

where f(t, s) is the surface traction acting at each point on the body. Given (21), the total power can be
broken into three integrals,

P = −
∮
S

p(ub · n) ds+ ν

∮
S

ω(ub · τ ) ds+ 2ν

∮
S

∂sub × ub ds , (26)

representing contributions from traction from pressure, vorticity, and surface kinematics respectively. Noting
that ub · n = ∂sψ, the first integral can be integrated by parts to yield

Pp =

∮
S

ψ∂sp ds (27)

= ν

∮
S

ψ∂nω ds−
∮
S

ψ(ab · τ ) ds , (28)

which can be evaluated from the vorticity flux ∂nω and the expressions in the previous section. The second
integral in (26) can be computed from wall vorticity and boundary kinematics. The third integral in (26) is
given as

Pb = 2ν

∮
S

∂sub × ub ds

= 2ν

∮
S

∂s(ub + uc + ωbk̂× (x− xc))× (ub + uc + ωbk̂× (x− xc)) ds

= 2ν

∮
S

∂sub × ub ds+ ωb

∮
S

∂sub × (k̂× (x− xc)) ds− ωb

∮
S

n× ub ds−
∮
S

ω2
bn× (k× (x− xc)) ds

= 2ν

∮
S

∂sub × ub ds− 2ωb

∮
ub · τ ds+ 2ω2

bAb,

(29)
where Ab is the (constant) area of the body. All three terms of Pb can be precomputed given the rigid-body
motion and boundary deformation. The first term can be further simplified as∮

S

∂sub × ub ds =

∫ 2π

0

∂θ∂tx(t, θ)× ∂tx(t, θ) dθ

=

∫ 2π

0

r20ϕ(t)
−2ϕ′(t)2 sin2(θ) + r20ϕ(t)

−2ϕ′(t)2 cos2(θ) dθ

= 2πr20

(
ϕ′(t)

ϕ(t)

)2

.

(30)
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