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Animal hearts are soft shells that actively pump blood to oxygenate tissues. Here, we propose an
allometric scaling law for the heart rate based on the idea of elastohydrodynamic resonance of a fluid-
loaded soft active elastic shell that buckles and contracts axially when twisted periodically. We show that
this picture is consistent with numerical simulations of soft cylindrical shells that twist-buckle while
pumping a viscous fluid, yielding optimum ejection fractions of 35%–40% when driven resonantly. Our
scaling law is consistent with experimental measurements of heart rates over 2 orders of magnitude, and
provides a mechanistic basis for how metabolism scales with organism size. In addition to providing a
physical rationale for the heart rate and metabolism of an organism, our results suggest a simple design
principle for soft fluidic pumps.
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In living organisms, a characteristic scale determined by
the balance between diffusion and uptake rate is typically of
the order of 1 mm. On scales larger than this, active devices
are necessary to guarantee uniform access to oxygen and
efficient elimination of carbon dioxide or excreta. Soft
fluidic pumps such as the heart are an evolutionary
innovation that solve this problem by enabling internal
fluid transport in large multicellular organisms [1,2]. As
organism size varies over many orders of magnitude, so
does their metabolism [2,3], suggesting a natural question:
what are the scaling principles behind the dynamics of the
largest and most powerful pump in organisms, the heart
[4,5]? A biological argument for the heart rate starts with
Kleiber’s law [2], i.e., the metabolic rate ∼ðbody massÞ3=4.
Balancing the metabolic rate with the energy consumption
rate ∼ðheart rateÞ × ðheart blood volumeÞ yields the power
law: ðheart rateÞ ∼ ðbody massÞ−1=4, in reasonable agree-
ment with experimental data [2–4]. However, one may
question the fundamental premise of this argument, as the
theoretical assumptions underlying Kleiber’s law remain
under debate [6,7].
Here, we start with a physical argument based on the idea

that mechanical resonances in biological systems lead to
energy economy [4,8–12]. We will see that this leads to
experimentally testable predictions for the heart rate of
organisms, from mice to blue whales, that have hearts of
different sizes but similar geometries [13], as exemplified in
Figs. 1(a) and 1(b). Furthermore, we show that the resulting
scaling law provides an alternative basis for Kleiber’s law.
The pumping motion of the heart, and particularly that of

the left ventricle which pumps oxygenated blood into the
body, is driven by the twisting-untwisting dynamics of the

cavity which relies on the helical configuration of the
ventricular myocardial band [15–17] as shown in Fig. 1(c).
Ventricular motion is driven by cardiac muscle cells
which contain thick myosin filaments that pull on thin actin
filaments during ventricular contraction [18,19]. This results
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FIG. 1. (a) Structure of a four-chambered heart. LA, LV, RA,
and RV denote the left atrium, left ventricle, right atrium, and
right ventricle, respectively (drawing adapted from [14]).
(b) Transverse section of the ventricles of a rat, sheep, and horse
(schematics adapted from [13]). The sections have been enlarged
to emphasize their close resemblance. (c) Schematic of the apical
loop of the ventricular myocardial band. Adapted from [15].
Periodic twisting and untwisting of the ventricle driven actively
by myocardial band contraction leads to fluid pumping. (d) Sim-
plified ventricle geometry, reduced to an elastic shell of thickness
h, radius R, density ρwall, elastic modulus E, and containing a
fluid (blood) of density ρblood. Passive end-twisting of the cylinder
causes it to buckle and pump fluid.
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in contraction driven stresses within the cardiac muscular
tissue that lead it to bend and buckle [20–22], reducing the
internal volume of the chamber and forcing the ejection of
blood through the aortic valve. Sincemuscles areonly capable
of generating contractile stresses, a passive mechanical
rebound at the end of ejection would enhance the efficiency
of pumping. This is therefore suggestive of an elastohydro-
dynamic resonance of a fluid-loaded soft elastic shell that is
capable of bending and twisting as it ejects fluid over a
contraction cycle.
To understand the principle determining the heart rate ft,

we start by assuming that the anatomy of the ventricle can
be approximated by that of an elastic shell of radius R and
thickness h < R, as shown in Fig. 1(d). For relatively thin
plates and shells, the bending energy scales as Oðh3Þ while
the stretching energy scales as OðhÞ, so that it is relatively
easier to deform a shell by bending it [23]. Thus, it is
reasonable to expect that the active stresses induced by
muscles will excite the softer bending modes of deforma-
tion more easily than the stiffer stretching modes. At a
scaling level, the active muscular work required to bend
such a shell scales as Eh3κ2R2, where E is the elastic
modulus of the walls and κ ∼ A=R2 is the wall curvature for
a small amplitude of deformation A. This work is converted
into kinetic energy of the blood (density ρf) that is pushed
out of the aorta, and scales as ρfR3ðAftÞ2, where we have
assumed that the fluid velocity scales as ftA. Equating the
muscular work with the kinetic energy of blood over a cycle
yields an estimate for the frequency of a fluid-loaded soft
elastic shell as

ft ≈
cshape
2π

ffiffiffiffiffiffiffiffiffiffiffi
E

ρblood

s
h3=2

R5=2 ; ð1Þ

where cshape is a dimensionless constant that is determined
by the shape of the ventricle (cshape ≃ 1=2 for a sphere,

and cshape ≃ 1=
ffiffiffi
6

p
for a cylinder), first suggested theoreti-

cally by one of us in [24]. For a human heart, h ∼ 10 mm,
R ∼ 30 mm, E ∼ 104 Pa [25,26], and ρf ∼ 103 kg=m3,
which gives an elastohydrodynamic resonance frequency
ft ∼ 1 Hz, in agreement with the observations [27]. For
comparison, we also addressed the case of a soft pump
dominated by stretching deformations (see Supplemental
Material [28]), which leads to different scaling law and a
resonance frequency much higher than that measured
experimentally.
To further test the idea of the heart as an elastohy-

drodynamically resonant pump, we now turn to numerical
simulations. Our approach builds on and complements the
large number of studies on the fluid-structure interaction
in coronary flows, heart valve dynamics, and ventricular
flows [46–53]. We do this in a simplified setting by
starting with an elastic cylindrical shell immersed in a
fluid which can deform by bending, shearing, and

stretching. For thin and even relatively thick shells, the
dominant modes of deformation are those associated with
twisting and bending as these are energetically cheaper
and thus easier to activate using muscles, consistent with
observations of deformation of the heart ventricle [15,54].
Indeed, observations with a rubber cylindrical shell (see
Supplemental Material [28] for details and experimental
realization for such a model), confirm that twisting leads
to a spontaneous buckling instability of the cylinder into a
wrinkled tube (with a wavelength that scales with the
radius of the cylinder) that also shrinks axially. This mode
of deformation reduces the internal volume of the cylinder
and thus can be easily harnessed to pump fluid. A full
cycle is complete when the cylinder is then brought back
to its initial position by untwisting it. The geometry of the
shell is characterized by its aspect ratio L=R and thickness
ratio R=h, where L, R, and h are the length, radius and
thickness of the shell, respectively. In the simulations, we
fix the aspect ratio to L=R ¼ 3 and vary the thickness ratio
h=R, and the shape of the shell is controlled by twisting at
one end while keeping the other fixed. A total twist of 90°
is imposed at one end and the shape evolution is computed
in a quasistatic way by minimizing the bending and
stretching energy of the surface [55]. The surface of
the cylinder is discretized using approximately 10 000
triangular elements and the material is assumed to be
incompressible. The cylindrical shell is immersed in a
Cartesian box of size 4L × 4L × 4L filled with a fluid of
kinematic viscosity ν. The boundary conditions imposed
on the faces of the Cartesian box perpendicular to the
cylindrical axis allow the free flow of fluid into and out of
the domain, while free-slip boundary conditions are
imposed on the other four faces [37,38]. Through domain
dependency tests, we ensure that the boundary conditions
and domain size do not influence the final results (see
Supplemental Material [28] for details of our numeri-
cal model).
In Fig. 2(a), we show snapshots of the shape evolution

of the shell from the numerical simulations for a thickness
ratio of R=h ¼ 10. In Fig. 2(b), we show the net ejection
fraction as a function of the driving frequency, in scaled
form defined as h _Vfi=ΔVs where _Vf is the net volume of
fluid pumped along the axis of the cylinder and ΔVs is the
difference between the initial and final inner volumes of
the shell during deformation. The driving Reynolds
number, characterizing the ratio of the inertial to viscous
forces is defined as Re ¼ πð2RÞ2f=ν, where f is the
frequency of the twist-untwist cycle physically imposed
on the open face of the cylindrical shell. For each of four
different cylinder thickness ratios R=h (∈ ½5; 20�), one can
clearly observe a nonmonotonic dependence of the
pumping efficiency on the driving Reynolds number.
At low Re, due to the dominance of the viscous forces
over inertial forces, any fluid pumped out during twisting
comes back into the shell during untwisting thus leading
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to a near-zero net pumping rate. As the driving Re
increases, inertial effects come into play which leads to
symmetry breaking and net pumping of fluid in one
direction along the cylinder axis. When Re is further
increased, excessive viscous dissipation from high inten-
sity vorticity regions near the buckles of the cylindrical
shell significantly reduces the pumping efficiency. This
leads to a nonmonotonicity in the pumping efficiency as
a function of Re, and the driving frequency, as seen in
Fig. 2(b). Furthermore, despite the relatively small bend-
ing strains (which are of the order of Ah=R2 ∼ 5%), we see
that a combination of buckling instabilities working in
tandem with elastohydrodynamic resonance can lead to
ejection fractions of the order of 35%–40%, explaining a
long-standing puzzle in heart physiology [54,56].
These numerical simulations confirm that there is an

optimal frequency of pumping to maximize ejection

fraction in an actively driven elastic cylindrical shell,
and that the optimal frequency varies with varying thick-
ness ratio. In the inset of Fig. 2(b), we plot the optimal
pumping frequency versus the thickness ratio for the four
thickness ratios considered and observe that the frequency
roughly follows a scaling f ∼ ðh=RÞ3=2, consistent with the
scaling law (1). The frequency of pumping for a cylindrical
shell of a given thickness is optimal when the driving is
strong enough to overcome time reversibility in the low
Reynolds regime, but not so strong as to produce intense
viscous dissipation of the fluid near the buckling regions
during the twist-untwist cycle.
To test the theoretical scaling law for the heart rate ft

given by (1), we now compare it with experimental
measurements of heart rate fe across different species
[57]. Using data for the average radius and thickness of 38
mammalian and avian left ventricles (see Supplemental
Material [28] for details), Fig. 3 shows the experimentally
observed heart rate versus the theoretical frequency. We see
good agreement between the two in terms of both the trend
and, equally importantly, the actual numerical values. Our
results are also quantitatively consistent with recent experi-
ments on a tissue-engineered heart ventricle [24] and show
that the maximum ejection fraction is achieved when the
heart is resonantly forced. Delving deeper into the exper-
imentally observed values of the ventricle radius and its
thickness, which together determine the geometrical factor
in (1), we find that the typical wall thickness h of the left
ventricle is nearly proportional to its typical radius R, with a
scaling h ∼ Rα where α ¼ 1.15� .06 (see Supplemental
Material [28] for details). This implies that fe ∼ ft ∼ Rβ,
where β ¼ −0.78� 0.09, in good agreement with
experimental data (see Fig. S3 of the Supplemental
Material [28]).

(a)

(b)

FIG. 2. (a) Snapshots from numerical simulations of a cylin-
drical shell buckling under twist. The bottom end is kept fixed
while the top end is rotated by π=2c. The rotation step between
each picture is π=6c. As the shell buckles into a low-order mode
that has an internal volume that is smaller than that of the straight
cylinder, it ejects fluid during the process. (b) Net ejection
fraction versus the driving Reynolds number for different thick-
ness ratios computed using direct numerical simulations of a
deforming elastic shell coupled with a Navier-Stokes solver (see
Supplemental Material [28] for details). Inset shows dependence
of the frequency with the highest ejection fraction for each
thickness ratio versus the thickness ratio which roughly follows a
scaling f ∼ ðR=hÞ−3=2 for fixed L=R ¼ 3, consistent with (1).
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FIG. 3. Comparison between experimentally measured animal
heart rates fe (see Supplemental Material [28]) and the theoretical
law for elastohydrodynamic resonance ft; the straight line is
the linear relation (1) fe ¼ ft ≃ cshape=ð2πÞ

ffiffiffiffiffiffiffiffiffiffiffi
E=ρf

p
h3=2=R5=2,

with cshape ≃ 1=
ffiffiffi
6

p
(for cylindrical shapes).
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We now turn to discuss the implications of our elasto-
hydrodynamic scaling law on metabolic demands in
organisms and across species. Since the red blood cell
size (∼10 μm) and the hemoglobin density in the cells
(∼100 g=L) are approximately constant in mammals [2],
the volume of oxygen transported within one heartbeat
universally scales as the volume of the heart, which itself
scales as the volume of the animal [57,58]. The metabolic
rate, which is proportional to the rate of oxygen transport,
therefore scales as Qmetabolic ∼ R3ft ∼Mγ , where M is the
animal body mass and γ ¼ 1þ β=3 ¼ 0.74� 0.03. This
combination of structural, dynamic, and functional con-
straints thus provides an alternative physical basis for
Kleiber’s law [2], based on the geometry, elasticity, and
dynamics of the soft fluid pump that powers organisms. All
together, these laws provide a physical basis for the scaling
of heart rates and metabolism as a function of body size,
consistent with the matching of (heart) form, dynamics, and
(physiological and metabolic) function in organisms [61].
Finally our results also suggest a design principle for soft

fluidic pumps [24,59,60]: by taking advantage of elasto-
hydrodynamic resonance, they can operate far more effi-
ciently than otherwise. This is consistent with numerical
simulations of the coupled elastohydrodynamic problem
linking the elastic buckling of thin shells to viscous fluid
flow, showing how relatively large ejection fractions can be
achieved when the pump is resonantly driven. How this
design might have arisen during the evolution of fluidic
pumps in natural and engineered systems is a question for
the future.
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