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Inspired by the differential-growth-driven morphogenesis of
leaves, flowers, and other tissues, there is increasing interest
in artificial analogs of these shape-shifting thin sheets made of
active materials that respond to environmental stimuli such as
heat, light, and humidity. But how can we determine the growth
patterns to achieve a given shape from another shape? We solve
this geometric inverse problem of determining the growth fac-
tors and directions (the metric tensors) for a given isotropic elas-
tic bilayer to grow into a target shape by posing and solving an
elastic energy minimization problem. A mathematical equivalence
between bilayers and curved monolayers simplifies the inverse
problem considerably by providing algebraic expressions for the
growth metric tensors in terms of those of the final shape. This
approach also allows us to prove that we can grow any target
surface from any reference surface using orthotropically grow-
ing bilayers. We demonstrate this by numerically simulating the
growth of a flat sheet into a face, a cylindrical sheet into a flower,
and a flat sheet into a complex canyon-like structure.

inverse physical geometry | growth | form | morphogenesis | 4D printing

Nonuniform in-plane growth of thin sheets generically leads
to metric frustration that is relieved by out-of-plane buck-

ling. This mechanism lies at the heart of many morphogenetic
processes in botany, such as the shaping of a leaf (1), the bloom-
ing of a flower (2), or the explosive dispersal of seeds from cer-
tain pods (3). From an engineering perspective, these examples
raise the possibility of biomimetic design: programming shape
(morphogramming) into matter that can be actuated with envi-
ronmental signals such as light, temperature, or concentration.

The theory of non-Euclidean plates and shells that links the
elastic response of materials into the correctly invariant frame-
work provided by differential geometry (1, 4–8) is a natural start-
ing place to analyze the growth and form of sheets and shells.
Growing a thin structure by changing the in-plane intrinsic dis-
tances and angles between material elements makes its metric
non-Euclidean; generically, this implies that the strain-free refer-
ence configuration may not be physically realizable in 3D space.
Therefore, the system settles into a residually strained equilib-
rium configuration that is determined by a local minimum of the
energetic cost of stretching and bending the sheet. Generally, this
state might not be unique, and, typically, there will be a range
of metastable configurations accessible to the system. This raises
the natural question of the inverse problem: How should one
program growth patterns into a sheet so that it morphs into a pre-
scribed target shape? Recent attempts to solve this question have
focused on theoretical designs of optimal growth patterns for the
weakly nonlinear deformations of thin shape-shifting isotropic
elastic sheets (9), axisymmetric growth patterns for morphable
shells (10), design of director fields into deformable nematic elas-
tic sheets (11), or a 4D phytomimetic printing approach based
on a linearized elastic analysis to derive the print paths of an
anisotropic bilayer made of a responsive ink (12). However, there
is no general theoretical or computational framework to solve
this inverse problem.

Here, we address this question in the context of a growing
elastic bilayer, inspired by the growth and form of plant organs

such as leaves and flowers that are usually made of two cell
layers that adhere to each other and can grow independently.
This bilayer geometry may be naturally described in terms of
an infinitesimally-thin “midsurface” and a “thickness” h that is
amenable to a physical description as a thin elastic shell capable
of in-plane growth. For very thin plates and shells, an asymp-
totically correct low-dimensional description of the solid can be
used to justify the Kirchhoff–Love assumption, namely, that nor-
mals to the cross-section are inextensible and remain normal dur-
ing deformations. Then, the shell volume is characterized at all
times in terms of a solid that extrudes a short distance in the
normal direction above and below the midsurface. We assume
that growth (i) occurs only in the in-plane directions (tangent to
the midsurface) and that (ii) the shell can be divided into several
“layers,” with growth constant through the thickness direction
for each layer. These assumptions allow us to represent growth
within each layer as a tensor field specified at each point of the
midsurface. “Isotropic growth” consists of an equal growth fac-
tor in all in-plane directions at every point, and is thus encoded
by one independent degree of freedom (the isotropic scaling fac-
tor) per layer at each point on the midsurface. With “orthotropic
growth,” the growth factor of the material at each point is a func-
tion of the in-plane direction, providing three degrees of freedom
per layer for each location on the midsurface: the two growth fac-
tors in the orthogonal “principal growth directions” and the pla-
nar rotation angle of this axis. Given the ubiquity of the bilayer
geometry in plant organs, and the ease of additive manufactur-
ing techniques that allow us to approach this possibility, we will
focus on this case from now on.

Such a bilayer where each of the two layers can experience
independent orthotropic growth (Fig. 1, Left) has six degrees of
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Fig. 1. (Left) A growing bilayer is considered as two independently, possibly inhomogeneously, growing layers, characterized by their own respective
metrics ar1 and ar2, that are glued together at a shared midsurface. In this example, each layer grows in only one direction, orthogonal to that of the other
layer, with the linear growth factor s > 0. After each layer is grown, the bilayer embedding that minimizes the total elastic energy, characterized by first
and second fundamental forms ac and bc, can be computed. (Right) The surface M is defined as an embedding ~m of an arbitrary region of the plane U into
R3. The embedding provides a normal field ~n, as well as the first and second fundamental forms ac and bc, as described in the text.

freedom at every location along the common midsurface. Any
choice of these degrees of freedom constitutes a growth field for
the shell, giving rise to an equilibrium shape in R3 determined
by minimizing the elastic energy of the composite. The design of
the growth pattern to achieve a given target shape from an initial
reference state leads to the formulation of the following inverse
problem: Is it possible to find growth factors and directions for
an orthotropically growing bilayer, so that its midsurface changes
from a region of the plane or other simple shape initially, into
some specified target surface after growth?

Classical differential geometry of 2D surfaces (13) tells us
that a surface is uniquely defined by two symmetric quadratic
forms (the first and second fundamental form), which consist of
six quantities at every location along it. Naive counting of the
degrees of freedom suggests that since we have three degrees of
freedom associated with the in-plane growth of each of the layers
in the composite bilayer, solutions to the inverse problem should
be possible. In this work, we show that a solution does indeed
always exist for the inverse problem when regularized as an elas-
tic energy minimization problem. Furthermore, while this solu-
tion typically does not yield a resultant shape with zero residual
strain (due to incompatibility when crossing from one layer to the
other through the midsurface), we show that the residual strain
is constant (i.e., independent of the realization of the bilayer).
We provide a simple algebraic expression for the growth factors
and angles that achieve this solution, allowing any bilayer to grow
into any target shape.

Geometry and Elasticity
We parameterize the midsurface of a shell using curvilinear coor-
dinates (x , y) in a domain U of the plane, and define its embed-
ding in space by a map ~m :U→ R3. Each point ~m(x , y) on
the midsurface is characterized by its tangent vectors ∂ ~m/∂x
and ∂ ~m/∂y , and a normal unit vector ~n = (∂ ~m/∂x × ∂ ~m/∂y)/
‖∂ ~m/∂x × ∂ ~m/∂y‖, as shown in Fig. 1, Right. By using the
Kirchhoff–Love assumption, any material point ~s inside the vol-
ume of the shell can then be written in terms of a normal offset
from the midsurface:

~s(x , y , z ) = ~m(x , y) + z~n(x , y),

where z ∈ [−h/2, h/2], and h is the thickness of the shell. This
map gives rise to a metric G on the volume U × [−h/2, h/2]

G(x , y , z ) = (d~s)Td~s =

(
gc(x , y , z ) 0

0 1

)
,

with the 2× 2 tensor gc defined as

gc(x , y , z ) ≡ (d~m + zd~n)T (d~m + zd~n)

= ac(x , y)− 2zbc(x , y) +O(z 2),

where ac =(d~m)Td~m and bc =−(d~m)Td~n =−(d~n)Td~m are
the first and second fundamental forms of the midsurface in the
current configuration. The metric gc can be interpreted as mea-
suring the lengths of tangent vectors on any offset surface normal
to the midsurface, as well as the angles between them.

Similarly, we can describe the “growth” of U by prescribing a
rest (unstrained) metric gr to each location in the shell. This rest
metric can be written similarly:

gr (x , y , z ) = ar (x , y)− 2zbr (x , y) +O(z 2).

In general, the shell whose midsurface is described by this growth
metric will not have a strain-free embedding in three dimensions,
so that for any actual embedding, the shell will be subject to resid-
ual strain. To understand which embedding is then realized in
physical space, we must therefore turn to a physical description
of the shell as an elastic object.

Elastic Energy of a Curved Monolayer. Given the “rest quantities”
U , ar and br , we can compute for any map ~m an elastic poten-
tial energy E(~m), so that ~m is an equilibrium embedding of
(U , ar , br ) whenever d~mE =0 (i.e., whenever ~m extremizes the
elastic energy). Assuming a hyperelastic isotropic material con-
stitutive model for the material of the shell (known as a St.
Venant–Kirchhoff model), we can derive (see SI Appendix for
details) the depth-integrated elastic energy as

EML =
1

2

∫
U

[
h

4
‖a−1

r ac − I‖2e

+
h3

12
‖a−1

r (bc − br )‖
2

e

]√
det ar dx dy ,

[1]
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where ac and bc are, respectively, the first and second funda-
mental form of the midsurface in its current realization (and so
depend on ~m). Here, the norm ‖ A ‖2e = αTr2(A) + 2βTr

(
A2
)

defines the elastic constitutive law (14), with α=Y ν/(1 − ν2)
and β=Y /(2+ 2ν), where Y is the Young’s modulus and ν the
Poisson’s ratio of the material. We note that this energy formula-
tion contains the classical decomposition into a stretching energy
term ofO(h), penalizing the stretch and shear of the midsurface,
and a bending energy term ofO(h3), measuring the resistance to
curvature (15). Furthermore, for weakly nonlinear deformations
this energy formulation is equivalent to the well-known Föppl–
Von Karman formulation for thin elastic plates (see SI Appendix
for details of this equivalence).

Elastic Energy of a Bilayer. A bilayer is made of two monolayers of
thickness h/2 each, that have been ‘glued’ together at the shared
midsurface. Each of the layers has its own independent first fun-
damental form given by ar1 for the bottom and ar2 for the top
layer (Fig. 1, Left). Here, ‘bottom’ and ‘top’ are used with the
convention of midsurface normal vectors pointing upward (i.e.,
into the layer whose metric is ar2).

The elastic energy of a bilayer made of two layers with metrics
given by ar1 and ar2, and a midsurface embedded in R3 with first
and second fundamental forms ac and bc , can then be written as
the sum of the energies of the individual layers. After integration
over the depth of each layer, we obtain the energy as an integral
over the common midsurface (SI Appendix)

EBL =
1

2

∫
U

[
h

8
‖a−1

r1 ac − I‖2e +
h3

24
‖a−1

r1 bc‖
2

e

+
h2

8

〈
(a−1

r1 ac − I), a−1
r1 bc

〉
e

]√
det ar1 dx dy

+
1

2

∫
U

[
h

8
‖a−1

r2 ac − I‖2e +
h3

24
‖a−1

r2 bc‖
2

e

−h2

8

〈
(a−1

r2 ac − I), a−1
r2 bc

〉
e

]√
det ar2 dx dy ,

[2]

where we have defined an elastic energy inner product 〈A, B〉e =
αTr(A)Tr(B)+ 2β Tr (AB). In the special case when the two
monolayers grow exactly the same amount starting from a flat
reference configuration, ar1 = ar2 = ar so that this energy sim-
plifies to the monolayer energy of Eq. 1.

Energy Equivalence Between Monolayers and Bilayers. A natural
question that is raised by the geometric and mechanical descrip-
tion of the composite bilayer is whether we can relate it to an
equivalent monolayer with appropriate first and second funda-
mental forms. In this work we show that, indeed, if ar and br are
appropriately expressed in terms of ar1 and ar2, the energy of
a monolayer can be related to the energy of a bilayer whenever
they share the same realization of their midsurfaces.

To see this equivalence, consider the ansatz ar =(ar1 + ar2)/2
and br = ζ(ar1− ar2)/h . The simple and natural choice ζ =1/2
has been proposed in ref. 3 and adopted in ref. 11; however, an
analysis of the shell energetics suggests that this value is incor-
rect: Substituting the ansatz above into the expression for EBL
shows that the correct choice is actually ζ =3/4 as it yields the
result (see SI Appendix for details)

EBL = EML +

∫
U

h3

72
‖a−1

r br‖
2

e

√
det ar dx dy . [3]

The last term on the right side corresponds to a strain that is
independent of the embedding, since it does not depend on ac

and bc . This result shows that the minimum-energy realization
of a monolayer with reference quadratic forms

ar =
1

2
(ar1 + ar2), br =

3

4h
(ar1 − ar2), [4]

is identical to that of a bilayer with ar1 and ar2, allowing for
a much simpler representation of the composite made of two
elastic layers of the same thickness in terms of an energetically
equivalent monolayer with curved reference configuration. The
generalization to a bilayer with layers of unequal thicknesses
and/or Young’s moduli can be solved similarly, where Eqs. 3 and
4 become functions of h1, h2, Y1, and Y2, which define the thick-
nesses and Young’s moduli of the bottom and top layer, respec-
tively (see SI Appendix for details).

Forward Problem of Growth
The result of Eqs. 3 and 4 can be used to compute the quadratic
forms ar and br , defining the monolayer that is energetically
equivalent to a bilayer with individual layer metrics ar1 and
ar2. However, for the corresponding midsurface to have a valid
embedding in 3D space, we need to satisfy certain compatibility
relations between the first and second fundamental forms. Those
relations are given by three differential compatibility relations:
the Gauss and Peterson–Mainardi–Codazzi equations (13). The
six degrees of freedom of ar and br , or equivalently ar1 and ar2,
together with these three differential relations, can be integrated
to obtain the three components of ~m at each location on the sur-
face (up to rigid body motion), as specified by the Bonnet theo-
rem (ref. 16, p. 236); see SI Appendix for the mathematical details
of these constraints.

To give a sense of how this plays out practically, we consider
two examples of the forward problem. First, consider the case of
Fig. 1, Left, where we prescribed orthotropic growth to each of
the layers, with the top layer growing in one principal direction
and the bottom layer growing in the orthogonal direction. Both
layers experience 1D expansion with the same, constant factor s ,
so that the affected metric entry for each of the layers gets scaled
by (1 + s)2. The quadratic forms of the energetically equivalent
monolayer, ar and br , are then given by Eq. 4. It is easy to see
that these two forms, being spatially homogeneous, automati-
cally satisfy both of the Peterson–Mainardi–Codazzi equations.
Gauss’ equation, however, cannot be satisfied: The Gauss cur-
vature K of the suggested embedding is necessarily negative for
any growth factor, whereas the derivatives of the metric ar are
identically zero. This means that no surface with ac = ar and
bc = br can exist, as it would violate Gauss’s Theorema Egregium
(13). The equilibrium configuration in Fig. 1, Lower Left is
therefore characterized by residual strain (see SI Appendix for
details).

Second, consider a modification of the example of Fig. 1,
where the two layers instead grow in the same direction, but
with different growth factors s1 and s2. For this case, the first
and second fundamental forms ar and br satisfy the compati-
bility relations identically, and correspond to a surface of zero
Gauss curvature. Furthermore, if we assume small growth fac-
tors, we find that the nonzero principal curvature of the resulting
surface is equal to 3/(2h)(s1 − s2). This result is identical to the
classical analysis of Timoshenko (17) for the curvature of heated
bimetallic strips, and the correspondence holds also for the case
of unequal layer thicknesses and unequal layer Young’s moduli
(see SI Appendix for more details). Our solution, summarized in
Eqs. 3 and 4, therefore not only generalizes Timoshenko’s theory
to nonlinear elasticity and arbitrary growth factors, but can also
be seen as its extension that allows us to proceed from strips to
surfaces.

Inverse Problem of Growth
As noted above, inhomogeneous orthotropic growth for each
layer in the bilayer can be represented in terms of three degrees
of freedom at every point—two growth factors corresponding to
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the growth in orthogonal principal directions and one angle to
define the axes. Together, these three values define the symmet-
ric positive definite first fundamental form at a given location.
For orthotropic growth of a bilayer, we therefore have indepen-
dent control of the first fundamental forms for the bottom and
top layer, which provides six degrees of freedom for each point
on the surface. This leads to the following theorem:

Theorem 1. Given any surface M ⊂R3 and any shaped planar
region U ⊂R2 (topologically compatible with M ) with embedding
~m :U →R3, so that the immersion of ~m is equal to M , there exists
a bilayer (U , ar1, ar2), with sufficiently small desired thickness h
so that ~m defines the energetically equilibrated configuration of the
bilayer’s midsurface. This bilayer is defined by

ar1 = ac +
2h

3
bc , ar2 = ac −

2h

3
bc , [5]

where ac and bc are the first and second fundamental forms of M .
Moreover, this embedding is free of residual strain, with the excep-
tion of a deformation-independent strain due to incompatibility of
the bilayers at their common boundary. Finally, the metrics ar1 and
ar2 as defined in Eq. 5 can be decomposed as orthotropic growth of
a bilayer on U .
Proof. Eq. 3 states that the minimum energy embedding of
a curved monolayer, with ar =(ar1 + ar2)/2 and br =3(ar1−
ar2)/(4h), is identical to that of a bilayer with ar1 and ar2. From
Eq. 1 we can immediately see that the minimum energy config-
uration of a curved monolayer with embedding ~m is achieved if
ar = ac and br = bc . With ar and br defined as such, we can solve
for ar1 and ar2 of the bilayer using Eq. 4, resulting in Eq. 5. From
Eq. 3, we can see that the resulting bilayer embedding is free
of residual strain except for the already-mentioned deformation-
independent term. Finally, by performing a spectral decomposi-
tion of the metric, we can write both ar1 and ar2 as orthotropic
growth of a bilayer on U .

With this theorem, we have the capability to grow any ini-
tial bilayer structure into any target shape. However, we need
to specify two practical considerations. First of all, the metrics
ar1 and ar2, defined by Eq. 5 have to be positive-definite to be
admissible (13). We show in the SI Appendix that this results in
the constraint

max (|κ1|, |κ2|) <
3

2h
,

where κ1 and κ2 are the principal curvatures of the target sur-
face. In theory, this condition can always be met if the bilayer
is thin enough, although in practice, manufacturing constraints
on the thickness may limit the space of target shapes that can
be grown.

Secondly, the trajectory of growth that is followed to tran-
sition from initial to final bilayer metrics might pose compli-
cations in practice. Although the embedding of the geometry
that globally minimizes the energy given the final bilayer met-
rics is always unique and identical to the target configuration,
some growth trajectories might result in a metastable shape dif-
ferent from the target shape. Since any metastable shape can
always be “snapped” into the desired target shape, this issue
is of secondary importance to our main contribution, yet pro-
vides some interesting questions. In particular, to guarantee that
a growth process always results in the target shape, we antici-
pate two numerical and/or physical difficulties that could arise
during interpolation of the metrics. First, it is important for the
symmetric positive definite (SPD) matrices encoding the bilayer
metrics to vary smoothly over time and remain SPD throughout
the interpolation, and, moreover, for the eigenvectors and eigen-
values (encoding the anisotropy amount and direction) to vary as

smoothly as possible during interpolation. Second, interpolated
bilayer metrics at intermediate growth stages should remain as
compatible as possible; by this, we mean that the first and second
fundamental form corresponding to the interpolated bilayer met-
rics should deviate as little as possible from satisfying the Gauss
and Peterson–Mainardi–Codazzi compatibility relations. Other-
wise, residual strain accumulates during the interpolation and
could pose an energetic barrier between the final realized shape
and the target solution. Again, the target solution would still
be the global energetic minimum, but physically or numerically,
we could find ourselves stuck at a local minimum. A particular
numerical example of this is further detailed in the SI Appendix,
for the case of the snapdragon flower growth case shown below.

A systematic approach to completely avoiding metastable
states during the growth process is a very interesting direction
for future work, and we can now pose the problem in a crisp way:
Is it possible to interpolate two pairs of bilayer metrics, so that
the equivalent minimum-energy midsurface fundamental forms
are always compatible? Even more interesting is the prospect to
harness incompatibility at intermediate growth stages to control
the final grown shape, or exploit multiple solutions depending on
the spatiotemporal distribution of growth, for instance, by snap-
through (18).

Results
For parametrized surfaces, we can use Eq. 5 directly to solve
the inverse problem algebraically. In simple situations associated
with parametric surfaces that have explicit fundamental forms
(e.g., a hemisphere, catenoid, and a saddle), we can carry out
these computations analytically (SI Appendix). However, to truly
demonstrate the usefulness of our approach, we need to show
how to design growth patterns for complex shapes with multiple
spatial scales. We do this by using numerical methods to mini-
mize Eq. 2. For a given 3D target surface, we first triangulate it
using a mesh that can capture the smallest length scale of inter-
est, and then compute the current first and second fundamen-
tal forms ac and bc . We compute the first fundamental forms of
the two layers that constitute the bilayer according to Eq. 5, and
decompose each of them spectrally into local orthotropic growth
rules for a given reference mesh and its corresponding bilayer
metrics. We then interpolate the growth factors on each point in
the initial mesh into a set of discrete values between those of the
reference and target surfaces and solve a sequence of problems
to determine the intermediate equilibrium configuration at each
of the discrete growth steps. This provides a way to visualize the
transition from initial to final configuration in a quasi-static man-
ner, and further allows us to design arbitrary way-points between
the initial and final state (SI Appendix).

Inspired by recent work on floral morphogenesis (19–21), we
first show how we can grow a cylinder made of two thin sheets
of the same uniform thickness into a snapdragon flower. In this
case, we assume the initial cylinder, with aCYL and bCYL, is formed
by a bilayer with growth factors aCYL

r1 and aCYL
r2 , defined according

to Eq. 5. The snapdragon flower, with aSD and bSD, is similarly
represented by a bilayer with aSD

r1 and aSD
r2 . To interpolate

the reference first fundamental forms of the bilayer from
(aCYL

r1 , aCYL
r2 ) to (aSD

r1 , a
SD
r2 ), we follow a log-Euclidean method

(22): Linear interpolation in log-space ensures smoothly varying
symmetric positive-definite tensors with monotonically-varying
determinants at any point in the growth process. At each interme-
diate pair of first fundamental forms, we compute the minimum-
energy embedding corresponding to the interpolated bilayer
metrics. To address the incompatibility of first and second fun-
damental forms at intermediate stages, we guide the growth
process by prescribing four intermediate states, which serve as
“way-points” for the growth trajectory (see SI Appendix for more
details). In Fig. 2, Left, and Movie S1, we show a sequence of
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Fig. 2. Inverse design of vegetable, animal, and mineral surfaces. A snapdragon flower petal starting from a cylinder (Left), a face starting from a disk
(Center), and the Colorado River horseshoe bend starting from a rectangle (Right). For each example, we show the initial state (top), the final state (bottom)
and two intermediate grown states in between. In each state, the colors show the growth factors of the top (left) and bottom (right) layer, and the thin black
lines indicate the direction of growth. The top layer is viewed from the front, and the bottom layer is viewed from the back, to highlight the complexity
of the geometries. The target shape for each case is given in Inset at the bottom: a snapdragon flower (image courtesy of E. Coen); a computer-render of
a bust of Max Planck (model is provided courtesy of Max Planck Institute for Informatics by the AIM@SHAPE Shape Repository); a satellite photo of the
actual river bend (image courtesy of Google Earth). The height of the actual snapdragon flower is ∼30 mm (19), whereas the depth of the canyon is 393 m
according to USGS elevation data. (See SI Appendix for animations and details.)

intermediate shapes viewed from two different angles and, for
comparison, the actual snapdragon flower.

To highlight the ability of our approach to capture complex
surface geometries with features on multiple scales, we turn to
the human face. In Fig. 2, Center, and Movie S2, we show that we
can grow an initially flat bilayer disk into a 3D model of a human
face, that of the physicist Max Planck. In this case, we linearly
interpolate the growth factors from unity, on the initial disk, to
their final values computed from Eq. 5, and show the result for
energetic equilibria at two intermediate stages.

Finally, we use our inverse-design theory to grow a simulacrum
of a complex inanimate surface, a horseshoe bend in the Col-
orado River in Arizona. Using United States Geological Survey
(USGS) elevation data, we create our 3D target shape and grow
it from a rectangular sheet. As in the snapdragon example, we
use anchor points to guide the interpolation (see SI Appendix
for more details). In Fig. 2, Right, and Movie S3, we show a
sequence of intermediate shapes obtained during the growth
process. These numerical results demonstrate the practical valid-
ity of our theoretical framework that allows us to capture the

shapes of complex absolute-scale-independent surfaces from the
animal, vegetable, and mineral world.

Discussion
This study poses and solves the inverse-design problem of design-
ing growth patterns for creating complex shapes from a uniformly
thin isotropic elastic bilayer capable of sustaining orthotropic
growth. It opens the way for formulating and solving other
variants of the inverse-design problem for growth-metric ten-
sors encountered in such cases as a single growing monolayer,
isotropically growing bilayers (23), or the most general case of
orthotropically growing bilayers with incompatible metrics, all
of which will generally require numerical approaches for both
the forward and inverse problems. The generalization to account
for situations where the thicknesses of the two layers h1 and h2
are unequal (SI Appendix) provides yet another perspective, as
this can be exploited for applications such as artificial lenses (24)
or controlled actuation of the curvature in the presence of con-
straints. It is worth noting that in all of these situations, there are
specific instances where the final residually strained state may
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constitute an orbit of connected minima associated with a Gold-
stone mode, e.g., saddle-like solutions in heated or swollen plates
(refs. 9 and 15, p. 158), but the general nature of these states and
how to design them remains open.

Our approach is agnostic to the actual mechanism that induces
this growth, whether it is heat, light, swelling, or biological
growth, as long as it is mathematically equivalent to changing
the metric of the constituent layers. While the experimental real-
ization of bilayers is easy using additive manufacturing, achiev-
ing general orthotropic growth is currently more challenging.
An existing technique for orthotropic growth relies on locally
embedding fibrils in an isotropically growing base material, pro-
viding control over the angle between two fixed orthotropic
swelling factors through the print direction (12). To also vary the
other two degrees of freedom would require further control over

either the density of the fibrils in two orthogonal directions, or
the density in one direction together with the isotropic growth
factor of the base material, for each point in each layer. Alter-
natively, one could consider discrete lattice or origami-type sur-
faces that approximate the features of a continuous surface at a
larger scale. This simplifies the problem by replacing the exact
local control of growth by approximate control of an appropri-
ate nonlocal average and is likely to be the first to be realizable
experimentally.
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