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Determination of Optimal Shot
Peen Forming Patterns Using the
Theory of Non-Euclidean Plates
We show how a theoretical framework developed for modeling nonuniform growth can
model the shot peen forming process. Shot peen forming consists in bombarding a metal
panel with multiple millimeter-sized shots that induce local bending of the panel. When
applied to different areas of the panel, peen forming generates compound curvature profiles
starting from a flat state. We present a theoretical approach and its practical realization for
simulating peen forming numerically. To achieve this, we represent the panel undergoing
peen forming as a bilayer plate, and we apply a geometry-based theory of non-Euclidean
plates to describe its reconfiguration. Our programming code based on this approach
solves two types of problems: it simulates the effect of a predefined treatment (the
forward problem) and it finds the optimal treatment to achieve a predefined target shape
(the inverse problem). Both problems admit using multiple peening regimes simultaneously.
The algorithm was tested numerically on 200 randomly generated test cases.
[DOI: 10.1115/1.4056072]
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1 Introduction
Shot peen forming is a cost-effective technology for shaping

large metal plates, such as airplane wing skins, without dies. It con-
sists in bombarding the surface of a component with a large number
of millimeter-sized shots made of steel, glass, or ceramic. The
velocity of a shot is sufficiently high to plastically deform the
upper layer of the plate upon impact and to stretch the plate
locally. This effect causes local bending of thin components and
leads to a convex curvature on the peened side [1]. Repeated
impacts also induce a field of compressive residual stress that can
improve fatigue life [2].
When developing a shot peen forming process, one is faced with

two types of problems as schematized in Fig. 1:the forward problem
and the inverse problem [3]. The forward problem is formulated
with the following question: Which shape will the component
adopt if it is peened according to a given pattern? The inverse
problem denotes the following: Given an initial shape of the com-
ponent and the target shape, how should one peen the component
to make it deform into the target shape? A numerical solver for
both problems is necessary to optimize the forming process.
Thus, without numerical resolution of the inverse problem, the
design of a peen forming procedure for each new component is a
craft trial-and-error process plagued with risk and uncertainty. It
lasts up to several months and implies many scrapped parts. On
the other hand, numerical resolution of the forward problem is nec-
essary to check the quality of the inverse problem resolution and to
simulate the effect of additional treatments.
A straightforward simulation of individual peening impact, such

as the one conducted in Ref. [4], is precise but computationally
expensive. For this reason, simplified multiscale simulation
approaches, such as the eigenstrain approach, were developed. It

implies formulating the applied peening loads in terms of non-
elastic strains imposed on the component [5,6]. The eigenstrain
approach represents the treated plate as a thin bilayer where each
layer undergoes a nonuniform plastic in-plane swelling or shrink-
ing. The forward problem in this formulation can be numerically
solved using shell finite element models [7,8]. In addition, such
models allow to implement an inverse problem resolution algorithm
based on the topology optimization methods [9,10]. A similar
inverse problem resolution approach was also applied in Ref. [11]
in the context of the laser peen forming process. Given that this
method is based on numerical optimization, its speed decreases
with the number of elements in the model. On the other hand, the
inverse problem can be solved using an artificial neural network
[8]. The neural network provides near-perfect accuracy and fast cal-
culation on-line. However, it requires the generation of a large finite
element forward problem solution database and a long training
phase for each new plate geometry.
To overcome these issues during the inverse problem resolution,

we turned to the theory of non-Euclidean plates [12,13]. This theo-
retical framework lies at the intersection of mechanics and differen-
tial geometry. It precisely describes distortion of multilayer plates
induced by the prescription of a nonuniform non-elastic strain. Pre-
scription of such strain makes the surface metric non-Euclidean so
that it does not satisfy the compatibility conditions of the Euclidean
space, which gives name to the theory [13]. Experiments conducted
in the field of 4D printing with elastic polymer sheets have proven
the accuracy of the theory of non-Euclidean plates in numerical
forward problem resolution. Thus, this theory precisely predicted
curvature of spherical, cylindrical, and saddle shapes grown out
of a flat state by induction of a nonuniform plastic strain [14,15].
Numerical simulation of growth for these three cases also showed
good accordance with analytical shapes [16]. Moreover, this
theory predicted the form of more complex shapes, such as helicoid,
catenoid, or an orchid flower grown out of a flat state using polymer
bilayers with oriented filaments [17]. The theory of non-Euclidean
plates also provides instruments for an efficient inverse problem
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resolution. Such algorithms for the case of polymers with oriented
local growth are reported in Refs. [17,18].
In this paper, we propose to use the eigenstrain approach to repre-

sent the treated plate as a bilayer, and we resort to the theory of
non-Euclidean plates to calculate the resulting distortion of the
bilayer. To numerically solve the inverse problem,we created an iter-
ative algorithm that implies resolving the forward problem on each
iteration. The algorithm adjusts the peening pattern based on the dis-
crepancy between the current shape, i.e., the shape obtained with the
current pattern, and the target shape. The adjustment is done on a
local scale using simple arithmetic operations, so the computation
speed on this stage stays constant with an increasing number of var-
iables. This stage does not require any preliminary training phase
either. The algorithm constitutes a general approach for the inverse
problem resolution in case of bilayers subjected to isotropic, i.e.,
non-oriented, local growth, such as those examined in Ref. [15].
When the iterative adjustment is finished, we group the peening
pattern to make it practically applicable. In other words, we divide
the pattern into zones treated with constant peening regimes. The
number of available peening regimes and their intensities are pre-
determined based on the practical constraints.
We start this paper with the theoretical background section. First,

we examine the eigenstrain approach that relates peen formed plates
and swelling non-Euclidean bilayers. Next, we move to the theory
of non-Euclidean plates, namely to the geometrical shape descrip-
tion and the forward problem resolution method that it implies. In
this section we also formulate the inverse problem in terms of the
theory of non-Euclidean plates. We then pass to the methodology
section by presenting our inverse problem resolution algorithm
and an approach for its numerical implementation. The grouping
and validation strategies are presented in the same section. The
results of the validation campaign are presented subsequently, and
finally the advantages and limitations of our approach are discussed.

2 Theoretical Background
2.1 The Eigenstrain Approach and Strain Decomposition.

The term eigenstrains denotes all non-elastic strains arising in the
material, such as plastic, thermal, or piezoelectric strains [5]. The
only type of eigenstrain generated by peen forming is the plastic
strain. Indeed, numerous overlapping impact indentations plasti-
cally stretch the outer layer of the material, and the rest of the mate-
rial responds to this newly introduced eigenstrain with the
emergence of stress. In order to conserve its integrity and to
balance the stress, the plate deforms elastically. In case of small
strains, the residual strain tensor εres is additively decomposed
into the eigenstrain part ε and the elastic part εel ([19] and
Appendix):

εres = ε + εel (1)

This relation holds for peen forming because the process deals with
thin plates and the peening-induced strains are small [4]. The elastic
strain may affect the whole plate, while the eigenstrain is present
only in the stretched outer layer. The thickness of the plastically
deformed outer layer varies depending on the peening parameters
and the treated material. With the eigenstrain approach, the resolu-
tion of the forward problem for shot peen forming consists in intro-
ducing the eigenstrain over the whole shot peened area and
determining the elastic springback.

2.1.1 The Through-Thickness Eigenstrain Profile. We endow
the mid-surface of the plate with two Lagrangian coordinates
(x, y), and we assign a Lagrangian coordinate z in the through-
thickness direction. The Lagrangian coordinates follow the plate
as it deforms. We assume that the material is plastically isotropic, so
the eigenstrains are the same in all in-plane directions: ɛxx(x, y, z)=
ɛyy(x, y, z). Also, ɛzz=−2ɛxx due to plastic incompressibility. For a

Fig. 1 The two problems of the shot peen forming simulation: (a) The forward problem consists in the determination of
the final shape of the component given its initial shape and the peening pattern and (b) The inverse problem consists in
determination of the optimal peening pattern given the initial shape of the component and its target shape
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small area around a point (x0, y0) on the mid-surface, the
through-thickness eigenstrain profile ɛxx(x0, y0, z)= ɛyy(x0, y0, z)
can be measured directly using the X-ray diffraction method [20].
Otherwise, it can be deduced from the residual stress profile,
which is determined with such methods as hole drilling [21], layer-
removal [21,22], or the two cut compliance method [23]. In this
case, the through-thickness eigenstrain profile is optimized using
numerical simulations in a way that the generated residual stress
profile corresponds to the experimentally measured one [7,24].
With this, the correspondence between the peening regimes and
the induced eigenstrains can be established by treating identical
experimental specimens with varying process parameters and deter-
mining the induced eigenstrains. If the forming procedure implies
subsequent treatment of the same area with different peening
regimes, then, in terms of eigenstrains, such a combined treatment
can be considered as an additional peening regime.
Mechanically, the introduction of the eigenstrain can be modeled

as slicing the plate into thin layers, stretching the outer layers sepa-
rately following the eigenstrain profile, and then gluing everything
back. To numerically simplify the problem, we virtually idealize the
eigenstrain profile by assuming that the plate consists of two layers
of equal thickness that can separately undergo nonuniform in-plane
swelling or shrinking. The idealized eigenstrain profile leads to the
same deformed shape as the real one. Figure 2 illustrates both pro-
files induced on a uniformly treated plate. Mathematically, the ide-
alization procedure consists in finding the local eigenstrain ɛt(x, y)
to be introduced in the top layer and the local eigenstrain ɛb(x, y) to
be introduced in the bottom layer. It is done by equating the total
eigenstrain Γ(x, y) [6] and the first eigenstrain moment Γ1(x, y)
[6] induced locally by the real eigenstrain profile to those induced
locally by ɛt(x, y) and ɛb(x, y). In the general case, Γ and Γ1 are
defined as

Γ x, y
( )

=
∫h/2
−h/2

εxx(x, y, z) dz (2)

Γ1 x, y
( )

=
∫h/2
−h/2

εxx(x, y, z)z dz (3)

where h stands for the plate thickness. For the idealized bilayer,
profile Γ and Γ1 are expressed as

Γ x, y
( )

=
h

2
εt x, y
( )

+ εb x, y
( )( )

(4)

Γ1 x, y
( )

=
h2

8
εt x, y
( )

− εb x, y
( )( )

(5)

The idealized eigenstrain is positive on the side that undergoes the
peening treatment and is negative on the other side. It should be
noted that although ɛt and ɛb give rise to the same in-plane exten-
sion and curvature as the real eigenstrain profile, the idealized
one generates a different residual stress profile [7]. Indeed, the
linear elasticity theory expresses the components of the residual
stress tensor σ through the components of the elastic strain tensor
εel [6]:

σxx = Y
1−ν2 εelxx + νεelyy

( )
σyy = Y

1−ν2 εelyy + νεelxx

( )
⎧⎨
⎩ (6)

The elastic strain tensor, in turn, is influenced by the eigenstrain
tensor (see Eq. (1)).

2.2 The Theory of Non-Euclidean Plates Applied to the
Modeling of Shot Peen Forming. The theory of non-Euclidean
plates allows to numerically determine the elastic response of thin
bodies to an applied nonuniform non-elastic strain, e.g., eigenstrain.
If the plate fully incorporates the prescribed eigenstrain, so that

εres = ε and σ = 0, then it adopts a so-called rest configuration.
The prescribed eigenstrains can be incompatible, meaning that the
plate can not adopt the rest configuration without the loss of integ-
rity. In this case, a solid plate adopts an integral final configuration
(final shape) by compensating the eigenstrains with the elastic
strains, which is the case of peen forming. The presence of elastic
strains, in turn, leads to the emergence of residual stresses.
Once assigned with a rest configuration, the plate adopts a final

configuration that minimizes its global elastic energy [12,13].
Hence, if the global elastic energy has multiple global minima,
then the final configuration is not unique. In turn, the same final con-
figuration can be induced by different rest configurations. More-
over, during morphing, the plate can get stuck in a configuration
corresponding to a local minimum on its way to the final configura-
tion corresponding to the global minimum [19]. The theory of
non-Euclidean paves a way to explore the relation between the
rest and the final configurations in all cases and uses tools from dif-
ferential geometry to describe the shape of plates. In terms of
numerical implementation, we adopted the approach described in
Ref. [19].

2.2.1 Geometrical Shape Description. In the framework of the
theory of non-Euclidean plates, the plate shape is associated with
the shape of its mid-surface [19]. We denote by U the domain of
the plane containing the coordinates (x, y) that parameterize the
mid-surface: x, y

( )
∈ U ⊂ R2. The position of each point of the

mid-surface in a 3D space is defined by the mapping �m :U → R3.
We adopt the Kirchhoff-Love assumptions, so the position �r of a
point belonging to the plate is expressed as

�r x, y, z
( )

= �m x, y
( )

+ z�n x, y
( )

(7)

where �n is the unit normal vector. The mid-surface shape is
described by the first and the second fundamental forms, that are
binary quadratic forms associated with a symmetric 2 × 2 matrix.
Both fundamental forms are local quantities varying smoothly
along the surface. The first fundamental form describes changes
in the length of curves and areas of regions on the surface. In
other words, it describes the local stretching of the surface. The
2 × 2 matrix containing coefficients of the first fundamental form
a(x, y) is computed as

a x, y
( )

=
∂x �m · ∂x �m ∂x �m · ∂y �m
∂y �m · ∂x �m ∂y �m · ∂y �m

[ ]
(8)

where ∂x �m = ∂�m/∂x and ∂y �m = ∂�m/∂y are two vectors tangent to the
mid-surface at the point �m(x, y). If a certain area of the surface does
not undergo any stretching, the first fundamental form in this area is
represented by the identity matrix I.
Together with the first fundamental form, the second fundamen-

tal form determines local curvatures on a surface. The matrix con-
taining its coefficients b(x, y) is computed as

b(x, y) =
∂xx �m · �n ∂xy �m · �n
∂xy �m · �n ∂yy �m · �n

[ ]

=
∂x(∂x �m · �n) − ∂x �m · ∂x�n ∂y(∂x �m · �n) − ∂x �m · ∂y�n
∂y(∂x �m · �n) − ∂x �m · ∂y�n ∂y(∂y �m · �n) − ∂y �m · ∂y�n

[ ]

= −
∂x �m · ∂x�n ∂x �m · ∂y�n
∂x �m · ∂y�n ∂y �m · ∂y�n

[ ]
(9)

where ∂xx �m, ∂xy �m, and ∂yy �m denote the second derivatives of
�m(x, y), and the last equality is obtained using the orthogonality
of the tangent and normal vectors. If a surface is locally flat, its
second fundamental form at this area is described by the zero
matrix, because the derivatives of the tangent and normal vectors
equal zero.
The two fundamental forms define a unique surface up to rigid

body motions. The surface is integral if its fundamental forms are
compatible, i.e., if they satisfy three partial differential equations
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called the Gauss–Peterson–Mainardi–Codazzi equations, which can
be found, for instance, in Ref. [25]. Hence, the two final fundamen-
tal forms of a non-Euclidean plate are compatible, while its rest fun-
damental forms are not. This phenomenon illustrated in Fig. 3 is
also called geometric incompatibility.

2.2.2 Elastic Energy and the Forward Problem Resolution. In
terms of the theory of non-Euclidean plates, the forward problem
consists in determining the final configuration as a function of the
rest configuration. First, we consider the simple case of an initially
flat monolayer plate, which is subjected to a rest configuration
described by the incompatible fundamental forms ar and br. The
rest and final configurations of such a plate are related through
the elastic energy functional. We denote the final fundamental

forms as af and bf and we express the elastic energy EML of an
integral monolayer plate as [19]

EML =
1
2

∫
U

h

4
a−1r a f − I

∥∥ ∥∥2
e+

h3

12
a−1r (b f − br)

∥∥ ∥∥2
e

[ ] 






det ar

√
dxdy

(10)

In this expression we have introduced the elastic norm
A‖ ‖2e=αTr2 A( ) + 2βTr(A2) with coefficients α= Yν/(1− ν2) and
β =Y/(2+ 2ν). Here, Y is the Young modulus and ν is the Poisson’s
ratio.
A zero elastic energy means that the final configuration perfectly

coincides with the rest one. If the rest fundamental forms are incom-
patible, an integral plate adopts an equilibrated final configuration

Fig. 2 The real and idealized eigenstrain profiles induced by uniform shot peening of a plate. We denote the plate
thickness as h. The coordinate z goes along the thickness and measures from the midplane: (a) The plate undergoes
uniform shot peening (side view), (b) The through-thickness eigenstrain profile is nonuniform along z, and its peak
value ɛmax is close to the surface [7]. Its effect is accurately simulated by virtually dividing the plate into thin
layers and imposing different eigenstrain to each of the layers thus reproducing the profile shape, (c) We idealize
the eigenstrain profile and represent the plate as a bilayer consisting of two layers of thickness h/2. The eigenstrain
ɛt and ɛb assigned to each of the layers is derived from the real eigenstrain profile by equating the total eigenstrain
and the first eigenstrainmoment and (d ) Both real and idealized eigenstrain profiles lead to the same deformed shape,
which is bent and stretched with respect to the initial state.
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that minimizes the elastic energy under constraints that af and bf be
compatible. The first term of the elastic energy functional represents
the stretching energy, and the second term defines the bending
energy. If the plate is thin, the bending term is small in comparison
to the stretching one, so the plate stretches as prescribed by the rest
configuration but adopts a different curvature. In other words, af in
this case is close to ar, but bf can be largely different from br. On the
contrary, a thick plate adopts the curvature prescribed by the rest
configuration but stretches in a different way, so that bf is close
to br [12].
Now let us consider a bilayer plate, where each layer is of thick-

ness h/2. We suppose that the plate is initially flat, and that its layers
exhibit nonuniform in-plane swelling or shrinking. The eigenstrain
introduced in each layer may vary along the surface, but it is cons-
tant along the layer thickness. Locally, the eigenstrain is different
for each layer, so that the rest first fundamental forms of each
layer (ar,t and ar,b) are different. Matrices ar,t and ar,b contain infor-
mation on the principal eigenstrain direction and magnitude on the
top and bottom layers, respectively. Essentially, the ar,t and ar,b
describe stretching that the layers would adopt if they were not
attached together. By assuming that each layer expands uniformly
across its thickness, all terms of the rest second fundamental form
of each layer are zero along the whole surface:

br,t = br,b =
0 0
0 0

[ ]
(11)

Accordingly, ar,t and ar,b fully describe the rest configuration. The
forward problem consists in finding af and bf that describe the shape
of the integral plate mid-surface after reconfiguration. The reconfig-
uration process for the bilayer case is presented in Fig. 4. Following
Ref. [19], we express the elastic energy of the bilayer plate as the
sum of the elastic energies of two monolayers of thickness h/2.
After integration over the total plate thickness, we obtain

EBL =
1
2

∫
U

h

8
a−1r,ba f − I

∥∥ ∥∥2
e
+
h3

24
a−1r,bb f

∥∥ ∥∥2
e

[

+
h2

8
a−1r,ba f − I
( )

, a−1r,bb f

〈 〉
e

] 








det ar,b

√
dx dy

+
1
2

∫
U

h

8
a−1r,t a f − I

∥∥ ∥∥2
e
+
h3

24
a−1r,t b f

∥∥ ∥∥2
e

[

−
h2

8
a−1r,t a f − I
( )

, a−1r,t b f

〈 〉
e

] 








det ar,t

√
dx dy (12)

The elastic energy inner product 〈 · , · 〉e introduced in this context
defines the following operation: 〈A, B〉e=αTr(A)Tr(B)+ 2βTr(AB).
Similarly to the monolayer case, the plate adopts a curved final con-
figuration (af, bf) that minimizes the elastic energy. Generally, the
final configuration is not unique, and moreover, the plate can get
stuck in a configuration corresponding to a local energetic
minimum on its way to the global minimum.
For a bilayer subjected to any rest configuration (ar,b, ar,t), there

exists an equivalent monolayer that morphs into the same final con-
figuration (af, bf) after being subjected to a rest configuration
(ar, br). The relation between (ar,b, ar,t) and (ar, br) is derived by
equating the monolayer energy (Eq. (10)) and the bilayer energy
(Eq. (12)) and is expressed as [19]

ar = 1
2 ar,b + ar,t
( )

br = 3
4h ar,b − ar,t
( ){

(13)

Inversely,

ar,t = ar − 2h
3 br

ar,b = ar + 2h
3 br

{
(14)

Here, the monolayer and bilayer plates are supposed to have the
same initial geometry and the same total thickness h.

2.2.3 The Inverse Problem Resolution. In terms of the theory
of non-Euclidean plates, the inverse problem consists in determin-
ing the rest configuration that leads to a target configuration due
to the elastic material response. The rest configuration contains
information on the introduced eigenstrains, which, in turn, are
caused by the peening treatment. In the bilayer case, solving the
inverse problem means finding the rest first fundamental forms of
the bottom and top layers ar,b and ar,t, respectively, as a function
of the target shape described by atar and btar. As each fundamental
form is represented by a symmetric 2 × 2 matrix, the target con-
figuration is locally defined by six scalar fields over domain
U: axxtar, a

xy
tar, a

yy
tar and bxxtar, b

xy
tar, b

yy
tar . At the same time, the rest config-

uration has six degrees-of-freedom: axxr,b, a
xy
r,b, a

yy
r,b and axxr,t , a

xy
r,t , a

yy
r,t .

In the general case, assigning independent values to all six
degrees-of-freedom means inducing local orthotropic eigenstrain,
so that ɛ11(x, y, z)≠ ɛ22(x, y, z), where ɛ11 and ɛ22 are the local prin-
cipal eigenstrains. Such local control over the principal eigenstrains
is generally not possible with shot peen forming, because here
we assume that shot peening induces local isotropic in-plane
strain. Thus, at each point we only control two degrees-of-freedom:
ɛt(x, y) and ɛb(x, y). Hence, we have control over fewer

Fig. 3 An example of geometric incompatibility inspired by Pezzulla et al. [14]. The initial con-
figuration described by the fundamental forms (ainit, binit) is a flat unstretched disc, so that ainit
is the identity matrix and binit is the zero matrix along the whole surface. The rest configuration
(ar, br) prescribes isotropic in-plane stretching of the central part while conserving the flat
shape, so that ar≠ainit and br=binit. In the general case, br can be different from binit as
well. The rest fundamental forms are incompatible, because the adoption of the rest configu-
ration means superposition of the inner part and the outer part of the disc and thus loss of
integrity. In order to conserve its integrity, the disc adopts a curved final configuration (af,
bf) described by compatible fundamental forms. However, the disc stays residually stressed
in its final configuration.
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degrees-of-freedom than input variables. In this case, a solution
leading exactly to the target shape may not exist, so we can only
numerically optimize ar,t and ar,b. The uniqueness of solution is
not guaranteed either.

3 Methodology
Our method for the inverse problem resolution consists in the

iterative correction of the peening pattern on a local scale until con-
vergence is reached within a tolerance and subsequent grouping of
the pattern. The grouping algorithm divides the pattern in zones
treated with predefined peening regimes.

3.1 Iterative Adjustment of the Peening Pattern. The itera-
tive method idea is to adjust the rest configuration by comparing
the local stretching and curvature of the current shape with the
stretching and curvature of the target shape. The current shape is
computed at each iteration through a numerical resolution of the
forward problem. For the initial guess, we use analytical expres-
sions to approximately define an appropriate rest configuration.

3.1.1 The Initial Guess. We characterize the target configura-
tion in terms of fundamental forms (atar, btar). Let us consider the
monolayer rest configuration aorthor , borthor

( )
described by aorthor =

atar and borthor = btar, that in a general case prescribes local orthotro-
pic in-plane strain. According to the expression for the elastic
energy (Eq. (10)), imposition of this rest configuration makes the
plate adopt exactly the target configuration, which minimizes the
elastic energy. Following Ref. [19], we express the equivalent
bilayer rest configuration aorthor,t , aorthor,b

( )
using Eq. (14):

aorthor,t = aorthor − 2h
3 b

ortho
r

aorthor,b = aorthor + 2h
3 b

ortho
r

{
(15)

Equivalently, using the definition of aorthor , borthor

( )
, we rewrite

aorthor,t = atar − 2h
3 btar

aorthor,b = atar + 2h
3 btar

{
(16)

Thus, application of the rest configuration aorthor,t , aorthor,b

( )
leads to the

target shape (atar, btar). However, this configuration implies local
orthotropic eigenstrain, which is not feasible with shot peen
forming. We comply with this constraint and find a suitable local
isotropic eigenstrain based on this prediction. To that end, we
first compute the local eigenstrains in the principal directions in
the top (εt11, ε

t
22) and bottom (εb11, ε

b
22) layers of the bilayer pre-

scribed by aorthor,t and aorthor,b , respectively. Next, we take their aver-
ages εtavg and εbavg and impose them locally in all in-plane
directions thus making the initial guess.
To find (εt11, ε

t
22) and (εb11, ε

b
22), we perform a spectral decompo-

sition of aorthor,t and aorthor,b , respectively [19]. At the top layer, the

distortions prescribed by aorthor,t imply stretching by a factor of
(εt11 + 1) in the first principal direction and by a factor of (εt22 + 1)
in the orthogonal second principal direction. The first principal direc-
tion is rotated by an angle of θt with respect to the x-axis. At the
bottom layer, the stretch factors are (εb11 + 1) and (εb22 + 1), and
the first principal direction is rotated by an angle of θb with
respect to the x-axis. The initial configuration is unstretched, so its
first fundamental form ainit is represented by the identity matrix:

ainit = I (17)

Consequently, the eigenvalues of aorthot equal (εt11 + 1)2 and
(εt22 + 1)2, and the eigenvalues of aorthob equal (εb11 + 1)2 and
(εb22 + 1)2, so that

aorthor,j =
cos (θ j) − sin (θ j)

sin (θ j) cos (θ j)

[ ]T
(ε j11 + 1)2 0

0 (ε j22 + 1)2

[ ]

cos (θ j) − sin (θ j)

sin (θ j) cos (θ j)

[ ]
for j = t, b (18)

We deduce the local eigenstrain in the principal directions (εt11, ε
t
22)

and (εb11, ε
b
22) from the eigenvalues and calculate the average local

eigenstrain εtavg and εbavg for both layers:

ε javg =
ε j11 + ε j22

2
for j = t, b (19)

We impose the local isotropic eigenstrain εtavg and ε
b
avg on the top and

bottom layers, respectively, thus making the initial guess. The bilayer
rest fundamental forms ar,t and ar,b corresponding to this strain are
expressed as

ar,j =
(ε javg + 1)2 0

0 (ε javg + 1)2

[ ]
for j = t, b (20)

We substitute (ar,t, ar,b) to the bilayer elastic energy functional
(Eq. (12)) and find the current shape (ac, bc) through numerical min-
imization of the functional.
Following Eq. (13), it is possible to find equivalent monolayer

rest fundamental forms (ar, br). Prescription of the rest fundamental
forms (ar, br) to a monolayer plate leads to the same current shape
(ac, bc) as the prescription of (ar,t, ar,b) to a bilayer plate. Essen-
tially, (ar, br) can be viewed as the rest configuration imposed on
the bilayer mid-surface. The forms ar and br may be incompatible
as they were defined analytically, but ac and bc are always compat-
ible because they describe a surface in Euclidean space. Conse-
quently, (ac, bc) are typically different from (ar, br).

3.1.2 Adjustment of the Local Stretching. In the previous
section, we defined a procedure to obtain a quick estimate of the
inverse problem by solving for orthotropic expansions and averag-
ing them to estimate isotropic expansions. In this section and the
next, we seek to iteratively correct these expansions using only
local information.

Fig. 4 An example of geometric incompatibility in a bilayer plate inspired by van Rees et al.
[19]. The initial configuration described by the fundamental forms (ainit, binit) is a flat
unstretched rectangular plate, so that ainit is the identity matrix and binit is the zero matrix
along the whole surface. The rest configuration (ar,t, ar,b) prescribes isotropic in-plane stretch-
ing of the top layer and shrinking of the bottom layer while conserving the flat shape, so that ar,
t≠ainit, ar,b≠ainit, br,t=binit, and br,b=binit. Since peen forming causes in-plane eigenstrain, we
do not consider cases when br,t≠0 and br,b≠0 for our simulations, so that the rest configura-
tion is entirely described by (ar,t, ar,b). Adoption of the rest configuration means dissection of
the plate in two layers. Instead, the plate adopts an integral but residually stressed final con-
figuration (af, bf) described by compatible fundamental forms.
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As the rest configuration (ar,t, ar,b) prescribes local isotropic
in-plane strain, we measure stretching in terms of local areas. The
area A of each region of the surface constrained by x, y

( )
∈ U1 ⊂

R2 is expressed in terms of the first fundamental form a as
A =

��
U1









det(a)

√
dxdy. The first fundamental form is considered

constant inside small regions, so we conclude that the current
area of each small region Ac and its target area Atar are related as

Atar

Ac
≈











det atar( )√ 








det ac( )√ = kA (21)

This means that if we locally multiply ac by the coefficient kA, then
the current area will equal that of the target. However, we are only
able to influence ac indirectly through the adjustment of ar. Conse-
quently, as a part of the iterative procedure, we multiply ar by kA
and thus obtain the equivalent monolayer rest fundamental form
anewr to be imposed during the subsequent iteration:

anewr = kAar (22)

The anewr may be different from the current first fundamental form on
the subsequent iteration anewc , and thus this correction of the rest fun-
damental form does not lead to an exact solution but allows to
approach it. In other words, multiplication of ar by kA does not
correct the local area exactly by the coefficient kA but reduces the dif-
ference between the current local stretching and the target one.

3.1.3 Adjustment of the Local Curvature. We characterize the
surface curvature in terms of the local mean curvature H. By defini-
tion,H is the average of two local principal curvatures κ1 and κ2 that
are computed as eigenvalues of the shape operator S= a−1b [26].
We compute the local ratios kH between the current mean curvatures
Hc and the target mean curvatures Htar and assign an upper thresh-
old δ for |kH|:

kH = Htar
Hc

for Htar
Hc

∣∣∣ ∣∣∣ < δ

kH = δ · sgn Htar
Hc

( )
for Htar

Hc

∣∣∣ ∣∣∣ ≥ δ

⎧⎨
⎩ (23)

Here,Htar is the average of the two eigenvalues of Star = a−1tarbtar , and
Hc is the average of the two eigenvalues of Sc = a−1c bc. The thresh-
old δ is assigned in order to deal with special cases when |Hc| is
small. Provided that multiplication of a matrix by a constant multi-
plies its eigenvalues by the same constant, the multiplication of Sc
by kH would make the current local mean curvatures equal to
those of the target. As we are unable to adjust any of the current fun-
damental forms (ac, bc) directly, we influence them through adjust-
ment of the rest fundamental forms (ar, br) in order to get

Snewr = kHSr = kHa−1r br = kHkA
a−1r
kA

br = kHkA anewr

( )−1
br (24)

Thus, we define

bnewr = kHkAbr (25)

Once the anewr and bnewr are found, we compute the bilayer rest fun-
damental forms (anewr,t , anewr,b ) as

anewr,t = anewr − 2h
3 b

new
r

anewr,b = anewr + 2h
3 b

new
r

{
(26)

Next, we substitute (anewr,t , anewr,b ) to the bilayer elastic energy func-
tional (Eq. (12)) and find the current shape (anewc , bnewc ) that mini-
mizes the elastic energy.

3.1.4 Subsequent Iterations and Stop Criterion. We compare
the current shape with the target shape and recalculate the bilayer
rest fundamental forms until a convergence criterion is satisfied.
The convergence criterion is based on the calculation of the
Hausdorff distance dH between the new current configuration
Cnewc defined by (anewc , bnewc ) and the current configuration from
the previous iteration Cc defined by (ac, bc). We nondimensionalize

dH by the square root of the total area of the plate in its initial con-
figuration Atotal. We stop iterating either when a predefined maximal
number of iterationsM is reached, or when the nondimensionalized
Hausdorff distance becomes inferior to a chosen threshold τ:

dH(Cc, Cnewc )






Atotal

√ < τ (27)

3.1.5 Calculation of the Adjusted Eigenstrain. We denote the
bilayer final rest fundamental forms, i.e., the ones obtained on the
last iteration, as (arf,t, arf,b). To relate them with peen forming
parameters, we determine the recalculated eigenstrain (ɛrf,t, ɛrf,b).
Provided that the iterative adjustment implies only addition, sub-

traction, and multiplication by a constant of diagonal matrices, the
arf,t and arf,b are diagonal. Moreover, the imposed local eigenstrain
(ɛrf,t, ɛrf,b) is isotropic, so arf,t and arf,b have the following form:

arf ,j =
εrf ,j + 1
( )2

0

0 εrf ,j + 1
( )2

[ ]
for j = t, b (28)

Consequently,

εrf ,j =





a11rf ,j

√
− 1 for j = t, b (29)

3.2 Numerical Implementation. We mesh the plate mid-
surface with triangular elements and follow the energy calculation
strategy presented in Refs. [17,27]. The first and the second funda-
mental forms are estimated separately for each element and are
constant inside the element. The global elastic energy is calculated
as a sum of local energetical contributions from all the elements.
The first fundamental form on a triangular element such as that

schematized in Fig. 5 depends entirely on the coordinates of the ver-
tices. The three vertices are defined by position vectors �v0, �v1, and
�v2, and the edge vectors constituting the triangle are expressed as:
�e0 = �v1 − �v0, �e1 = �v2 − �v1, and �e2 = �v0 − �v2. These vectors are
tangent to the plane containing the triangle, so following Eq. (8),
the first fundamental form on a triangular element is computed as

a =
�e1 · �e1 �e1 · �e2
�e2 · �e1 �e2 · �e2

[ ]
(30)

In a general case of isotropic eigenstrain ɛr imposed on a triangular
element, its rest first fundamental form ar is expressed as

ar =
�einit1 · �einit1 �einit1 · �einit2
�einit2 · �einit1 �einit2 · �einit2

[ ]
εr + 1( )2 0

0 εr + 1( )2
[ ]

= ainit
εr + 1( )2 0

0 εr + 1( )2
[ ]

(31)

Fig. 5 A triangular mesh element and vectors that determine
local fundamental forms: the vertex position vectors (�v0, �v1,
and �v2), the edge vectors (�e0, �e1, and �e2), and the mid-edge
normals (�n0, �n1, and �n2). Themid-edge normals are perpendicular
to the edge, and their direction is determined by the angle of incli-
nation with respect to the average normal of the two adjacent
faces. Thus, the direction of �n2 is determined by the angle φ2.
This angle is measured with respect to �navg, which is the
average normal of the two faces that share the edge �e2.
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where �einit1 , �einit2 , and �einit3 are the edge vectors in the initial configu-
ration and ainit is the element first fundamental form in its initial
configuration. Otherwise, if an orthotropic in-plane strain is
imposed, then the rest first fundamental form aorthor becomes

aorthor = ainit
cos (θ) − sin (θ)

sin (θ) cos (θ)

[ ]T (εr11 + 1)2 0

0 (εr22 + 1)2

[ ]

×
cos (θ) − sin (θ)

sin (θ) cos (θ)

[ ]
(32)

where εr11 and εr22 define the eigenstrain imposed in the principal
directions and θ stands for the angle between the first principal
direction and the x axis.
The second fundamental form defines the surface curvature, so the

information about surface normals is required. In this connection, we
introduce a unit normal vector �ni, i = 1, 2, 3, at the center of each
edge of the mesh (the edge-director). This vector is normal to the
edge, and its angle of inclination φi, i= 1, 2, 3, in the plane perpen-
dicular to the edge provides a supplementary degree-of-freedom.
This angle is measured with respect to the average of the adjacent
face normals [27]. A finite-difference approximation of the deriva-
tives appearing in Eq. (9) yields the following expression for the
second fundamental form of a triangular element:

b =
�e1 · 2(�n0 − �n2) �e1 · 2(�n1 − �n0)

�e1 · 2(�n1 − �n0) �e2 · 2(�n1 − �n0)

[ ]

=
�e1 · 2(�n0 − �n2) −�e1 · �n0

−�e1 · �n0 �e2 · 2(�n1 − �n0)

[ ] (33)

According to Eq. (12), the global elastic energy for a plate composed
of K triangular elements is expressed in terms of local fundamental
forms as

EBL =
1
2

∑K
k=1

[
hk
8

(a−1r,b)k(a f )k − I
∥∥ ∥∥2

e
+
(hk)3

24
(a−1r,b)k(b f )k

∥∥ ∥∥2
e

+
(hk)2

8
(a−1r,b)k(a f )k − I
( )

, (a−1r,b)k(b f )k
〈 〉

e

] 











det (ar,b)k

√

+
1
2

∑K
k=1

[
hk
8

(a−1r,t )k(a f )k − I
∥∥ ∥∥2

e
+
(hk)3

24
(a−1r,t )k(b f )k

∥∥ ∥∥2
e

−
(hk)2

8
(a−1r,t )k(a f )k − I
( )

, (a−1r,t )k(b f )k
〈 〉

e

] 










det (ar,t)k

√
(34)

The local plate thickness hk can be different for each element. Sim-
ilarly, the local Young’s modulus Yk and the Poisson’s ratio νk can
vary along the plate.
As follows from Eq. (31), the element’s rest first fundamental

forms ar,t and ar,b for the isotropic growth case are defined by the
imposed local eigenstrain ɛt and ɛb and the initial vertex positions
�v init
i , i = 1, 2, 3. At the same time, according to Eqs. (30) and
(33), the two final fundamental forms af and bf are defined by the
final vertex positions �v f

i , i = 1, 2, 3, and final angles of inclination
of the edge directors φ f

i , i = 1, 2, 3. Numerically, the forward
problem consists in minimizing the global elastic energy functional
equation (34) with respect to �v f

i and φ f
i provided with �v init

i , ɛt, and
ɛb. We perform the minimization using a quasi-Newton limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm
[28]. The gradients of the elastic energy functional required by the
minimization algorithm are computed analytically following
Ref. [29]. The corresponding programming code for the forward
problem resolution was developed by van Rees and is publicly
accessible [30].

In this implementation, the inverse problem resolution consists
in finding the local eigenstrain ɛrf,t and ɛrf,b to be imposed on
each triangular element. This means that the iterative correction
of the rest fundamental forms ar,t and ar,b is executed on a local
scale for each element separately, while the forward problem is
resolved on each iteration on a global scale, thus reflecting the
mechanics of the plate.

3.3 Grouping of the Peening Pattern. In the general case, the
eigenstrains (ɛrf,t, ɛrf,b) provided by Algorithm 1 are different for
each element and can take any real values. Peen forming often
deals with smoothly curved target shapes, so (ɛrf,t, ɛrf,b) may also
vary smoothly along the surface given that these two values
depend on the target shape curvature. We call the eigenstrain
pattern provided by the Algorithm 1 the free pattern. From a prac-
tical point of view, each pair (ɛrf,t, ɛrf,b) represents a peening regime.
However, a limited number of regimes is available when peening a
real part. Thus, we divide the pattern into zones with uniform pre-
scribed eigenstrain and obtain a grouped pattern.

Algorithm 1 The inverse problem resolution

The iterative loop
1: while condition (27) is not satisfied and the number of iterations is

below maximum do
2: for each triangular element
3: Find principal curvatures κc1, κ

c
2

( )
as eigenvalues of the shape

operator Sc = a−1
c bc

4: Compute the current mean curvature as Hc = 0.5 κc1 + κc2
( )

5: Compute the current area as Ac =









det ac( )√

6: Compute the ratios kA and kH following Eqs. (21) and (23),
respectively

7: Compute the monolayer rest fundamental forms ar and br fol-
lowing Eq. (13) using only local information

8: Compute the adjusted monolayer rest fundamental forms anewr
and bnewr a following Eqs. (22) and (25), respectively

9: Compute the adjusted bilayer rest fundamental forms anewr,t and
anewr,b following Eq. (26)

10: end for
11: Substitute anewr,t and anewr,b to the bilayer elastic energy functional

(Eq. (34)) and minimize it to solve the forward problem and find
the current configuration (anewc , bnewc )

12: end while
The initial guess

1: for each triangular element
2: Compute the first fundamental form of the initial shape ainit fol-

lowing Eq. (30)
3: Compute the monolayer fundamental forms of the target shape atar

and btar following Eqs. (30) and (33), respectively
4: Find principal curvatures ktar2 and ktar1 as eigenvalues of the target

shape operator Star = a−1tarbtar
5: Compute the target mean curvature as Htar = 0.5(κtar1 + κtar2 )
6: Compute the target area as Atar =











det (atar)

√
7: Compute the orthotropic bilayer rest fundamental forms aorthor, t and

aorthor, b following Eq. (16)
8: Find eigenvalues λ j1 and λ j2 of (a−1

inita
ortho
r,j ) for j = t, b

9: Compute the orthotropic eigenstrain as ε jii =




λ j
i

√
− 1 for i = 1, 2

and j = t, b
10: Compute the average eigenstrain εtavg and εbavg following Eq. (19)
11: Compute bilayer rest fundamental forms ar,t and ar,b by substitut-

ing εtavg and εbavg, respectively, for år in Eq. (31)
12: end for
13: Substitute ar,t and ar,b to the bilayer elastic energy functional (Eq.(34))

and minimize it to solve the forward problem and find the current con-
figuration ( ac, bc)

Final step after exiting the iterative loop
1: for each triangular element do
2: Compute the eigenstrain εr,f ,t and εr,f ,b prescribed by ar,f ,t = anewr,t

and by ar,f ,b = anewr,b , respectively, following Eq. (29)
3: end for

We associate all triangular elements with points on a plane with
cartesian coordinates (ɛt, ɛb), and the coordinates of each point k are
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determined by the eigenstrain εrf ,tk , εrf ,bk

( )
assigned to the corre-

sponding element k, as illustrated in Fig. 6. We divide the points
in groups, and the group centroids are determined by the predefined
peening regimes. We denote the centroid of a group n by

εcen,tn , εcen,bn

( )
. Each point εrf ,tk , εrf ,bk

( )
is attributed to the group

with the closest centroid in terms of Euclidean distance. When all
points are grouped, we homogenize the eigenstrain inside each
group, i.e., we assign the eigenstrain εcen,tn , εcen,bn

( )
to all triangular

elements that fall into the group n.
Consider N predefined peening regimes such as the ones illus-

trated in Fig. 7. Regime i= 1, 2, …, N induces expansions εti and
εbi on the treated and opposite layers, respectively. In addition, we
consider the lack of treatment εt0 = εb0 = 0. Since the top and
bottom surfaces can be peened independently, there are (N+ 1)2

possible treatment combinations. Each treatment combination
gives rise to a group centroid. Combining regime i= 1, 2, …, N
on the top surface with regime j= 1, 2, …, N on the bottom
surface leads to the following expansions of the top and bottom sur-
faces: (εti , ε

b
i ) + (εtj, ε

b
j) = (εcen,tij , εcen,bij ). Figure 7 illustrates this

principle. Figure 6(e) also provides a cartesian representation of
(N+ 1)2 centroids for the case N= 1.

3.4 Numerical Validation of the Inverse Problem Solver.
We generated target shapes numerically to test our algorithms for
the iterative inverse problem resolution and grouping. To ensure
that the target shapes were achievable with peen forming, we gen-
erated them by assigning a random peening pattern to the initial

configuration and then solved the forward problem. The random
peening patterns were generated following Algorithm 2.

Algorithm 2 Generation of random peening patterns

1: Mark 1 to 6 random points on the top and bottom surfaces of the plate
2: for each point do
3: Draw a square of random size (but not bigger than the plate size)

centered on the point
4: Assign randomly one of the available peening regimes to the

square
5: if the square protrudes beyond the plate area then
6: Translate the part that protrudes symmetrically on the other

side of the plate
7: end if
8: if the square superimposes with a previously drawn square on the

same side then
9: Erase the previously assigned regime in the superimposing area

and leave only the latest one
10: end if
11: end for

When the target shapes were generated, we solved the inverse
problem for each of them following Algorithm 1 and then
grouped the peening pattern. The predefined regimes were fixed
as those that were originally used to generate the target shapes.
To quantify the error, we solved the forward problem for the free
and the grouped patterns. We thus obtained two final shapes for

Fig. 6 Graphical representation of grouping of the eigenstrain pattern. The triangulated flat initial configuration, (a) and the
target configuration—wavy shape, (b)—are the input data for the inverse problem resolution. We divide the eigenstrain
pattern, (c) into three zones treated uniformly. (d ) A plane with cartesian coordinates (ɛt, ɛb), (e) illustrates the grouping
from the numerical point of view. The points correspond to the eigenstrain assigned to each element of the triangular mesh.
The four centroids are denoted by squares. They are generated by one peening regime and the lack of treatment as an addi-
tional regime. The grouping is based on calculation of the least Euclidean distance from the points to the group centroids.
In the presented case, there are no points close to the centroid denoting treatment from both sides, so the corresponding
group is empty. Once the points are divided into groups, we homogenize the eigenstrain for all the elements attributed to
the same group.

Fig. 7 Calculation of the group centroids. The group ij implies treatment from the bottom side with regime i and treatment from
the top side with regime j. Its centroid is determined by a pair of parameters εcen,tij and εcen,bij , and each of them is a superposition
of eigenstrain generated by the two regimes that form this group: εcen,tij = εti + εtj , ε

cen,b
ij = εbi + εbj . In this example, the regime i is

more intense than the regime j, so εcen,tij < εcen,bij .
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each test case and compared them with the target shape by calculat-
ing the nondimensionalized Hausdorff distance Ω:

Ω =
dH(C f , Ctar)







Atotal
√ (35)

where C f stands for the final configuration and Ctar stands for the
target configuration. The optimal registration of C f with respect
to Ctar with the aim of computing dH(C f , Ctar) was done using the
iterative closest point algorithm (ICP) [31]. Alternatively, the regis-
tration can be done through alignment of several vertices, which are
defined for each particular target shape depending on the quality
control requirements. The overall process for the inverse problem
validation is schematized in Fig. 8.

4 Results
We generated 200 random patterns with Algorithm 2 and applied

them on a flat square plate (1 × 1 m). The plate thickness was arbi-
trarily assigned in each case and ranged from 2 mm to 15 mm. The
Poisson’s ratio was also arbitrarily picked between 0.32 and 0.36.
The value of Young’s modulus was set equal to 73 GPa, which is
a typical value for 2024 aluminum alloy. The plate was meshed
with 1152 triangular elements. The forward problem resolution
took 10–30 s for one shape, depending on the pattern and the
plate thickness. Thus, the forward problem resolution took longer
time for thinner plates with bigger treated areas due to larger deflec-
tion of these plates.
For the first 100 test cases (series 1), we made only one peening

regime available, so the entire treated area was peened with the
same parameters. For the second 100 test cases (series 2), we
assigned randomly one of four available peening regimes to each
square on both sides. We considered real peening regimes presented
in Ref. [7]. The authors of this paper deduced idealized eigenstrain
profiles from the residual stress measurements performed on the
treated specimens. The idealized eigenstrain profiles were formu-
lated as one uniformly expanding layer of a constant thickness.
The layer thickness and the eigenstrain magnitude were different
for each regime. We reformulated the idealized eigenstrain profiles
in terms of (ɛt, ɛb) by equating the total eigenstrain Γ and the first
eigenstrain moment Γ1 induced by (ɛt, ɛb) and by the one expanding

layer. Table 1 summarizes the eigenstrain (ɛt, ɛb) induced by each of
the four regimes applied on a 5 mm thick plate from the top side.
Figures 9 and 10 present the free and the grouped patterns along

with the convergence curves for two particular test cases from series
2: a low-error case and a high-error case. Figures 9(b) and 10(b)
show that the free pattern on the final iteration is locally close to
the originally generated random pattern. Due to that, most of the
elements are grouped correctly, so that the eigenstrains prescribed
by the grouped and the random patterns to these elements become
equal (Figs. 9(c) and 10(c)). However, in each case, there are ele-
ments that are attributed to a wrong group. In the low-error case,
this happens only for several elements. Consequently, the dimen-
sionless error Ω is lower for the grouped pattern than for the free
pattern. In the high-error case, the grouped pattern undergoes the
checkerboard problem, meaning that the pattern locally alternates
two peening regimes over a certain area (Fig. 10(c)). A large area
affected by the checkerboard problem increases the Ω in compari-
son with the free pattern (Fig. 10(e)). Nevertheless, the regimes
that are mixed up in the checkerboard-affected zone have only a
slight difference in terms of the induced eigenstrain, so the Ω
increases up to 0.23% at most.
In terms of convergence, the most important correction is done on

the first iteration after the initial guess, as illustrated by Figs. 9(e)
and 10(e). Thus, the first iteration decreases the Ω by 65% on
average. All the subsequent iterations together decrease the Ω
obtained on the first iteration by 60% on average. Because of the
local and simultaneous nature of the eigenstrain adjustment, the

Table 1 The in-plane eigenstrain induced by the regimes used
to generate the random peening patterns

Regime ɛt× 103 ɛb × 103

1 2.5 −0.4
2 3.2 −0.6
3 1.7 −0.4
4 2.0 −0.4

Notes: The in-plane eigenstrain is presented for the case of a 5 mm thick
plate. The peening regimes represent four real treatments inducing
different eigenstrain profiles, which are examined in Ref. [7].

Fig. 8 A validation process to test the quality of the inverse problem resolution. The initial shape is fixed as a flat 1×1 m plate, its
thickness and Poisson’s ratio are chosen randomly. These parameters are kept constant throughout the whole validation
process. A random peening pattern is generated following Algorithm 2 and assigned to the initial shape. We solve the
forward problem taking the random pattern as input, and the result is used as the target shape for the inverse problem validation.
The eigenstrain pattern is determined following Algorithm 1 and grouped using pre-determined regimes. Finally, the forward
problem is resolved for the free and the grouped patterns. The difference between the target shape and the two final shapes
is quantified with the nondimensionalized Hausdorff distance Ω.
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Fig. 9 One of the test cases from series 2 with low dimensionless error. The plate is 7 mm thick, and the
Poisson’s ratio equals 0.34. (a) The random peening pattern generated for this test case (top layer). The
applied peening regimes are those summarized in Table 1. (b) The free peening pattern on the final iter-
ation. (c) The grouped peening pattern. A visual comparison of (c) and (a) shows that almost all ele-
ments were attributed to a correct group. Consequently, grouping decreased the dimensionless error
Ω. (d ) The target shape induced by the pattern (a). The deformations are at their original scale. (e)
The convergence curve showing the dimensionless errorΩ on each iteration. The optimization required
10 iterations that was the maximum fixed for this test.

Fig. 10 One of the test cases from series 2 with high dimensionless error. The plate is 4 mm thick, and
the Poisson’s ratio equals 0.34. (a) The random peening pattern generated for this test case (top layer).
The applied peening regimes are those summarized in Table 1. (b) The free peening pattern on the final
iteration. (c) The grouped peening pattern. A visual comparison of (c) and (a) indicates elements that
were not attributed to a correct group. Consequently, grouping increased the dimensionless errorΩ in
this case. The deformations are at their original scale. (d ) The target shape induced by the pattern (a).
(e) The convergence curve showing the dimensionless error Ω on each iteration. The optimization
required three iterations to converge.
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solution does not converge to the exact target shape but to a shape
which is close to the target. Thus, when computing an eigenstrain
adjustment for each element, the iterative algorithm does not take
into account the influence of the eigenstrain adjustments prescribed
to the neighboring elements on the stretching and curvature of this
element. Consequently, after several iterations, the Ω plateaus at a
low but finite level (Figs. 9(e) and 10(e)). The Ω may slightly
grow during the subsequent iterations, but the stop criterion (27) ter-
minates the iterative process as soon as this happens. Decreasing the
threshold δ (see Eq. (23)) during the adjustment phase allows to
converge closer to the target shape but increases the number of iter-
ations required.
The results of the numerical validation are presented with histo-

grams in Fig. 11. The inverse problem solver provided free peening
patterns that led to the target shape with the Ω inferior to 0.35% for
both series of tests (Fig. 11, top). The pattern optimization needed
between 2 and 10 iterations, depending on the target shape.
The histograms in Fig. 11 show that the pattern grouping has

decreased the Ω in most of the cases. Thus, the original pattern
was perfectly reproduced for all test cases in series 1, so the Ω
after grouping became less than 10−3%. The corresponding Ω for
series 2 was bigger because of the higher complexity of the

grouping problem: four available regimes induced 25 group cen-
troids for series 2, while there were only four centroids induced
by one available regime for series 1. The group centroids for
series 2 were situated close to each other, so several test cases
were significantly affected by the checkerboard problem, as illus-
trated in Fig. 10(c). This explains the increased error after grouping
for 18 cases out of 100 from series 2.

5 Discussion
The described inverse problem resolution algorithm relies on the

assumption that the peening treatment induces isotropic expansions.
In practice, however, peen forming sometimes induces different
eigenstrain along the x and y axes: ɛxx(x, y, z)≠ ɛyy(x, y, z). Such
anisotropic expansions are due to plastic anisotropy of the treated
material, which is especially explicit for rolled aluminum sheets,
and for prestressing the component in one direction before treat-
ment, i.e., stress peen forming. This effect is examined in detail
in Ref. [32]. For uniform plastic anisotropy which does not vary
over the area of the plate, the inverse problem resolution algorithm
can be easily adapted by introducing a fixed eigenstrain anisotropy

Fig. 11 Histograms evaluating the dimensionless error Ω between the target shapes and the final shapes obtained during the
numerical validation of the inverse problem solver. All in all, 200 test cases were considered. Theywere divided into two series of
100 cases each. The target shapes in series 1 were obtained with one peening regime, and the same peening regimewas fixed as
the only available for the grouping stage. The target shapes in series 2 were obtainedwith four different peening regimes, and the
four predefined regimes were available for grouping. Figures (a) and (b) show the dimensionless error induced by application of
the free pattern for series 1 and 2 correspondingly. Similarly, figures (c) and (d) represent the dimensionless error induced by the
grouped pattern.
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coefficient χ in the model:

ε jxx =
(1 + χ)
(1 − χ)

ε jyy for j = t, b (36)

This relation may be imposed after adjustment of the bilayer rest
fundamental forms ar,t and ar,b on each iteration. Thus, the
forward problem will be solved taking into account the plastic
anisotropy.
The residual stresses generated in the structure by the prescribed

peening treatment can be evaluated after the grouping phase.
Indeed, if each available peening regime is experimentally charac-
terized in terms of the induced through-thickness eigenstrain profile
[7,24], then, at each point (x0, y0), the local elastic strain profile
εel(x0, y0, z) can be computed by subtracting the eigenstrain
profile ε(x0, y0, z) from the residual strain profile εres(x0, y0, z)
(see Eq. (1)). The local residual stress profile σ(x0, y0, z), in turn,
can be deduced from εel(x0, y0, z) using Eq. (6).
The forming influence of the initial stresses, which are present in

the structure before shot peening, can also be taken into account.
Thus, if the through-thickness profile of initial stresses is measured
[32], then a through-thickness eigenstrain profile inducing the mea-
sured initial stresses can be computed [24]. The idealized formula-
tion of the initial eigenstrain profile can then be represented in terms
of ɛt and ɛb using the equality between the total eigenstrains (see
Eqs. (2) and (4)) and the first eigenstrain moments (see Eqs. (3)
and (5)). Therefore, the computed ɛt and ɛb corresponding to the
initial stresses can be subtracted from ɛrf,t and ɛrf,b, respectively,
on the final stage of the iterative algorithm.
Given that the rest fundamental forms are numerically adjusted

for each triangular element separately, the efficiency of the
inverse problem resolution depends on the consistency between
the target mesh and the initial mesh. More precisely, it depends
on the mapping �m between the initial 2D shape and the target 3D
shape. The general requirement for the mapping is to preserve the
shape of each triangular element as well as possible. This minimizes
the local eigenstrain assigned by the algorithm and makes the com-
puted free pattern smoother. This problem was not faced during the
numerical validation because the target shapes were derived from
the initial shapes through the forward problem resolution, so they
were optimally meshed by default.
The mesh consistency can be ensured by fixing the target shape

mesh and by its mapping onto the initial 2D geometry. The fixed
initial geometry is an important constraint for the mapping
because it involves a fixed 2D boundary. The mapping can be
done using the methods oriented on maximal preservation of
local angles, such as the least squares conformal mapping algorithm
[33]. Next, local mesh distortions with respect to the target mesh
can be minimized using a numerical optimization algorithm. For
example, the L-BFGS algorithm that we use for the global elastic
energy minimization can cope with this task.
Finally, the proposed grouping strategy relies on the fact that set

of N experimentally characterized peening regimes is fixed, which
limits the range of available target shapes. Hence, an automated
determination of the optimal peening regimes for each target
shape would expand this range. In addition, if the optimal
regimes are computed in terms of eigenstrains, then a method for
reconstructing the process parameters from the required eigen-
strains must be found.

6 Conclusion
The theory of non-Euclidean plates in combination with the

eigenstrain approach provides an extensive theoretical framework
for the modeling of shot peen forming. The eigenstrain approach
represents the treated plate as a bilayer undergoing nonuniform
eigenstrain, and the theory of non-Euclidean plates accurately
solves the forward problem for this case. The deformed shape is cal-
culated through minimization of the global elastic energy following
analytical gradients.

The iterative inverse problem resolution is based on the compar-
ison of geometrical properties of the plate in its current and target
configurations. The adjustment of the prescribed eigenstrain on
each iteration is done on a local scale involving simple arithmetic
operations and takes negligible amount of time. A low number of
iterations (not more than 10) ensures fast resolution of the inverse
problem. According to the numerical validation, the inverse
problem resolution algorithm computes free peening patterns that
shape 1 × 1 m aluminum plates of various thicknesses into freeform
shapes with a tolerance of 3.5 mm. The precision of the inverse
problem resolution is, however, dependent on consistency
between the initial and the target meshes.
The eigenstrain formulation of the inverse problem makes the

algorithm applicable for any type of processes that induce small iso-
tropic eigenstrain. These include, among others, laser peen forming
of metal plates or 4D printing of shape-shifting polymer structures.
The pattern grouping makes the inverse problem solution practi-

cally applicable. It adds uncertainty to the solution, but in many
cases it decreases the induced error. The grouping algorithm can
locally mix up the peening regimes having slightly different inten-
sities. A method for correction of the local grouping errors would
enhance the solution quality.
The future work implies experimental validation of the proposed

inverse problem simulation technique. It will reveal practical con-
straints that may cause simulation error. Among others, we will
examine influence of the peening parameters and of the material
plastic anisotropy on the induced eigenstrain.
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Nomenclature
h = plate thickness
�m = mapping defining position of each point of the

mid-surface in R3 based on its coordinates in U
�n = unit normal vector
�r = radius-vector defining position of each point of

the plate in space
z = through-thickness coordinate
a = 2 × 2 matrix defining the local first fundamental

form
b = 2 × 2 matrix defining the local second

fundamental form
K = number of triangular elements in the model
M = maximal number of iterations
N = number of predefined peening regimes
U = domain of R2 englobing the plate mid-surface in

coordinates (x, y)
Y = Young modulus
I = identity matrix
S = shape operator
dH = Hausdorff distance

2https://github.com/lm2-poly/peen_forming_2022
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kA = ratio between the target local area and the current
local area

kH = ratio between the target local mean curvature and
the current local mean curvature

Ac = current local area
Atar = target local area

Atotal = total area of the plate in its initial configuration
Cc = point cloud describing the current configuration
C f = point cloud describing the final configuration
Ctar = point cloud describing the target configuration
EBL = elastic energy of a bilayer
EML = elastic energy of a monolayer
Hc = current local mean curvature
Htar = target local mean curvature
U1 = sub-domain of U
Sc = current shape operator
Sr = rest shape operator
Star = target shape operator
Cnewc = point cloud describing the current configuration

obtained by assignment of the adjusted rest
configuration and subsequent deformation

Snewr = adjusted rest shape operator
(ar,t, ar,b) = two first fundamental forms defining the bilayer

rest configuration
(aorthor,t , aorthor,b ) = two first fundamental forms defining the bilayer

rest configuration for the case of local in-plane
orthotropic growth

(anewr,t , anewr,b ) = two first fundamental forms defining the adjusted
bilayer rest configuration

(arf,t, arf,b) = two first fundamental forms defining the bilayer
rest configuration obtained on the final iteration

(ac, bc) = first and the second fundamental forms defining
the monolayer current configuration

(anewc , bnewc ) = first and the second fundamental forms defining
the monolayer current configuration, which was
obtained by assignment of the adjusted rest
configuration and subsequent deformation

(af, bf) = first and the second fundamental forms defining
the monolayer final configuration

(ainit, binit) = first and the second fundamental forms defining
the monolayer initial configuration

(ar, br) = first and the second fundamental forms defining
the monolayer rest configuration

(anewr , bnewr ) = first and the second fundamental forms defining
the adjusted monolayer rest configuration

(aorthor , borthor ) = first and the second fundamental forms defining
the monolayer rest configuration for the case of
local in-plane orthotropic growth

(atar, btar) = first and the second fundamental forms defining
the monolayer target configuration

�e0, �e1, �e2 = edge vectors defining three edges of a triangular
element

�n0, �n1, �n2 = edge directors defining normals to the three edges
of a triangular element

�v0, �v1, �v2 = position vectors defining three vertices of a
triangular element

(x, y) = Lagrangian curvilinear coordinates parametrizing
the plate mid-surface

Γ = total eigenstrain
Γ1 = first eigenstrain moment
δ = upper threshold for |kH|
ε = eigenstrain tensor induced by the peening

treatment
εel = strain tensor reflecting the elastic material response
εres = residual strain tensor

(ɛt, ɛb) = eigenstrain induced in the top and bottom layers
of a bilayer, respectively

(εtavg, ε
b
avg) = average of the orthotropic eigenstrain in two

principal directions on the top and bottom layers,
respectively

(ɛcen,t, ɛcen,b) = a group centroid on the plane (ɛt, ɛb)
(ɛrf,t, ɛrf,b) = eigenstrain prescribed to the top and bottom layers

by (arf,t, arf,b)
(θt, θb) = angles between the local principal strain direction

and the x axis on the top and bottom layers,
respectively

ν = Poisson’s ratio
σ = residual stress tensor
τ = threshold for the dimensionless error between the

current and the target configurations used as a stop
condition

φ0, φ1, φ2 = angles of inclination of the edge-director vectors
�n0, �n1, �n2 with respect to the average of the
adjacent face normals

Ω = dimensionless error between the final and the
target configurations
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