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Mechanics of biomimetic 4D printed structures†

Wim M. van Rees, ‡*ab Elisabetta A. Matsumoto, ac A. Sydney Gladman,ad

Jennifer A. Lewisae and L. Mahadevan *aef

Recent progress in additive manufacturing and materials engineering has led to a surge of interest in shape-

changing plate and shell-like structures. Such structures are typically printed in a planar configuration and,

when exposed to an ambient stimulus such as heat or humidity, swell into a desired three-dimensional

geometry. Viewed through the lens of differential geometry and elasticity, the application of the physical

stimulus can be understood as a local change in the metric of a two dimensional surface embedded in three

dimensions. To relieve the resulting elastic frustration, the structure will generally bend and buckle out-of-

plane. Here, we propose a numerical approach to convert the discrete geometry of filament bilayers,

associated with print paths of inks with given material properties, into continuous plates with inhomo-

geneous growth patterns and thicknesses. When subject to prescribed growth anisotropies, we can then

follow the evolution of the shapes into their final form. We show that our results provide a good

correspondence between experiments and simulations, and lead to a framework for the prediction and

design of shape-changing structures.

1 Introduction

Shape-shifting objects consist of materials that undergo local
expansion or compression when subjected to an environmental
stimulus, such as heat, humidity, light, or a magnetic field.1–3

Such materials are often patterned into structures using additive
manufacturing methods, that then are deployed in time, resulting
in the term ‘4D printing’.4,5 Recent developments have made
possible the routine production of such printed structures using
commercially available materials and printers increasing the range
of potential applications of shape-changing structures using both
passive and active actuation. In the former, the material response

is driven by changes in the ambient conditions, as in drug
delivery,6 whereas the latter is actively actuated, often using
localized stimuli, as in robotics.7,8

A subclass of such shape-shifting structures are very thin
and initially flat. These shape-changing plates experience
mostly in-plane strain when the stimulus is applied, resulting
in elastic frustration and out-of-plane buckling into a complex
three-dimensional geometry.9–11 We can distinguish between
monolayer and bilayer plates: for the former, the middle surface
dissects the structure into two identical halves, so that each part
has the same thickness, material properties, and in-plane growth
characteristics. A bilayer, instead, consists of two layers that are
connected at the mid-surface, and each layer can have its own
thickness, material properties, and/or growth profile. For both
monolayers and bilayers, the layers can be further categorised
using the type of in-plane growth assigned to their material
elements. The most general type of growth is orthotropic growth,
which is characterised by three degrees of freedom at each point
along the layer: the two principal growth factors, and the in-plane
angle of the principal axes with respect to some fixed coordinate
system. Any admissible type of growth can be represented in terms
of these components: for example, isotropic growth has two
identical principal growth factors, and can thus be represented
by one degree of freedom per point in the layer.

Within this conceptual framework of shape-changing thin
structures, significant theoretical challenges need to be addressed
to fully exploit the experimental capabilities. A first question is the
following: given an initial shape and growth field, can we predict
what form the structure takes after exposure to the stimulus?
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The second question is this: how should we design the initial
structure and its growth characteristics so that the final shape
is closest, with respect to a specified norm, to a specific target
shape?12 More formally, these questions deal with the forward
and inverse problems, respectively, of growing thin elastic
structures.

Here, we focus on the forward problem, through the devel-
opment and application of a numerical simulation tool to
predict the shape of any thin grown structure. Our approach
is based on solving the geometrically non-linear equations of
elasticity for thin structures, resulting in a simple, robust and
accurate tool to treat arbitrary heterogeneously growing struc-
tures with non-uniform thickness and material properties. We
formulate this problem through the lens of (discrete) differen-
tial geometry, thereby naturally dealing with large displace-
ments, growth, and the appropriate geometric invariances.
This perspective enables us to solve for the equilibrium shape
of heterogeneous mono- and bilayer structures with generic
reference configurations and arbitrary growth patterns. The
physical realization of the stimulus that causes the growth is
irrelevant in this formulation of the problem, as long as the
growth can be expressed using local changes in each layer’s
intrinsic geometry.

To demonstrate the predictive capabilities of this technique,
we focus on reproducing the experimental 4D printing results
described in Gladman et al.,11 wherein shape-shifting struc-
tures were manufactured as a bilayer of printed filaments.
Each printed filament consists of a biomimetic hydrogel-
based swelling gel, locally reinforced with fibrils aligned
tangentially to the filament. When immersed in water, the
directional stiffening of the fibrils leads to much smaller
swelling strains along the tangential direction compared with
the transverse and thickness directions.

To accurately simulate the final, swollen shapes of the
experimental filament-based bilayer structures, we present an
algorithm to interpret such filament designs as elastic plates.
The spatially varying filament density of each layer is inter-
preted as a non-uniform plate thickness. The filament direction
and transverse and parallel growth factors of the material are
used to completely determine the intrinsic geometry of each
layer at each point on the mid-surface. This allows for a smooth
variation of the three orthotropic degrees of freedom at every
layer’s location that we embed in a computational framework to
capture the qualitative features of the experimentally obtained
shapes.

In Section 2, we discuss the theoretical framework for the
elasticity of growing mono- and bilayers, along with the details
of the numerical implementation. In Section 3, we describe our
approach to convert the print path design to a smoothly varying
thickness field and a growth metric tensor associated with an
equivalent continuous growing plate with a spatially varying
thickness and growth metric. In Section 4, we show the results
of our simulations and compare the results with the experi-
mental results in Gladman et al.,11 and conclude in Section 5 by
discussing some future opportunities that can be addressed
with this approach.

2 Variational formulation,
discretisation and implementation

We start with the physical description of the printed structures
in terms of the energy governing the geometric non-linear
elasticity of thin monolayer and bilayers. For this, we adopt
the perspective of non-Euclidean elasticity, where the strain-free
reference configuration of the structure does not necessarily
correspond to an admissible embedding in three-dimensional
space. The theory of such plates has been subject to extensive
mathematical and physical analysis,9,13–18 and we refer to those
works for further background on the topic. We then discuss the
numerical discretisation of this energy and its gradient, which we
use to compute minimal-energy states of the system given a certain
growth profile. Finally, we provide details on the computational
implementation of the discrete equations.

2.1 Elastic energy for a monolayer

The midsurface of the structure is parametrised using curvi-
linear coordinates (x,y) A U, a closed compact subset of the
Euclidean plane. This parametrisation allows us to define any
embedding of the structure in space using a map -

m: U - R3.
Each point -

m(x,y) on the embedded midsurface is characterised
by its tangent vectors q-

m/qx and q-
m/qy, and a unit normal

vector -
n = (q-

m/qx � q-
m/qy)/8q-

m/qx � q-
m/qy8. With this notation

we can define mid-surface geometry using its first and second
fundamental form, which are given as ac = (d-m)Td-m and
bc = �(d-

m)Td-
n = �(d-

n)Td-
m, respectively.19

We assume that the structure is endowed with a rest metric
ar and a rest second fundamental form br, which represent the
stress-free state of the mid-surface. From a mechanical per-
spective, we adopt the Kirchhoff–Love assumption that when
the plate deforms, normals to the cross-section remain normal,
which allows us to discard terms of O(h4) and higher in the
elastic energy. This further implies that the deviation of the
pull-back of the metric is close to unity, i.e. 8ar

�1ac � I8 r h,
with h the thickness, consistent with the behaviour of thin
structures that bend more readily than they stretch. We can
then write the energy function of a monolayer with prescribed
reference state ar and br, as12,16,20

EML ¼
1

2

ð
U

h

4
ar
�1ac � I

�� ��
e
2 þ h3

12
ar
�1 bc � brð Þ

�� ��
e
2

� � ffiffiffiffiffiffiffiffiffiffiffiffi
det ar

p
dx dy;

(1)

Here h(x,y) is the thickness field, and 8A8e
2 = aTr2(A) + 2bTr(A2)

defines the Saint-Venant Kirchhoff hyperelastic constitutive
law used commonly in plate theory, with a = Yn/(1 �n2) and
b = Y/(2 + 2n), where Y is the Young’s modulus and n the
Poisson’s ratio of the material. For a monolayer plate, we have
no initial curvature and hence set br = 0.

Eqn (1) defines the energy of a general thin structure with
rest metric ar and rest second fundamental form br, for any ac

and bc determined by a specific embedding of the mid-surface.
Minimising this energy over all possible embeddings yields the
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equilibrium configurations of the plate, which may not be
unique.

To appreciate the possible non-Euclidean character of the
rest configuration, we give an example of a monolayer where
initially ar = I and br = 0. In this case, the minimum energy
embedding of the plate’s mid-surface corresponds to ac = ar = I
and bc = br = 0—a flat plate for which EML = 0. If this plate
experiences isotropic growth with non-uniform scaling factor
s(x,y) defined at any point on the mid-surface, the metric of the
grown plate becomes ar = s(x,y)I. This change in metric causes
an incompatibility, since Gauss’ Theorema Egregium will
generally attribute an intrinsically non-zero Gauss curvature
to the surface with metric ar,

19 which is inconsistent with all
embeddings for which br = 0. Therefore the plate is forced to
adopt an equilibrium configuration that minimises the elastic
residual energy associated with ac a ar, and bc a br. For thin
structures, the bending term of O(h3) implies it is energetically
cheaper to relieve metric frustration through a non-zero bc, and
so generally a buckled configuration results.

2.2 Elastic energy for a bilayer

The energy in eqn (1) corresponds to a monolayer, but this
formulation can readily be extended to a bilayer of two thin
plates ‘glued’ together at a common midsurface, equivalent
to classical laminated plate theory (CLPT).21 In this case, as
discussed before, each layer will have its own growth pattern so
that we can distinguish between ar1 and ar2, which are the rest
metrics of the bottom and top layer, respectively. In a recent
paper,12 it was shown that substituting

ar ¼
1

2
ðar1 þ ar2Þ br ¼

3

4h
ðar1 � ar2Þ (2)

into eqn (1) provides an elastically equivalent energy of a bilayer
plate with mid-surface embedding ac and bc, rest metrics ar1

and ar2, and layer thicknesses h/2. The extension to non-equal
layer thicknesses h1/2 and h2/2 can be treated similarly.12 This
energy equivalence therefore provides an easy way to imple-
ment the elastic behaviour of bilayer plates using the same
implementation as used for monolayer shells.

2.3 Discretisation

With the expressions for the continuum elastic energy in place,
we now proceed to discretise (1) using ideas from discrete
differential geometry,12,20,22 as summarized in Fig. 1. First, we
discretise the mid-surface of our plate using a triangular mesh.
For each triangle, we can then compute the local metric (ac)T

from the edge vectors of that triangle in its embedding. The
second fundamental form (bc)T is computed by assigning edge-
normal vectors on the mid-point of each edge in the mesh and
differentiating those normal vectors between the edges of a
given triangle to obtain an expression for (d-n)T for that triangle.
The edge-normal vectors are of unit length and are constrained
to the edge-normal plane, so they can be represented by a single
scalar angle for each edge.20,22 Using these definitions, we can
compute the first and second fundamental form of any triangle
in the mesh, and given that triangle’s reference fundamental

forms (ar)T and (br)T, we can compute the corresponding
discrete elastic energy. Summing over all triangles provides
the total energy of the deformation, so that the discretisation of
eqn (1) becomes

EML �
1

2

X
T2T

hT

4
ðarÞT�1ðacÞT � I
�� ��

e;T
2

þhT
3

12
ðarÞT�1 ðbcÞT � ðbrÞT

� ��� ��
e;T

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðarÞT

p
2

:

2664
(3)

Here the thickness per triangle is denoted by hT and the norm
8�8e,T

2 is defined as before as

�k k2e;T ¼
YTnT
1� nT2

Tr2ð�Þ þ YT

1þ nT
Trð�2Þ;

allowing for variation of all material properties per triangle. For
a bilayer, we adopt the generalized form of eqn (2) for each
triangle to express its discrete reference fundamental forms in
terms of its prescribed discrete reference layer metrics.

The above allows us to write the embedding of the mid-
surface in terms of the three-dimensional position of all
vertices in the triangulation, together with the angles of all
edge-normals within their respective edge-orthogonal planes.
To find the equilibrium mid-surface embedding, we minimise
the total elastic energy for given reference fundamental forms
using the quasi-Newton minimisation algorithm L-BFGS.23 The
gradients of the energy with respect to all degrees of freedom in
the mesh (the vertex positions and edge normal angles) are
computed algebraically using standard results24 and embedded
in the software.

2.4 Implementation

The discretised equations are implemented using the programming
language C++. Our data structures are defined in Eigen,25 we use the
libigl library26 for general operations on triangle meshes, and
shared-memory parallel processing is achieved with the Intel
Threading Building Blocks (TBB) library.27 To triangulate the
mid-surfaces, we use the TRIANGLE library.28

Fig. 1 (a) The discretisation of the first and second fundamental forms of
a single triangle T, highlighted in grey, as a function of vertices vi, edges ei,
and edge-normal vectors ni. (b) The triangle discretisation of the mid-
surface corresponding to a catenoid (see details in Results section below) –
the energy of this deformation is determined by summing the energy density
over all the triangles in the mesh.
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2.5 Validation and example

We validated our codes using both known analytic results as
well as non-linear engineering benchmarks. An example of a
specific validation pertaining to this work is shown in the ESI†
and corresponds to a monolayer plate, experiencing in-plane
growth according to the metric of a hemisphere, and compared
to a semi-analytic solution.16

Other examples of elementary growth patterns applied to a
monolayer disk are shown in Fig. 2: a thin disk with homo-
geneous radial growth adopts a conical shape, and a disk with
homogeneous azimuthal growth adopts a saddle shape. Intuitively,
these results correspond to out-of-plane buckled shapes whose
geometry accommodates the excess material in each of the
respective growth directions.29

3 Converting the discrete print paths
to a smoothed continuum description

The framework above allows us to compute equilibrium shapes
given the initial shape of the plate, the material parameters and
the first and second fundamental forms associated with the
growth tensors. To convert this approach to predict the final
shape of discrete filamentous bilayer structures as generated by
the phytomimetic printing procedure, it is necessary to convert
the print path design to a thickness and growth field on a
continuous elastic plate. For the filament bilayers considered
here, each layer has three local fields that need to be taken into
account: the effective layer thickness, which we interpret as being
proportional to the spatial density of filaments in that layer; the
orthotropic principal growth directions, given by the local tangent
and in-plane normal vectors to the filaments; and the orthotropic
growth factors in these principal growth directions.

3.1 Density field

To compute the material density field from a discrete set of
filaments in a given layer, we interpret density as the distance
between the centres of adjacent filaments (hf) divided by the
diameter of each filament (df) as shown in Fig. 3. This means
the density is always a real number between zero and one with
zero being a void and unity corresponding to no gap between
filaments. This density will then be used to scale the local
thickness field of each layer of the elastic plate.

To compute this density field, we consider as input the
parametric description of the print path of each layer, where

the centre curve of each filament in the layer is parametrically
represented using the Scalable Vector Graphics (SVG) format.
This defines each print path as a collection of Nf continuous
splines, whose segments are linear, quadratic or cubic Bézier
curves. If the parametric equation of the ith filament is pi(t),
where pi A R2 and t A [0,1] is the parametric variable, we can
compute the density as a continuous field defined at all x A R2 by
convolving each curve in the print path with a smoothing kernel

~rðxÞ ¼
XNf

i¼1

ð1
0

z x� piðtÞ; pi
0 ðtÞ; s

� 	
pi
0 ðtÞ




 


dt; (4)

where z(x,y;s) is the smoothing kernel and s is a user-defined
scalar parameter that controls the smoothing width (see Fig. 3, left).
To define the kernel we choose a tensor product of one-dimensional
hat functions oriented along the tangent vector of the filament
so that

zðx; y; sÞ ¼ 1

s
wðxk; sÞwðx?; sÞ; (5)

x8 = |x�ŷ|, x> = |x�ŷ>| (6)

wðz; sÞ ¼ max 0; 1� zj j
s

� �
; (7)

where ŷ is the normalised unit vector along direction y, and y>

denotes the transverse vector to y so that y�y> = 0. This
definition makes sure that the density along the centre of an
isolated filament is equal to unity, and decays linearly with the
distance away from the filament. For an array of parallel
straight-line filaments with spacing df, the field is continuously
filled whenever s Z df, in which case the interior field is of
average constant value s/df. If s r df/2, zero-density voids
appear in the field.

In the rest of this work, we express the parameter s as a
function of the largest filament spacing in any given print
path by introducing a non-dimensional parameter Z, such that
s = Zdmax

f . Setting Z Z 1 ensures that we obtain a density field
which is always strictly larger than zero. Wherever the filaments
are adjacent, or equivalently if df = df with df the filament diameter,
the density ~r attains its maximum possible value of s/df. To
normalise the density field, we therefore globally rescale the density
according to r(x) = ~r(x)df/s so that 0 o r(x) r 1. Throughout the
rest of this work we set Z = 5/4 as a balance between retaining and
smoothing out the features of the print path.

3.2 Growth directions

In the discrete case, the principal growth directions are defined as
being tangent and normal to each filament. To interpolate these
directions onto a continuous field, we re-use the density smooth-
ing kernel z(x,y;s) defined above. In particular, with the tangent
vector given as p0(t), we interpolate the growth directions as

pcðxÞ ¼
XNf

i¼1

ð1
0

z x� piðtÞ; p0 iðtÞ; sð Þp0 iðtÞdt; (8)

and we finally normalise pc to get a unit vector (see Fig. 3, left).
We note that the actual growth direction is agnostic to the

Fig. 2 Examples of homogeneous anisotropic growth of a monolayer
disk with h/R = 0.01. (a) A radial growth profile with homogeneous 5%
growth gives rise to a cone (left). (b) An azimuthal growth profile with the
same growth factor leads to a saddle (right).
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transformation ep0iðtÞ ¼ �p0 iðtÞ, and so when accumulating the
growth directions from different filaments we make sure to orient
the tangent vectors of all contributing path segments consistently.

3.3 Growth factors

The growth factors parallel and transverse to the filaments, sp

and st respectively, are fixed throughout this work and are
chosen based on experimental data (sp = 0.12, st = 0.26).
However, in the experimental results of Gladman et al.,11 it
was observed that the bottom layer, or the layer that was
printed first, typically swelled more than the top layer. This
observation implies that the cross-linking of the material was
different between the top and the bottom layers. One hypothesis
for this effect is that the polymerisation chemistry in Gladman
et al.11 relied on an oxygen scavenger in the catalyst, so that ink
that was exposed to oxygen for longer would have experienced
more degradation. In the printed bilayer structures, the ink on the
bottom layer was quickly shielded from oxygen by the addition of
the top layer, whereas the top layer would have been subjected to
oxygen for a longer time. As a consequence, the ink constituting
the top layer would have had fewer long polymer chains and less
entanglement than the ink constituting the bottom layer. Another
potential cause for the differential swelling could be that the top
layer was exposed to more UV light during baking, causing it to
crosslink more than the ink of the bottom layer – though this
should have been mitigated by the long baking times adopted in
ref. 11. Nevertheless, to account for this observation we introduce a
uniform scaling parameter for the growth factors in each of the
two layers, denoted m1 and m2 below.

3.4 Initial conditions

Using the procedure outlined above, we can convert any print
path into a continuous density and growth field. We use the
density field to set the thickness as h(x) = dfr(x), so that adjacent

filaments correspond to a thickness df whereas sparser filament
densities have a proportionally smaller thicknesses. We set the
Poisson’s ratio of the material to n = 0.4, based on an estimate
for hydrogel-type materials.11

To compute the growth patterns, we set the rest metric at
each point of each layer according to the growth direction
(eigenvectors) and growth factors (eigenvalues) defined above:

ar1(x) = R1
T(x)L1

2R1(x)

ar2(x) = R2
T(x)L2

2R2(x)

where,

Ll ¼ Iþ ml
sp 0

0 st

 !
; RlðxÞ ¼ p̂c;lðxÞ p̂

?
c;lðxÞ

� 	
;

with l A [1,2] denoting the bottom and top layer respectively,
and ml being the respective scaling factors. To show how growth
changes the shape of the sheet quasi-statically, we interpolate
sp and st from 0 to their final values via an arithmetic sequence
and compute the embedding that minimises the energy (1),
with ar and br given by eqn (2), generalised to layers of unequal
thickness.12 This procedure yields a quasi-static path to the
global equilibrium.12,14

Lastly, to simulate the effect of the transverse swelling on
the thickness of the material, we scale the thickness of each
layer with the prefactor (1 + mlst), so that the thickness increases
proportional to the transverse swelling.

4 Comparison with experiments

We start with the computation of four artificial shapes: the
helicoid, catenoid, sombrero, and logarithmic spiral, and two
natural shapes: a folding flower and an orchid flower. For all
shapes, detailed plots of the experimental filament design, and

Fig. 3 (a) Schematic illustration of how a discrete filament design with filament diameter df, filament spacing hf, and angle y (left, in orange), is converted
into a continuous filament density field using convolution with a linear kernel (middle, top) and orthotropic growth directions by interpolating the tangent
vectors (middle, bottom), as described in (4)–(7). (b) An example of an actually printed filament design (left, in orange), obtained from the bottom layer of
the helicoid shape shown below. The figure on the right shows the computed density field (top, red) and directional tangential growth field (bottom, blue)
on a segment of the plate computed using Z � s/df = 5/4.
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the numerical initial conditions used, are shown in the ESI.†
We summarise the main experimental parameters used for
each of the cases in Table 1.

4.1 Helicoid

The helicoid is printed on a rectangular sheet with dimensions
Lx � Ly, with Lx = 8 mm the width and Ly = 40 mm the height of
the sheet. Each layer has a pattern consisting of circular arcs on
each side of the long-axis centreline that each sweep an angle
of p/4, and are anti-symmetric with respect to the y-axis.
The top and bottom layers are different, one can be obtained
from the other by a rotation of p of the pattern. The spacing
between the arcs along the y-direction is 0.75 mm. The experi-
mental structure was printed with a filament diameter of
0.4 mm, and we set m1 = 1. A photograph of the experimental
result, with a rendering of the numerical solution is shown in
Fig. 4, left.

4.2 Catenoid

The catenoid has the same dimensions and design of the
helicoid, except that the circular arcs are symmetric with
respect to the y-axis, changing their layout from a S-shape for
the helicoid to an V-shape for the catenoid. The arc spacing
is the same as for the helicoid. For the simulations we use a
filament diameter of 0.25 mm and we set m1 = 1.025 in order
to bias the shape into rolling up, as opposed to ruffling.
A photograph of the experimental result, with a rendering of
the numerical solution is shown in Fig. 4, middle.

4.3 Logarithmic spiral

The experimental logarithmic spiral is a 01/901 ply printing
pattern on a rectangular sheet of dimensions Lx = 64.85 mm
and Ly = 5.25 mm. The bottom layer pattern consists of eight
parallel straight lines along the x-direction with spacing
0.75 mm. The top layer is a collection of parallel straight lines
along the y-direction, with filament spacing increasing accord-
ing to a power-law with exponent 1.4 when moving towards one
end of the spiral. The experimental sample was printed with a
filament thickness of df = 0.4 mm. The result is a doubly-curved
shape, where the principal curvature along the longitudinal
axis gradually increases towards one end, so that a logarithmic
spiral is formed (Fig. 5, top left).

Running the corresponding numerical simulations, using
m1 = m2 = 1 and growth factors sp = 0.12 and st = 0.26, we find a
less pronounced curvature than the experiments, as shown in

Fig. 5, bottom right. To investigate this, we ran a series of
simulations gradually changing both the filament thickness,
as well as the growth factors. The table in Fig. 5 shows the
variations of the resulting shapes.

The smallest value of df results in a cylindrical shape rolled-
up along the long axis, increasing its winding as the growth
factors increase. For the larger values of df, a transition occurs:
at first, the structure rolls up along the long axis into a
cylindrical shape. When the growth factors increase further,
though, the curvature in the transverse direction increases, and
the resulting doubly-curved shape stiffens like a slap bracelet,
causing it to partially unroll again. The best qualitative match
with the experimental result is obtained for df = 0.4 mm and
60% of the final growth.

4.4 Sombrero

The sombrero is printed on a circular disk with radius
R = 7.5 mm. The bottom layer consists of a single spiral
filament with radial spacing 0.4 mm. The top layer has a spiral
filament, also with radial spacing 0.4 mm, in the inner 3.5 mm
radius disk, and a set of radial spokes at the outer part of the
disk. The filament diameter of the experimental structure was
0.25 mm, and we set m1 = 1.2. A photograph of the experimental
result, with a rendering of the numerical solution is shown
in Fig. 4, right.

4.5 Folding flower

The printed flower consists of a central disk of radius 2.5 mm,
with five petals attached around it. Each petal has a length
of 15 mm and has an outline defined by a quadratic curve.
The virtual starting point of each petal is offset radially by
1.5 mm with respect to the centre point of the disk. Both
bottom and top layers form spirals within the centre disk, with
a spiral spacing of 0.4 mm. Each petal consists of a 01/901 ply
pattern, where the filaments are spaced by 0.85 mm. The
filament diameter of the printed structure was 0.4 mm. For
this result, we set m1 = 1.2. We ramp up the orthotropic growth
factors in each layers from 0 initially to their final values sp and
st, and show results at intermediate stages to compare with the
temporal evolution of the experiments (Fig. 6).

4.6 Orchid

The printed orchid consists of a disk with six petals attached to
it. The two long petals are rectangular strips capped with a
circular arc, which are connected to the perimeter of the centre
disk at �581 angles with respect to the y-axis. The three short
petals have elliptical outlines and are attached to the disk at
angles (�1161,01,1161) with respect to the y-axis. Finally, the
bottom petal outline is a collection of straight lines and circular
arcs. The filament diameter of the experimental structure was
0.325 mm, and we use m1 = 1.2. An additional modification we
added is to simulate the orchid lying on a flat impenetrable
surface, as opposed to all results above which were obtained
without any boundary effects. In particular, we pin the centre
point of the disk to a horizontal plane aligned with the initial
geometry, and add a penalisation term to the total energy that

Table 1 Settings for the different test cases simulated here. The columns
represent filament diameter (df), non-dimensional smoothing factor (Z),
and scaling of the growth factor of the bottom (m1) and top (m2) layers

Case df (mm) Z m1 m2

Helicoid 0.40 1.25 1 1
Catenoid 0.25 1.25 1.025 1
Logarithmic spiral 0.40 1.25 1 1
Sombrero 0.25 1.25 1.2 1
Folding flower 0.40 1.25 1.2 1
Orchid 0.325 1.25 1.2 1
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penalises any vertex of the mesh crossing that plane. Photo-
graphs of the experimental result, with renderings of the
numerical solution are shown in Fig. 7. It can be seen that in
both cases, the geometry has multiple contact points with
the substrate, which justifies our approach to add a surface
energy term.

One feature of the experimental sample is a rupture of the
top-right long petal from the centre disk. In the simulation, we
have access to all stretching strains, and a visualisation of their
distribution over the final mid-surface (see ESI†) shows the
large strains occurring at the location where the experimental
sample ruptured. It is unclear whether the large strains did
cause the structural failure in the experiments, as opposed to,
for instance, defects in the printed sample. Nevertheless, this
analysis shows the additional insights that can be obtained
from the numerical results.

5 Discussion

Our approach builds on our knowledge of geometrically non-
linear elasticity of thin shells, discrete differential geometry,
and materials engineering to provide a computational approach to
calculate the shapes of smooth and printed phytomimetic struc-
tures. Continuous sheets can directly be interpreted as elastic
plates (or shells) while discrete filament structures can be repre-
sented via a smoothed representation that allows for variable
thickness and orientation of the growth fields. We have shown
that this leads to simulated structures that have the same quali-
tative shapes as their experimental equivalents. Given the experi-
mental variability in printed filament diameters, fibril alignment
within each filament, and the lack of precise control over the cross-
linking in the hydrogels, closer quantitative comparisons are
not viable.

While we focused on connecting our approach to experi-
mental observations with anisotropically swelling inks, our

Fig. 4 Experimental and numerical results for (a) the helicoid, (b) the catenoid, and (c) the sombrero. For each shape, experimental photographs are
shown on the top, while rendered simulation results are presented on the bottom. The experimental pictures of the helicoid and catenoid are adapted
from ref. 11.

Fig. 5 The numerically computed mid-surface of the swollen shape
corresponding to the print path of the logarithmic spiral, for a systematic
variation of the filament thickness (horizontally) and growth factors (vertically).
The inset on the top left shows the experimental result from ref. 11, which was
printed with df = 0.4 mm.
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Fig. 6 Experimental and numerical results for the folding flower. Photographs of the experiments are shown above at different temporal stages of
the growth process. The bottom pictures show the simulated shapes equilibrated at 5%, 20%, 40%, 60% and 100% of the final growth values.
The experimental pictures are adapted from ref. 11.

Fig. 7 Experimental and numerical results for the orchid. Photographs of the experiments are above renderings of the simulated shapes.
The experimental pictures are adapted from ref. 11.
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approach is agnostic to the details of how the changes in the
metric tensor and the shape operator are actually implemented.
Isotropically growing materials such as hydrogels can be repre-
sented by locally scaling the rest metric for each layer, whereas
systems like pneumatic elastomers would require a similar
orthotropic scaling of the rest metric as performed in this
study. We expect that these application-specific models can
be built in a relatively straight-forward fashion, and, once
calibrated and implemented, simulations as performed here
can be a valuable and routine addition to any workflow.

Our numerical results can visualise the sequence of equili-
brium growth trajectories between initial and final states, and
can thus provide access to the residual stresses and strains
within the grown structures, and help systematically investigate
the sensitivity of final shapes to initial conditions. When
integrating simulations further into the design process, one
can further probe the sensitivity of final shapes to external
perturbations, investigate energy landscapes corresponding to
such changes, and perform simple closed-loop optimisation
algorithms to iterate on the inverse-design problem. These
features ought to be useful for more systematic theoretical
and numerical studies of the rapidly developing field of elastic
shape-shifting mono- and bilayer structures.
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