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We present MRAG-I2D,1 an open source software framework, for multiresolution simu-
lations of two-dimensional, incompressible, viscous flows on multicore architectures. The 
spatiotemporal scales of the flow field are captured by remeshed vortex methods enhanced 
by high order average-interpolating wavelets and local time-stepping. The multiresolution 
solver of the Poisson equation relies on the development of a novel, tree-based multi-
pole method. MRAG-I2D implements a number of HPC strategies to map efficiently the 
irregular computational workload of wavelet-adapted grids on multicore nodes. The capa-
bilities of the present software are compared to the current state-of-the-art in terms of 
accuracy, compression rates and time-to-solution. Benchmarks include the inviscid evolu-
tion of an elliptical vortex, flow past an impulsively started cylinder at Re = 40–40 000 and 
simulations of self-propelled anguilliform swimmers. The results indicate that the present 
software has the same or better accuracy than state-of-the-art solvers while it exhibits 
unprecedented performance in terms of time-to-solution.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The efficient simulation of incompressible flows at high Reynolds numbers requires the prudent allocation of computa-
tional elements to resolve the governing structures of the flow field. In simulations of flows with confined vortex structures 
(wakes, jets, etc.), discretizing the vorticity–velocity (ω − u) formulation of the Navier–Stokes equations (NSE) allows that 
computational elements are distributed only in the, limited, non-zero vorticity areas of the flow field. In addition, if we 
adopt the Lagrangian description of these equations, we can employ computational vortex elements that move adaptively 
with the velocity of the flow. These two concepts of adaptivity are key elements of remeshed vortex methods [1,2], where 
in addition to Lagrangian particles a grid is used to regularize particle locations and ensure the convergence of the method.

In recent years, remeshed vortex methods have been enhanced [3,4] by adapting the size of the computational elements 
(h-adaptation), in the spirit of Adaptive Mesh Refinement (AMR) [5]. A further extension [6], takes advantage of remeshing 
to introduce wavelet-based, multiresolution criteria [7] in the distribution of computational elements. It is important to 
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note that enhanced adaptivity and a high compression rate in the number of employed computational elements may not 
be ultimately accompanied with computational savings, due to the increase of computational complexity of the associated 
algorithms. This fact that is often overlooked in multiresolution simulations and it is the focus of the present work.

Kevlahan and Vasilyev [8,9] investigated 2D flows past an impulsively started and moving cylinder at 30 < Re < 105

using, both u − p and ω − u NSE and the Adaptive Wavelet Collocation Method (AWCM) and report compression rates 
of up to 250–1000 : 1 compared to grid-based simulations at uniform resolution, and compression rates of about 10 : 1
compared to vortex methods. Furthermore, they observed a 70-250X improvement in time-to-solution (TTS) with respect to 
pseudospectral methods. Schneider and Farge [10] performed 2D simulations of the flow past an impulsively started cylinder 
at Re = 3000 with the wavelet-based Coherent Vortex Simulation (CVS) scheme combined with the Brinkman penalization 
technique for the ω − u formulation of the NSE. They report a 10 : 1 compression rate and a TTS improvement of 3X over 
DNS simulations at uniform resolution. Deriaz and Perrier [11] investigated the use of divergence-free wavelets for the 
incompressible NSE in the context of turbulent flows. For the 2D problem of vortex merging, they showed bitrate-distortion 
plots for a disparate range of compression rates, without however reporting performance metrics.

Alam et al. [12] studied the simultaneous space–time wavelets solution of nonlinear parabolic PDEs with AWCM. For the 
2D problem of vortex merging, they report a 2-4X improvement in TTS and a compression rate up to 20 : 1 compared to 
simulations at uniform resolution. Domingues et al. [13] coupled third-order average-interpolating wavelets with second-
order local time-stepping schemes, observing TTS improvements of up to 25X over uniform simulations. Martin and Colella 
[14] presented a block-structured AMR, finite volume solver for incompressible flow simulations. For the 2D investigation 
of periodic shear layers they report a performance overhead of about 25–30% for dynamically adapting the grid on 3 levels 
of resolution. Roma et al. [15] coupled an immersed boundary method with AMR to study a 2D flow-mediated interaction 
between an elastic balloon and a wall. They do not report compression rates and performance numbers.

Wavelet and AMR approaches have been discussed in a number of papers (see [16] as well as [7] and references therein). 
Wavelets are capable of providing a consistent multiresolution framework that leads to higher data compressions, optimal 
convergence rate and automatic error control. On the other hand, wavelet-based solvers suffer from “three major curses” 
[16]: the efficient representation of complex geometries and irregular domains, the curse of anisotropy (for example the 
incapability of refining in just one arbitrary direction), and the high computational overhead due to their intricate data 
structures. These issues have been so far the key roadblocks on the widespread implementation of these methods on mul-
ticore and manycore platforms.

MRAG-I2D We provide this “missing link” by the present software that couples average-interpolating wavelets [17] and 
their multiresolution analysis with remeshed vortex methods on single multicore nodes. For the flow problems considered 
herein, the ω − u formulation of the NSE is well suited, as the vorticity field is confined near the solid boundaries and 
the wake. This confinement is also an essential property for the efficient representation the flow field with wavelets. Here, 
wavelets are combined with local time-stepping (LTS) [13,18] schemes to further decrease the number of arithmetic oper-
ations. The resulting numerical schemes are inevitably complex. The underlying algorithm involves irregular computational 
patterns as well as unbalanced workloads. An efficient computer implementation requires that we effectively utilize the 
parallelism offered by current multicores2 to exhibit good performance as quantified by high compression rates in compu-
tational elements and reduced time to solution.

The present MRAG-I2D framework efficiently maps wavelet-adapted grids and LTS schemes onto modern computing ar-
chitectures. The software development relies on the integration of several HPC components designed and tested over the 
last 4 years [19–23] on both NUMA and heterogeneous CPU–GPU platforms. MRAG-I2D was developed by keeping high 
productivity as the foremost priority: the technical details about multiresolution analysis, wavelets and adapted grids are 
abstracted away. This allows users to formulate simulations without the need of explicitly interacting with a highly sophis-
ticated spatiotemporally-adaptive machinery. The present software have been used for the simulations of bluff body flows 
[23], flow-mediated interactions between two cylinders [24], for the analysis of optimal shapes in anguilliform swimming at 
intermediated Reynolds numbers [25], and the investigation of reinforcement learning within the context of self-propelled 
bodies [26].

The present paper is organized as follows. In Section 2 we first discuss the governing equations and the treatment of 
deforming solid boundaries as well as the two-way flow-structure coupling. In Section 3 we discuss the numerical schemes 
employed for the discretization of the governing equations. In Section 4 we describe how the software effectively maps the 
workload onto a single multicore node. In Section 5, we examine the simulation of the evolution of an elliptical vortex, the 
flow past an impulsively-started cylinder at Re = 40–40 000 as well as anguilliform swimming. We also report performance 
and data compression comparisons with respect to the state-of-the-art. Concluding remarks are presented in Section 6.

2. Governing equations

We consider two dimensional incompressible viscous flows in a domain (Σ ) with a collection of N immersed, moving 
bodies. We denote by Ωi=1,...,N the support of the bodies, which are assumed to be of the same density as the fluid 

2 Namely, instruction-, data-, and thread-level parallelism (ILP, DLP and TLP, respectively).
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(ρ = 1). The flow field is described by the NSE (Eqs. (1)–(2)) along with the no-slip boundary condition at the surface of the 
bodies ∂Ωi (Eq. (3)). In the case of self-propelled bodies the feedback from the fluid to the bodies is governed by Newton’s 
equations of motion (Eqs. (4)–(5)):

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2u, x ∈ Σ \ {Ωi, i = 1, ..N} (1)

∇ · u = 0, x ∈ Σ \ {Ωi, i = 1, ..N} (2)

u = ui, x ∈ {∂Ωi, i = 1, ..N} (3)

mi ẍi = FH
i , (4)

d(Ii θ̇i)

dt
= MH

i , (5)

where ν is the kinematic viscosity, ui , xi , mi , Ii and θ̇i are, respectively, the velocity, the position of the center of mass, 
the mass, the moment of inertia and the angular velocity of the body i, while FH

i and MH
i are the hydrodynamic force and 

torque exerted by the fluid on the body i. We note that the velocity field ui = ut
i + ur

i + udef
i associated with the body i is 

the sum of three terms, namely the rigid, translational ut
i and rotational ur

i velocities, and an imposed deformation velocity 
field udef

i . The NSE can be rewritten in the ω − u formulation:

∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (6)

∇2u = −∇ × ω, (7)

∇ · u = 0, (8)

where ω = ∇ × u denotes the vorticity.

Flow-structure interaction The geometry of each body is represented by a characteristic function χi(t) and its kinematics 
by a deformation velocity field udef

i (t). The characteristic function χi localizes the geometry in space by assuming a value 
of one inside the body and zero outside (0 ≤ χi ≤ 1). The dynamics of the bodies, governed by their rigid components of 
motion (translational ut

i and rotational ur
i velocities), are the result of the flow-structure interaction captured by the solver.

The method of the Brinkman volume penalization [27–30] is used to enforce the no-slip boundary condition (Eq. (3)) at 
the surface of the body. Eq. (3) is replaced by adding the forcing term to the momentum equation (Eq. (1)). The penalized 
equations are applied then over the entire domain:

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2u +

∑
i

λχi(ui − u)︸ ︷︷ ︸
penalization term

, x ∈ Σ (9)

where λ � 1 is the penalization factor, and ui = ut
i + ur

i + udef
i .

The feedback from the flow to the body is captured through a projection approach [31–33]:

ut
i = 1

mi

∫
Σ

χiudx, (10)

θ̇i = 1

Ii

∫
Σ

χi(x − xi) × udx. (11)

These equations are in turn used to move the body and enforce the consistency of the extended flow field with respect 
to the body motion. We remark that the Brinkman penalization requires special care whenever the prescribed deforma-
tion velocity field is non-solenoidal (∇ · udef

i �= 0). This introduces a dilatation source term and must be considered in the 
Helmholtz decomposition of the global velocity field. Eq. (7) is therefore replaced by:

∇2ψ = −ω, (12)

∇2φi = χ∇ · udef
i , (13)

u = ∇ × ψ + ∇φi, (14)

where ψ and φ are the stream function and velocity potential, respectively.
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Time discretization The governing Navier–Stokes equations are advanced in time from tn to tn+1 with a splitting scheme as 
follows:

σ n =
N∑

i=1

χi∇ · udef ,n
i (15)

∇2ψn = −ωn (16)

∇2φn = σ n (17)

un = ∇ × ψn + ∇φn (18)

ut,n
i = 1

mi

∫
Σ

χn
i undx (19)

θ̇n
i = 1

Ii

∫
Σ

χn
i

(
x − xn

i

) × undx (20)

ur,n
i = θ̇n

i × (
x − xn

i

)
(21)

un
λ = un + λ�t

∑N
i=1 χn

i (ut,n
i + ur,n

i + udef ,n
i )

1 + λ�t
∑N

i=1 χn
i

(22)

ωn
λ = ∇ × un

λ (23)

∂ωn
λ

∂t
= ν∇2ωn

λ (24)

∂ωn
λ

∂t
+ ∇ · (un

λ ωn
λ

) = 0 (25)

ωn+1 = ωn+1
λ (26)

xn+1
i = xn

i + ut,n
i �tn (27)

θn+1
i = θn + θ̇n

i �tn. (28)

3. Numerical schemes

In this section we discuss the adaptive, spatiotemporal discretization of Eqs. (15)–(28).

Adapted grids Biorthogonal wavelets are used to build a multiresolution analysis [34] of the flow quantities. With the Fast 
Wavelet Transform (FWT) we analyze the flow field and decompose it into a set of scaling and detail coefficients. The 
adapted grid is obtained by discarding grid points associated with detail coefficients with negligible energy.

In order to be able to employ standard finite-difference (FD) schemes on the adaptive grid, we create a frame of uniform 
resolution around a grid point. This frame is obtained by reconstructing ghost values, obtained as linear combinations of 
the surrounding active scaling coefficients. Because of the way ghosts are built, they do not affect the detail coefficients 
and are thus invisible to the FWT. The specific weights and source points of a ghost depend on the chosen wavelets as 
well as the local structure of the adapted grid [20,35]. First and second derivatives of the flow field are constructed with 
third-order accurate FD stencils. In order to simulate free-space boundary conditions, the stencils are completely one-sided 
at the boundaries of the computational domain, towards the domain interior. The stencil progressively becomes symmetric 
and centered for grid points away from the domain boundaries.

MRAG-I2D exclusively relies on first-generation wavelets, whose multiresolution analysis is constructed with dilated and 
translated versions of just one mother wavelet. Despite the moment-preserving features of second-generation wavelets, 
first-generation wavelets in this context are computationally advantageous. Their simpler structure enable the acceleration 
of the computation of the ghost values: the reconstruction pattern can be captured and stored into a lookup table for future 
reuse [19].

First-generation wavelets have been designed for infinite-length signals. Unfortunately, the shape of the wavelet function 
cannot be modified so as to take into account the proximity of the computational domain boundaries. This issue introduces 
complications in prescribing conditions as well as performing grid refinement or compression at the domain boundary. We 
address this issue by keeping a zone of uniform (coarse) resolution adjacent to the domain boundaries throughout the 
simulation. This allows us to straightforwardly prescribe boundary conditions (in the same way as for uniform resolution 
solvers) and avoid the difficulties involved in extending the grid to an infinite domain.

The grid is dynamically readapted according to the necessary changes in resolution, which are detected by performing 
FWTs on a frequent basis and examining the energy of the detail coefficients. We perform the FWTs on the quantities u, 
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Fig. 1. Space–time diagram for the ghost reconstruction on an adapted grid (left) and associated marching graph for a second-order accurate LTS (right). 
Grid points (denoted in black) have different spatiotemporal scales and coordinates. All the points are used for the RHS evaluation at t = t∗ . The red and 
orange nodes in the marching graph involve an RHS evaluation. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

ω and χi . We refine grid points where the detail of any quantity exceeds εrefinement and compress grid points where all the 
details of all the quantities are less than εcompress .

Local time-stepping Spatially-adapted grids indirectly decrease the amount of operations by removing computational ele-
ments. Operations can be further decreased by employing LTS schemes, which have been shown to accelerate the time-to-
solution (TTS) by over one order of magnitude [12,13,35–37]. LTS schemes exploit the spatial locality of the time-stepping 
stability condition; grid points are grouped according to their time-stepping constraint and the flow quantities at coarse 
resolution are integrated with larger time steps thus avoiding unnecessary right-hand side (RHS) evaluations. To perform a 
global time-step, the LTS visit repeatedly these groups by evaluating the RHS and updating their values. Here we consider a 
second-order accurate total-variation diminishing LTS scheme [20].

The evaluation of the RHS is performed by considering the time-reconstructed values of the grid points. Fig. 1 (left) 
illustrates this process, which involves the space–time reconstruction of a high resolution ghost. As depicted in Fig. 1
(right), high-resolution grid points are subject to more RHS evaluations than coarser elements (four instead of two, for the 
illustrated case).

For the flow problems considered herein, by increasing the resolution the time-stepping stability condition of the viscous 
term is expected to asymptotically dominate the over the other time-stepping constraints (since δt < δxsmallest

2/4ν , where 
δxsmallest denotes the highest refinement allowed). We therefore employ an LTS scheme to integrate the viscous term and 
avoid unnecessary computation at coarser resolutions. Further details can be found in [23].

Multiresolution CFL-particles Particles, often coupled with Lagrangian descriptions of the governing Navier–Stokes equations 
as in vortex methods, provide automatic adaptivity and a minimal number of computational elements [1,38–40]. The ac-
curacy of the method is ensured by a remeshing process where particle strengths are interpolated through a high-order 
moment conserving kernel (here we consider M ′

4 [40,41]) onto an underlying regular grid at the end of each advection step 
[1,2]. The regularity of the underlying grid enables also the use of wavelet based adaptivity for particle methods [4,6].

In this work we consider a simpler multiresolution particle method, employed exclusively for the integration of the 
convection term. The method leaves the structure of the adapted grid unchanged after remeshing (no refinement or com-
pression operations are performed at this stage). We discretize the vorticity field ω by means of particles, which are 
advected by the velocity field:

∂ω

∂t
+ (u · ∇)ω = 0. (29)

We first reconstruct a cloud of ghosts around an active scaling coefficient. The scaling coefficient and ghosts are then 
treated as particles: their location is integrated according to the velocity field. Despite possible local changes in resolution, 
the ghosts will always share the same resolution of the scaling coefficient. The scaling coefficient and the surrounding ghosts 
thus have the same particle size. After moving the particles, we remesh them at the grid points location thus obtaining the 
new solution. The cloud size is large enough to guarantee the partition of unity of the particle contributions within the 
range of one grid spacing.

Particles are advected with a second order Runge–Kutta time stepping scheme. When particles are advected with no 
CFL-like constraint, remeshing can take place across two different levels of resolutions. To avoid this issue we constrain the 
time step to a global CFL number less than 1. The CFL number is computed by considering the smallest grid spacing and 
maximum velocity over the entire grid. Since high-order wavelets are able to sense the signal in their surrounding, they 
anticipate the need for resolution adjustments in order to correctly accommodate the new solution.
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Fig. 2. Representation of blocks of 4 × 4 scaling coefficients in the physical space of the adapted grid (left) and associated data structure (right).

This limitation has negligible or no practical impact for bluff body flows. For the numerical investigations herein, the 
particle time-step is bound by the Lagrangian CFL condition and not the CFL condition, due to the strong velocity gradients 
around the bodies.3

Full algorithm To summarize, the spatiotemporal adapted discretization of Eqs. (15)–(28) is obtained by combining average-
interpolating wavelets with an LTS scheme. The simulation consists of a series of global time-steps. Before each step, we 
perform FWTs and we refine the adapted grid where new scales are expected to emerge. The velocity field is then re-
constructed with a tree code. Without changing the grid structure, Eqs. (15)–(28) are solved at the location of the scaling 
coefficients, in sequence. For the integration of the viscous term, an LTS scheme is used, where scaling coefficients are 
visited multiple times. For the integration of the convection term, we use a multiresolution particle method. The step is 
finalized by performing an FWT and removing the scaling coefficients associated with negligible details.

4. Multiresolution flow simulations on multicore architectures

Here we discuss the performance-aware design of MRAG-I2D to map the simulation onto multicores.

Structured blocks Wavelet-adapted grids are dyadic recursive structures entirely encompassing the computational domain. 
The grid points are the leaves of a tree. If the tree is fine-grained, the resulting compression rate is high. The downside 
of such a structure is the number of internal nodes, which is approximately the same as the number of grid points. This 
leads to detrimental performance issues when we operate on the grid points. Firstly, the parallelism in a tree traversal, 
necessary when evaluating the RHS or performing the FWT, is limited by the largest sequential task, corresponding to the 
path from the root to the farthest leaf. This issue grows along with the tree depth and thus the compression rate. Secondly, 
the performance of the access pattern incurred by fine-grained tree traversals is likely to be latency-bound because of the 
many memory indirections involved. The resulting utilization of the memory bandwidth is poor. The impact of this issue 
is further exacerbated if we take into account that the operational intensities [42] of the compute kernels considered here, 
except for those related to the tree code evaluation, are expected to be up to 4 FLOP/B (thus far below any ridge point).

To expose data-level parallelism (DLP) scaling coefficients are grouped into fixed-size structured blocks (Fig. 2, left), at 
the expense of a decreased compression rate. The grid is then represented with a tree which contains blocks as leaves 
(Fig. 2, right). Here blocks contain 32 × 32 points, the tree granularity is thus coarsened by 3 orders of magnitude with 
respect to single scaling coefficients.

Further details can be found in [20,35,43]. The introduction of blocks brings a number of performance benefits:

• Higher utilization of the memory bandwidth. A grid block is represented contiguously in memory. The evaluation of the 
RHS and FWT mostly exhibits unit-stride accesses. This is essential to extract decent memory bandwidth on multicore 
platforms.

• Relaxation of latency-induced bottlenecks. The tree contains ≈103 less nodes than the one without blocks. This leads 
to a drastic decrease of the memory indirections involved in the tree traversal.

• Enabling DLP. The scaling coefficients within a block have the same resolution. The resulting computational workload 
is thus homogeneous. This allows us to consider both explicit and implicit vectorization for the evaluation of the RHS 
evaluation, the FWT as well as the tree code.

• Enhancement of ILP. By introducing blocks we observe a decrease in the number of ghosts. This in turn decreases the 
number of branching instructions resolved at runtime. By enabling DLP, the number of executed instructions to process 
a block decreases up to a factor of four to eight.4 This indirectly enhances the ILP: the multicore out-of-order backend 
executes portions of code that are up to four times bigger, potentially better hiding data hazards.

3 We observe δx2
smallest/‖u‖∞‖∇u‖∞ ≈ 10 for all flow-body interaction problems presented herein.

4 Considering the SSE and AVX SIMD-width, respectively.
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Fig. 3. Source grid points in the tree code (left), the direct interactions table contained in the plan (middle) relative to the adapted grid (right).

TLP issues and work-stealing Blocks are processed in parallel. The work associated to a block, being it FWT or RHS evalua-
tion, is assigned exclusively to one thread. Because of the coarse-grained nature of the blocks, the simulation is subject to 
significant losses in the overall exposed TLP. This might adversely impact the overall performance. A second TLP issue is the 
work imbalance associated to the ghost reconstructions, since their cost depends on the local structure of the grid.

Here TLP issues are addressed by considering concurrent task-schedulers based on Work–Stealing, a scheduling algorithm 
developed by Blumofe et al. [44,45] to balance the work on each core. As soon as one parallel worker finishes its work, it 
steals tasks from the queue of another worker, in a breadth-first theft and depth-first fashion. Work-stealing is used both to 
address the work imbalance in the ghost reconstruction as well as to address irregular computational patterns of the tree 
code.

Tree code We solve the Poisson equation by employing a tree code [46] and considering multipoles expansions [46]. We 
reconstruct the velocity from the vorticity field according to the Biot–Savart integral. This approach naturally handles the 
free-space boundary conditions on the velocity. The advantages of using a tree code in the context of adapted grids are 
twofold. Firstly, its cost is factored into two separate terms: the number of sources (vorticity ω) and the number of tar-
gets/receivers (velocity u). For the velocity reconstruction of Nsource particles at Ndest locations, tree codes lead to the 
decreased computational cost of O(Ndest log Nsource). Since the vorticity field has local support, the amount of sources is a 
fraction of the total computational elements. Secondly, tree codes and the block-structured multiresolution grid share similar 
or equivalent nested and dyadic structures. This enables the simplification of the computational patterns and a consequent 
performance boost that would not be possible with other Poisson solvers (e.g. those based on non-uniform FFT [47] or 
multigrid [48]).

Evaluations are always performed between single multipole expansions and full grid blocks. Prior to the evaluation, 
we construct a logical plan with all local and far-field interactions necessary to reconstruct the entire velocity field as 
illustrated in Fig. 3. The evaluation translates the plan into nested parallel tasks, which are then effectively scheduled with 
the Work–Stealing algorithm. Further details can be found in [49].

Software The code is written in C++, except for the HPC parts (about 10% of the total number of lines) which are explicitly 
vectorized with SSE intrinsics. Well-balanced workloads are carried out with OpenMP [50] (both compiler directives and 
library). TLP issues are addressed with the Intel Threading Building Blocks (TBB) [51,52], consisting of a library and a set of 
C++ headers. The code is organized into two layers: MRAG and MRAGapps. The MRAG layer deals with the technical details 
of the chosen wavelets, multiresolution analysis, TLP issues and the core algorithms behind spatiotemporally adapted grids 
[23]. MRAG is built upon 3th- and 5th-order average-interpolating wavelets as well as 2nd- and 4th-order interpolating 
wavelets. The MRAGapps layer contains instead application-specific client codes, such as the I2 client. MRAG-I2D relies on 
the Visualization Toolkit (VTK) [53] for the output and the postprocessing the simulation results. The code is on GitHub: 
https :/ /github .com /cselab /MRAG-I2.

5. Applications

We demonstrate the accuracy and capabilities of the present software over several benchmark problems and applica-
tions pertaining in particular to flows past multiple deforming bodies. For these flow problems we allow the software to 
dynamically adjust the grid resolution within the minimum of 8 × 8 blocks and the maximum of 2048 × 2048 blocks. The 
simulations were performed on 4-way hexa-core AMD Opteron 6174 nodes with 64 GB of RAM, and 4-way quad-core AMD 
Opteron 8380 nodes with 32 GB of RAM.

5.1. Evolution of an inviscid elliptical vortex

We consider the evolution of an elliptical vortex in an inviscid fluid. This flow has been extensively studied in the context 
of remeshing with vortex methods [2]. We choose the initial condition according to case 1 in [2] defined by:

https://github.com/cselab/MRAG-I2
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Fig. 4. Error in total enstrophy (left) and number of active scaling coefficients as a function of time for the evolution of an inviscid ellipse, for four 
different refinement and compression tolerances. The refinement tolerances are 1 × 10−1 (blue), 5 × 10−2 (green), 1 × 10−2 (red) and 5 × 10−3 (cyan). 
The compression tolerances are ten times smaller than the corresponding refinement tolerance. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Table 1
Resolutions and the corresponding compression factors of each of the refinement/compression tolerance combinations for the inviscid evolution of an 
elliptical vortex at T = 5.

Refinement tolerance 1 × 10−1 5 × 10−2 1 × 10−2 5 × 10−3

Compression tolerance 1 × 10−2 5 × 10−3 1 × 10−3 5 × 10−4

Neff per dimension 4096 4096 4096 4096
Nadaptive per dimension 1008 1384 1967 2111
Compression factor 16.5 8.8 4.3 3.8

ω0(r) = Λ
{

1 − fq(r/R0) if r/R0 ≤ 1.0
0 else

, (30)

where fq(z) = exp(−(q/z) exp(1/(z − 1))). For the elliptical profile we consider an aspect ratio of 2, so that r(x, y) =√
(2x)2 + y2. We set the parameters Λ = 20 and q = 2.56085, as in [2].

The inviscid nature of the fluid enables the use of some robust diagnostics for the errors made in solving the Euler 
equations. We monitor the error in the total enstrophy:

E(t) − E(0)

E(0)
,

where the enstrophy is:

E(t) =
∫

ω2(x, t)dx.

We use R0 = 0.4 and place the elliptical vortex in the center of our unit square domain with effective resolution of 4096 ×
4096, with 0.1 as CFL number.

Four different refinement and compression thresholds are chosen to show their effect on the error and compression 
rate. We vary the refinement tolerance as 1 × 10−1, 5 × 10−2, 1 × 10−2 and 5 × 10−3, and for each case we choose the 
compression tolerance to be ten times smaller than the corresponding refinement tolerance.

Fig. 4 (left) shows that the error in enstrophy at T = 5 is only about 0.85% for the coarsest simulation, and decreases 
further to 0.4% for the finest. The reference simulations [2] show an error around this time between 1.5% and 2.5%, although 
with a smaller number of computational elements than employed herein. The increase in the number of scaling coefficients 
reduces the compression rate at T = 5 from 16 to about 4 for the finest grid, as quantified in Table 1. We note that the 
coarsest grid simulation, and to a lesser extent also the other tolerance combinations, show an increase in the enstrophy 
error on the first big refinement of the grid between T = 0.1 and T = 0.5.

In Fig. 5, the vorticity field and grid blocks are shown for the case where the refinement tolerance is 1 × 10−2 (the red 
curve in Fig. 4). At T = 1 the grid has only reached the maximum level of refinement in the center of the core, whereas the 
filaments are still smooth enough to be captured by lower levels of resolution. At T = 5, in contrast, the filaments are much 
thinner and the grid is refined to the maximum allowed level to capture their fine scales.

5.2. Flow past an impulsively-started cylinder at Re = 40–40 000

This flow problem involves a cylinder at rest for t < 0 in a fluid flow. At t ≥ 0 the flow has a velocity of U∞ . The 
Reynolds number of this problem is defined as Re = U∞D/ν where D is the diameter and ν is the kinematic viscosity of 
the fluid. The cylinder experiences a drag force. The non-dimensional drag coefficient is defined as:
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Fig. 5. Vorticity field at T = 1 (left) and T = 5 (right) overlaid with the adaptive computational grid for refinement and compression tolerances of 10−2 and 
10−3, respectively.

Table 2
Points per radius (ppr) of the cylinder, effective and adaptive resolutions and the corresponding compression factors for Re = 40–40 000.

Re 40 100 3000 3000 9500 40 000

ppr 51 102 204 820 3276 13 104
Neff per dimension 4096 8162 16 384 16 384 65 536 65 536
Nadaptive per dimension 404 525 690 1172 1210 1810
Compression factor 102 240 562 195 2928 1311
Measured at T = 40 T = 40 T = 20 T = 65 T = 5 T = 3

C D = F

1/2DU 2∞
,

where F is the force in the streamwise direction. The non-dimensional time of this problem is T = 2U∞t/D , where t is the 
dimensional time.

We simulate this problem at Re = 40, 100, 3000, 9500 and 40 000, with spatial resolutions given in Table 2. We use U∞ =
0.1, D = 0.0125 (except for Re = 40 000 where D = 0.05), penalization parameter λ = 104, CFL = 0.01 and the refinement 
and compression tolerances are 10−3 and 10−4, respectively.

Fig. 6 reports the drag coefficient versus T . The drag curves at Re = 40 (a) and 100 (b) are compared with those reported 
in [1,8] and show good agreement. The present solver maintains the symmetry of the vortical structures at Re = 100 for 
much longer than the one reported by Kevlahan and Vasilyev [8].

In Fig. 6(c), we plot the drag at Re = 3000 from the present simulations as well as from those in [1,10]. The present 
method clearly shows more agreement with the reference compared to [10]. Our drag curve is also in very good agreement 
with that presented in [8] (using velocity-pressure formulation) until T = 6 for a similar number of points per radius. At 
Re = 3000, we continued the simulation up to time T = 90 and visualized the vorticity field in Fig. 7 at four different times. 
The simulations show the growth of the initial major vortex pair into a large recirculation region behind the cylinder, with 
a corresponding decrease in the drag coefficient plotted in Fig. 6(d). At around T = 45 the vortex pair becomes unstable, the 
main symmetry in the flow is broken and each vortex rolls up and sheds into the wake. The loss of this recirculation region 
immediately results in an increase in the drag coefficient. After T = 70, smaller vortex pairs start to shed downstream.

Increasing the Reynolds number further, we show the vorticity field at Re = 9500 in Fig. 8. The main flow features of 
this case have been extensively studied in [1] and the current results show quantitative and qualitative agreement with the 
results reported in this reference. We notice that this is the first adaptive simulation at Re = 9500 which shows such a close 
agreement to the reference (see [23]).

Finally, we present the drag curve of the flow past an impulsively-started cylinder at Re = 40 000 in Fig. 6(f) and the 
associated vorticity field in Fig. 9. Rather than the formation of a few strong vortices as in Re = 9500, we observe a rapid 
succession of smaller vortices breaking off from the shear layer. This is reflected in the drag curve, where a big increase in 
the drag coefficient corresponding to the shedding of a large vortex pair (as in Fig. 6(e)) is absent, and the drag coefficient 
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Fig. 6. Evolution of the drag coefficient at Re = 40–40 000. Reference data (empty symbols) is taken from [1] (KL95), [8] (KV05) and [10] (SF02).

stays low with some small oscillations starting around T = 1.7. These local oscillations correspond to the separation of the 
main vortices and their interaction with smaller filaments of opposite strength.

The compression rates associated with these simulations range from two to three orders of magnitude (Table 2) and are 
in general observed to increase with the Reynolds number. At high Reynolds numbers, typically the vortical structures in 
the flow become more compact, with steep gradients along their boundaries. We compare the TTS of the uniform resolution 
simulation of [54] at Re = 3000 with 16 384 ×4096 grid points to our adaptive one at the same effective resolution in Fig. 10
(left). We notice that for a large fraction of the simulation, the adaptive solver performs two orders of magnitude faster than 
the uniform resolution one. Fig. 10 (right) depicts the evolution of the number of active scaling coefficients up to T = 70 for 
simulations with different compression thresholds. We notice that at early times, flow structures and the adaptive grids are 
very similar as the region in the vicinity of the boundary of the cylinder is refined to the maximum allowable resolution. 
As vortical structures move farther from the cylinder, adaptive grids with different thresholds show significant difference. 
The two largest thresholds result in a very early loss of symmetry and the shedding of the first vortex pair (T = 60 with 
an increase in the number of active scaling coefficients). On the other hand, the number of scaling coefficients does not 
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Fig. 7. Vorticity field of the flow past an impulsively-started cylinder at Re = 3000 at different times. Vorticity color map is scaled from −100 to 100.

show an appreciable difference for the two smallest thresholds. For this reason, we report the evolution of the drag as well 
as the compression rates and timings of Re = 3000 at compression threshold of 10−4. The left picture of Fig. 11 reports 
the TTS for the simulation at Re = 40 000. The right picture shows the nominal peak compute performance versus the 
measured performance on the AMD 8380 node during the evaluation of the tree code. The measured performance is about 
170–190 GFLOP/s, corresponding to 55% of the nominal peak in average. Overall, the simulation reaches about 40% of the 
nominal peak.

5.3. Self-propelled swimming

We present validation studies and new results for the simulation of a single anguilliform swimmer with identical ge-
ometry and deformation as in [55]. The Reynolds number in this case can be defined as Re = (L2/T )/ν , where L is the 
swimmer’s length, T is the period of the traveling wave defining its motion, and ν is the kinematic viscosity. We show 
results at Re = 7143 and 15 000 for the forward and lateral velocity (in fish-lengths/cycle unit) of the swimmers in Fig. 12.

We compare our results at Re = 7143 with those reported in [55], obtained using a finite volume scheme on a body-fitted 
mesh. Resolutions and compression factors of the two simulations are presented in Table 3. Fig. 13 depicts the vorticity field 
of an anguilliform swimmer at Re = 15 000 as well as the adapted the grid. We note that the swimmer at this Reynolds 
number reaches a slightly larger forward velocity compared with Re = 7143. The structure of the wake is similar to the 
lower Reynolds number case, showing a regular staggered array of opposite-signed vortices connected by thin filaments.

We observe a 10 : 1 compression rate over the simulation at uniform resolution. Larger compression rates are hindered 
by the large number of high resolution blocks needed to resolve the wake.

We compare the TTS of the anguilliform swimming at uniform resolution simulation [56] with 4096 × 2048 grid points 
to our adaptive one at the same effective resolution in Fig. 14. We notice that the adaptive solver performs more than seven 
times faster than the uniform resolution one.

5.4. Multi-object cases

We present two flow problems where we simulate the interaction of flow with multiple objects. We illustrate the flow 
field for the real-time simulation of an array of wind turbines at Re = 300 [23] in Fig. 15 (top). In this case, the location 
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Fig. 8. Vorticity field of the flow past an impulsively-started cylinder at Re = 9500 at different times. Vorticity color map is scaled from −400 to 400.

Fig. 9. Vorticity field of the flow past an impulsively-started cylinder at Re = 40 000 at different times. Vorticity color map is scaled from −600 to 600.

of turbine axes is fixed and they are allowed to rotate according to their interaction with a free stream flow. We then 
demonstrate the flexibility of the proposed tool for the simulation of self-propelled swimming of five fish with different 
shapes and motion parameters (at Re = 5000) in Fig. 15 (bottom).
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Fig. 10. Left: TTS in wall clock hours versus non-dimensional physical time (T) for the flow past an impulsively-started cylinder at Re = 3000. Right: 
Number of active scaling coefficients versus non-dimensional physical time (T) for the flow past an impulsively-started cylinder at Re = 3000 with different 
compression thresholds.

Fig. 11. TTS and measured performance during the evaluation of the tree code (right) for the flow simulation past an impulsively started cylinder.

Fig. 12. Evolution of the forward and the lateral velocities of an anguilliform swimmer at Re = 7143 (left) and at Re = 15 000 (right). Reference data for 
Re = 7143 is taken from [55].

Table 3
Points per chord (ppc) of the swimmer, effective and adaptive resolutions and the correspond-
ing compression factors for the simulations at Re = 7143 and Re = 15 000.

Re 7143 15 000

ppc 819 1638
Neff per dimension 8192 16 384
Nadaptive per dimension 1438 1843
Compression factor 32 80
Measured at T = 8.5 T = 5.2
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Fig. 13. Vorticity field (left) and the adaptive grid (right) for an anguilliform swimmer at Re = 15 000 at T = 1.0 (top) and T = 5.2 (bottom).

Fig. 14. Closeup of the vorticity field and the adaptive grid for an anguilliform swimmer at Re = 15 000 at T = 5 (left), and TTS in wall clock hours versus 
non-dimensional physical time (T ) for anguilliform swimmer at Re = 7143.

6. Conclusions

We have presented MRAG-I2D, an open source software for two-dimensional incompressible flow simulations on multi-
core architectures. We describe the numerical schemes and the key HPC strategies employed in MRAG-I2D to effectively map 
the numerical methods on multicore architectures. Multiple spatiotemporal flow scales are captured by combining wavelets 
with local time-stepping schemes. The Poisson equation is solved using a tree based multipole solver designed for block-
structured multiresolution grids that is efficiently implemented on multicore architectures. We have examined accuracy, 
memory footprint and performance of simulations for a variety of flow problems. For the flow past an impulsively-started 
cylinder at Re = 40–9500, MRAG-I2D demonstrates high accuracy, in computing the drag coefficient, over the current state-
of-the-art. We have also presented simulations at Re = 40 000, characterized by multiple roll-ups of the initial thin vortex 
layer, suggesting an instability mechanism for the onset of unsteady separation at high Re number flows. Further tests 
include simulations of self-propelled anguilliform swimming and comparison with related works. We report significant im-
provements in time-to-solution over uniform resolution remeshed vortex methods: about 10X for anguilliform swimming 
and 100X for flow past an impulsively-started cylinder at Re = 3000. MRAG-I2D maintains overall a sustained performance 
at 40% of the nominal peak, reaching about 55% during the execution of the most compute intensive kernels. The use of 
interpolating wavelets on the interval along with the block structure of our code enables unprecedented compression rates 
that facilitate the I/O of such simulations. We have achieved large compression rates of computational elements: 32X and 
80X for swimming at Re = 7143 and 15 000, respectively and 100X–1300X for flow past impulsively-started cylinders up 
to Re = 40 000. Compared to the current state-of-the-art, MRAG-I2D shows substantial improvements in performance and 
productivity while reaching equivalent or better accuracy.
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Fig. 15. Vorticity field and the adaptive grid in an array of three wind turbines at Re = 300 (top) and diverging fish school at Re = 5000 (bottom).

The software is built upon a performance-aware design and a set of abstraction layers that facilitates rapid prototyping 
of new simulations. The presented software can be downloaded from GitHub, https :/ /github .com /cselab /MRAG-I2D. We are 
currently testing MRAG-I3D for the 3D multiresolution flow simulations on heterogeneous, massively parallel computer 
architectures.
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Appendix A. Ghosts, LTS and CFL-particles

In this section we provide additional diagrams in order to better elucidate the construction of ghosts, the LTS, and the 
multiresolution CFL-particles.

The sketch in Fig. 16 illustrates an example of a ghost reconstruction in order to provide a uniform resolution frame (of 
width 1) around the grid point coarse c0

−1. A detailed description of about ghost reconstruction can be found in [22]. The 
sketch in Fig. 17 illustrates the gain provided by a first-order LTS. The example considers a grid consisting of gridpoints of 
three different resolution levels. The details about the employed LTS can be found in [20].

https://github.com/cselab/MRAG-I2D
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Fig. 16. Reconstruction of the ghost g A , across a resolution jump of one for the case of third-order average interpolating wavelets. The arrows, and their 
associated weights, denote contributions from the grid points to the ghosts g A and gB . The secondary ghost gB is needed to evaluate g A but does not 
depend on g A when using average-interpolating wavelets (no loop in the dependency graph).

Fig. 17. LTS example for three grid points at different levels of resolution for an advection problem. Every black arrow requires one evaluation of the right 
hand side and one integration step to advance the solution (solid orange circles). Green dashed arrows denote the time interpolation of missing data (empty 
orange circles) necessary for evaluating the RHS on finer levels. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 18. Spatiotemporal range of the CFL-particles for one advection step.

Fig. 18 details the advection and remeshing step using CFL-particles on multiresolution block-structured grids in a 1D 
example. During the particle advection stage, assuming CFL < 1, a particle may move at most one grid point to the left or 
to the right of its original position. During the remeshing stage, assuming here an interpolation kernel with support of two 
grid points, the particle contributes to the grid point on its left and the one on its right. In order to capture all contributions 
to the interior grid points of block B, we therefore need to initialize particles at tn inside the block plus a ghost region of 
two grid points on either side. These ghost points are created using wavelet-based reconstruction, resulting in an extended 
set of uniformly spaced particles. After advection and remeshing, only the particles’ contributions to the interior grid points 
of block B are kept. This approach is followed for each block and allows us to consistently deal with jumps in resolution 
between neighboring blocks. It also enables the independent, parallel processing of each block after the reconstruction of 
their respective ghost points.
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