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We present simulations of the long-time dynamics of two anti-parallel vortex tubes
with and without initial axial flow, at Reynolds number Re = �/ν = 104. Simulations
were performed in a periodic domain with a remeshed vortex method using 785 × 106

particles. We quantify the vortex dynamics of the primary vortex reconnection that
leads to the formation of elliptical rings with axial flow and report for the first time a
subsequent collision of these rings. In the absence of initial axial flow, a −5/3 slope
of the energy spectrum is observed during the first reconnection of the tubes. The
resulting elliptical vortex rings experience a coiling of their vortex lines imparting an
axial flow inside their cores. These rings eventually collide, exhibiting a −7/3 slope of
the energy spectrum. Studies of vortex reconnection with an initial axial flow exhibit
also the −7/3 slope during the initial collision as well as in the subsequent collision
of the ensuing elliptical vortex rings. We quantify the detailed vortex dynamics of
these collisions and examine the role of axial flow in the breakup of vortex structures.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731809]

I. INTRODUCTION

The reconnection of vortex tubes is an archetypal problem of fluid dynamics. Repeated vor-
tex reconnections have been postulated as a driving mechanism for turbulence and aerodynamic
noise generation1 and the destruction of aircraft wakes.2, 3 In recent years, studies of vortex recon-
nection have been central to the question of singularity formation of the Euler and Navier-Stokes
equations.4–8

Experimental studies of vortex reconnection include the pioneering works of Refs. 9–12 for the
collision of two vortex rings. A number of simulations, predominantly based on spectral methods,
have described the different phases of the reconnection process for Re in the range 1000–3500.
These studies include reconnections of vortex rings,13–16 anti-parallel tubes,17–20 anti-parallel tubes
with an orthogonal offset21–24 as well as other configurations leading to interesting topological
dynamics.15, 25, 26 The head-on collision of two vortex rings has been studied experimentally and
numerically.27–31 A theoretical model of vortex reconnection was proposed by Saffman,32 and has
been critically evaluated against numerical simulations by Boratav et al.24 for the case of two
orthogonal vortex tubes, and by Shelley et al.20 for the case of two anti-parallel vortex tubes. A
review of several of these works has been presented by Kida.33

Recently Hussain and Duraisamy34 presented results of vortex reconnection up to Re = 9000.
This work described the early time behavior of the vortices, limited to the first collision of the vortex
tubes. In this paper we extend these simulations not only by studying a higher Re = 10 000, but also
by performing these simulations for longer times revealing for the first time the dynamics of the
vortices after their first collision. We quantify the governing mechanisms and identify an important
role of the axial flow (helicity) imparted to the vortex structures after their primary collision that
governs their subsequent evolution. Furthermore in order to quantify the effects of axial flow in
vortex reconnection we study the vortex reconnection process with an initially imposed axial flow.

a)Electronic mail: petros@ethz.ch.
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We observe a −7/3 slope in the energy spectrum in all cases where an axial flow is present during
vortex collisions.

The paper is organized as follows: in Sec. II we detail the computational setup of our simulations.
Section III explains the flow evolution without initial axial flow organized around the different
phases in the flow. Section IV presents the effects of initial axial flow on vortex reconnection, and in
Sec. IV C we discuss the results of the simulations. We present our conclusions in Sec. V.

II. COMPUTATIONAL METHODS

Simulations are performed in the velocity (u) – vorticity (ω ≡ ∇ × u) form of the incompressible
Navier-Stokes equations

∇ · u = 0, (1)

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω, (2)

where ν is the kinematic viscosity. These equations are discretized using a remeshed vortex
method35, 36 as employed for massively parallel computer architectures.37–40

We simulate the flow in a periodic domain with dimensions [3π × 4π × 2π ] centered at (0, 0,
0) and an underlying mesh of [960 × 1280 × 640] computational elements. The vorticity field is
initialized to an axisymmetric profile18

ω(r ) =
⎧⎨
⎩

ω0

[
1 − exp

(
− K

r∗ exp

(
1

r∗ − 1

))]
if r∗ < 1,

0 else,
(3)

where r∗ = r/rcutoff with rcutoff = 0.666, and K = 1/2exp (2)log (2). Along the z-direction the tubes
are sinusoidally perturbed with an amplitude A and an inward inclination angle α to force their
collision by self-induction. For the vortex tube in the negative half of the x-plane, the core location
is

r (x)2 = [x − (xc + A cos(α)(1 + cos(z)))]2 + [y − (yc + A sin(α)(1 + cos(z)))]2 , (4)

where xc + 2Acos (α) and yc + 2Asin (α) are the x- and y-coordinates of the center of the vortex tube
in the z = 0 plane. The vorticity field of this tube is given by41, 42

ω(x) = ω(r )
(−A cos(α) sin(z)ex − A sin(α) sin(z)ey + ez

)
. (5)

Here ex, ey, and ez are the unit vectors in x-, y-, and z-directions, respectively.
The space between the unperturbed tubes in the z = π -plane is 1.732 and we set A = 0.2, α

= π /3 for the tube in the negative half of the x-plane, and α = 2π /3 for the other. Time is non-
dimensionalized as t = t*ω0/20, where ω0 is the peak vorticity at t* = 0. The Re ≡ �/ν = 10 000
is based on the initial circulation of one unperturbed tube. The initial vorticity field is rendered
divergence free by a solenoidal reprojection.

The axial flow imposed initially on the tubes (see Sec. IV) is based on an axisymmetric velocity
profile (similar to the vorticity profile)

uz(r ) =
⎧⎨
⎩

u0

[
1 − exp

(
− K

r∗ exp

(
1

r∗ − 1

))]
if r∗ < 1,

0 else,
(6)

where r∗ = r/rcutoff with rcutoff = 0.666. The corresponding azimuthal vorticity distribution is

ωθ (r ) =
⎧⎨
⎩

− u0

0.666

[
K (r∗2 − r∗ + 1)

(r∗ − 1)2r∗2
exp

(
1

r∗ − 1
− K

r∗ exp

(
1

r∗ − 1

))]
if r∗ < 1,

0 else.
(7)

The vorticity field obtained by adding this azimuthal vorticity component to the axial vorticity
component is perturbed according to Eq. (4).
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FIG. 1. Volume rendering of vorticity magnitude at specified times. Light and dark gray (blue and red online) are centered
around values of 0.4ω0 and 3.75ω0, respectively.

The accuracy of the simulations is quantified by the effective viscosity, defined as the ratio of
the time decay of total energy and the total enstrophy,43 which does not exceed 2% in all simulations.
The results of the remeshed vortex methods for the reconnection without axial flow agree well with
those of pseudo-spectral simulations. The reader is referred to van Rees et al.40 for a comparison of
pseudo-spectral and remeshed vortex methods.

III. VORTEX RECONNECTION OF TUBES WITHOUT INITIAL AXIAL FLOW

The collision of the vortex tubes entails the distinct stages of: (a) the first vortex tube collision
followed by (b) a quiescent evolution of the resulting elliptical vortex rings during which an axial
flow is imparted to their core by the coiling of the vortex lines, and (c) the ensuing collision of the
elliptical vortex rings. Visualizations of the vorticity field for all stages are shown in Figure 1.

A. First collision

The vortex tubes approach and collide starting at t = 2.5. The tubes are flattened in the collision
area forming two anti-parallel vortex sheets. Viscous cross-diffusion annihilates the circulation at
the contact point and circulation transfers from the symmetry plane to the dividing plane (Figure 2,
left), leading to the formation of elliptical vortex rings. Similar to simulations at Re = 103,18 the
connected transverse vortex lines pile up to form the transverse vorticity structures (bridges), and
remnant circulation is organized into two parallel elongated structures (threads) consisting of vortex
lines that did not undergo reconnection. As opposed to the lower Re case,18 here the threads roll up
around the bridges (Figure 5(a)) and acquire high vorticity due to their stretching by the bridges.
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FIG. 2. (Left) Circulation in half of the planes defined by x = 0 (dividing plane) and z = 0 (symmetry plane) as a function
of time, normalized by the circulation in the z = 0 plane at t = 0. (Right) Evolution of enstrophy over time, normalized by
its value at t = 0.

Simultaneously, under mutual induction of adjacent bridges, the ends of the newly created vortex
rings move up and away from each other. During this first phase of the reconnection process, the
enstrophy increases to more than twice its initial value (Figure 2, right).

We report for the first time a −5/3 slope in the energy spectrum of the flow (Figure 3, left).
While at t = 0 most energy is concentrated at the smallest wavenumbers, corresponding to the length
scales of the tubes and the core diameters, at t = 3.4 we see a large increase in the small-scale energy
and the spectrum exhibits distinct power-law and viscous regimes. The power-law regime with −5/3
slope is manifested as soon as the tubes first touch at t = 2.5. At t = 3.1 the −5/3 slope is fully
established in slightly less than a decade of intermediate wavenumbers and remains at these levels
until t = 3.4. At later times the energy in the high wavenumbers gradually decays by dissipation and
we can no longer identify distinct power-law and viscous regimes.

With the first collision an axial flow is imparted on the core of the newly formed rings. This
flow is directed away from the bridges, as visualized in Figure 4 by the helicity density in a moving
reference frame ω · (u − U), where, following Kida et al.,16 U is given by

U =

⎛
⎜⎜⎝0,

∫
(ω · u)ω2 dV∫

(ω2)2 dV
, 0

⎞
⎟⎟⎠

T

. (8)

In order to elucidate the establishment of the axial flow we visualize the evolution of the vorticity
field by instantaneous vortex lines in Figure 5. The lines in the primary reconnection region are rolled
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FIG. 3. Three-dimensional energy spectrum of the case without initial axial flow. (Left) t = 0 and t = 3.4. (Right) t = 13.6
and t = 17.0. The straight dashed lines correspond to a −5/3 slope in the left plot, a −7/3 slope in the right plot.
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FIG. 4. Two isosurfaces of ω · (u − U) at ±2% of its maximum value at t = 4.5. Perspective view (left) and top view
(right) with negative (light gray, blue online) and positive (dark gray, red online) isosurfaces and transparent isosurface of
|ω| = 0.5ω0 (gray).

up by the swirl of the bridges. The intense vorticity of the threads induces in turn axial flow within
the bridges away from the initial plane of symmetry18 (Figure 4).

B. Quiescent period

The quiescent period between t = 4.0 and t = 12.0 involves the evolution of the elliptical vortex
rings (Figure 6). At first, the rings have their major axes aligned with the z-direction. The ends
of the threads, remnants of the first collision, wrap around the bridges. In this phase, the vorticity
magnitude in these threads is much lower than in the bridges. Helical waves on the rings can be
observed: first single waves traveling away from the connection region, and then several co-existing
helical waves of opposite directionality. The elliptic vortex rings undergo an oscillation, switching
axes, such that at t ≈ 12 their major axes are again aligned with the z-direction.

We note that the energy dissipation after the collision follows a decay law of the form

∂ E

∂t
∝ −t−(p+1), (9)

FIG. 5. (a) Vortex lines and isosurface of |ω| = 0.5 ω0 (solid gray). The vortex lines, colored by |ω|, are seeded from regions
where |ω| > 7.0 ω0 and are drawn only for ω > 0.25 ω0. (b) Directions of vorticity (black arrows) and axial flow (gray arrow,
red online) for the x > 0 and z > 0 quarter of the domain at t = 4.5.
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FIG. 6. Volume renderings of vorticity magnitude plotted for t = 3.0 (left); t = 5.4 (middle); and t = 8.4 (right). Two periods
in z-direction are shown, the colormap is as in Figure 1.

where p is in the range p = 1.2–1.4 (Figure 7), similar to the energy decay rate found in fully
developed turbulence, where 1.0 � p � 1.4 (Kolmogorov44 and discussion in Lesieur45). This result
is consistent with observations made by Kida et al.16 despite the much lower Re of 1000 of that
study.

The axial flow in the core of the rings, originally directed away from the connection region
(Figure 4), changes its direction as the rings separate. A second reversal of the axial flow is observed
starting at t = 6.5, such that it is again directed away from the connection region. For simplicity we
represent the quarter ring in the x > 0 and z > 0 part of the domain by a straight vortex tube (Figure 8),
with the left end corresponding to the location of the bridge and the right end corresponding to the
undisturbed end of the ring. Without any axial vorticity variation the vortex lines are straight
(uncoiled) and no axial flow is imparted on the cores. After the collision, however, the vorticity in
the bridges is stronger than the vorticity farther away, leading to a right-handed polarization of the
vortex lines and hence an axial flow directed from right to left (middle of Figure 8), i.e., towards the
bridges. Subsequently, as the rings oscillate due to axes switching, the vorticity magnitude decreases
in the bridges and increases at the undisturbed ends, consistent with elliptical vortex ring dynamics.46

The situation then resembles the right panel of Figure 8: a left polarization of the vortex lines is
established, imparting an axial flow directed away from the bridges. Note that in an experimental
study on vortex rings,47 an axial flow inside the ring was also found, and attributed to the presence
of an axial vorticity gradient.

In order to further demonstrate the development of the axial flow we apply a helical wave
decomposition (HWD) (Refs. 45 and 48) to the vorticity field, which decomposes the field into the
sum of a right-handed and a left-handed component: ω(x) = ωR(x) + ωL (x). The HWD has been
applied before in studies of helical turbulence.49 Here we follow the approach of previous studies
on vortex dynamics using the HWD.50, 51 If the vorticity field is unpolarized, there is no preferred
handedness in the vortex lines and the left- and right-handed components of the vorticity field will
have equal magnitudes. Following Virk et al.,51 a scalar measure of the local handedness of the
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FIG. 7. Energy decay after the first (left) and second (right) reconnection, on a log-log scale. The two solid lines in each
panel denote slopes of −2.2 and −2.4, respectively.
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FIG. 8. The effect of an axial vorticity gradient in the core of a vortex tube. Reference configuration (no axial flow) with
constant vorticity and parallel vortex lines (left). A configuration with stronger vorticity on the left side gives rise to a
right-handed polarization in the vortex lines and an axial flow from right to left (middle). A stronger vorticity on the right
side gives rise to a left-handed polarization in the vortex lines and an axial flow from left to right (right).

vorticity field is

Ra(x) = log2

( |ωR|
|ωL |

)
,

where ωR and ωL are the right- and left-handed components of the vorticity field, respectively.
Figure 9 visualizes isosurfaces of Ra. In the quarter of the domain where x > 0 and z > 0,

at t = 4.5 we observe a structure of negative Ra at the reconnection region, corresponding to the
polarization of the vortex lines drawn in Figure 5. An axial flow away from the bridges confirms
our analysis in Sec. III A. Between t = 4.5 and t = 5.5 an isosurface of positive Ra (indicated by a
black arrow at t = 4.5–5.5) grows helically from the connection region. This structure corresponds
to a dominant right-handed vorticity field which imparts an axial flow towards the bridge region, as
explained in the middle panel of Figure 8. For t ≥ 6.5 (Figure 9) a left-handed structure emerges
in the outer end of the vortex core at x > 0, z > 0—with an axial flow away from the reconnection
region, as sketched in the right panel of Figure 8 and visualized by the helicity density in Figure 10.

During the quiescent phase we observe a secondary-level vortex collision between the threads
(see Figure 11). A third thread-like structure is visible, emanating from the bridges and wrapping
around the main threads. The vorticity field reminds one of the connection between two tubes of
unequal strength.52, 53 However, because of the low local Re of the threads (Re = 550), the vorticity
in the threads diffuses without any significant circulation transfer. One may argue that a higher initial
Re will increase the local thread Re so that a reconnection between the threads could be enabled.
We note however that here the remnant circulation relative to the initial circulation is lower than that
observed for vortex tube collision at Re = 1000 (Ref. 18), so that the thread Re may increase only
slowly with increasing initial Re. Furthermore, as observed also in Hussain and Duraisamy,34 the
threads are sensitive to a Kelvin-Helmholtz instability due to their stretching by the bridges, so that
they are more likely to break up earlier at higher Reynolds numbers.

FIG. 9. Isosurfaces of Ra between t = 4.5 and t = 7.0. Each isosurface is colored by its sign (positive dark (red online),
negative light (blue online)) and their values are Ra = ±0.5. The arrows at t = 4.5–5.5 indicate the right-polarized structure
that expands along the tube.
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FIG. 10. Isosurfaces of positive (dark gray, red online) and negative (light gray, blue online) values of ω · (u − U) at t = 7.0,
for the same value as Figure 4, plotted with a periodic image to show one full ring. We show a perspective view (left) and a
top view (right), where we annotated the visualization with directions of vorticity and axial flow. A transparent isosurface of
|ω| = 0.5ω0 is shown in gray.

C. Second collision

After their build up and initial oscillatory evolution, the elliptical rings approach each other
and collide at t = 12. The collision is associated with a burst of small-scale vortical structures with
large vorticity magnitudes in the region where the two rings meet. During this collision, circulation
is transferred by the onset of a reconnection. However, after about 40% of the circulation has
been transferred, the process stops at t = 13.6. We note that the second collision starts almost
simultaneously with the new oscillation cycle of the rings. The ends of the rings moving away from
each other due to axis-switching would explain the shorter and smaller circulation transfer.

The energy spectrum during and after this second collision (Figure 3, right) exhibits a power-law
regime, now with a −7/3 slope present over more than a decade of wavenumbers from t = 14.5 to t
= 22.0. We report further on the energy spectrum in Sec. IV C, where we relate it to our observations
from vortex collision with initial axial flow presented in Sec. IV.

For t > 14 we observe two large clusters of small-scale structures that move apart, similar to the
motion of the bridges in the first collision. Two vortex tubes connecting these clusters are visible,
surrounded by small-scale vorticity generated during the last collision. These tubes remind one of
the threads containing the remnant circulation after the collision between the initial tubes. However,
we note that since the vortex tubes are the topologically new structures, the word “threads” should
actually refer to the large-scale structures. These large clusters are expected to undergo further
oscillations and further collisions as they evolve, transferring energy to smaller scales with each
collision as the flow evolves towards a turbulent state.

IV. RESULTS WITH INITIAL AXIAL FLOW

To study the effect of an initial axial flow in the tubes, we simulated the flow with two different
initial swirl numbers: q = 0.383 (case 1) and q = 0.958 (case 2). Here q is defined as q = u0/uθ , 0,
where u0 is the prefactor in Eq. (6), corresponding to the peak axial flow strength in the tube, and

FIG. 11. Volume renderings of vorticity magnitude showing the remnant threads from the first connection at the specified
times. The light and dark grays (blue and red online) are centered around values of 0.14ω0 and 0.8ω0, respectively.
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FIG. 12. Volume rendering of vorticity magnitude for case 1 (left column) and case 2 (right column) at the specified times.
The colormap is the same as in Figure 1.

uθ,0 = ‖u(t=0) · eθ‖∞ is the peak azimuthal velocity of an unperturbed tube at t = 0. We discuss
case 1 and case 2 separately, and refer to the simulation without initial axial flow as case 0. Flow
visualizations of both case 1 and case 2 are presented in Figure 12.

A. Case 1: q = 0.383

At the onset of the first collision, the tubes flatten in the midplane to form two vortex sheets
like a plane jet, with each half having an oblique velocity due to the opposing axial flow. In contrast
to case 0 (Figure 1), the vortex sheet now shears and undergoes a Kelvin-Helmholtz instability,
accompanied by a large spike in vorticity magnitude and the rapid transfer of energy to smaller
scale vorticity structures. A helical perturbation travels on one half of each of the newly connected
structures, convected by the axial flow that is transferred from the initial anti-parallel tubes to the
newly created elliptical rings. The remnant circulation of the collision is contained in several small-
scale vortical structures. The value of the peak enstrophy is almost unchanged with respect to case 0
(Figure 13, right), indicating that the main differences in the vorticity fields between these two cases
(i.e., with and without axial flow) are of local nature.

We observe a larger rate and a larger amount of circulation transfer in case 1 (Figure 14, left),
whereas its onset is slightly later than in case 0. These differences are quantified by the maximum
circulation transfer rate d�∗/dt , where �* = �/�0 and �0 is the circulation in the symmetry plane
at t = 0, and td�∗/dt,max, the time of maximum circulation transfer rate (Table I). We also show the
reconnection time tR according to the definition given in Ref. 34 where tR = t0.5 − t0.95: the time
needed to reduce the circulation from 95% of �0 to 50% of �0. The maximum circulation transfer
for case 1 is 82% higher, and the reconnection time is 25% smaller than case 0.
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FIG. 13. Evolution of energy (left) and enstrophy (right) over time, normalized by their initial values for the case without
initial axial flow. Case 0 (no symbols—blue online), case 1 (squares—red online), and case 2 (circles—green online).

The energy spectrum during this collision, as well as during the subsequent collision between
the elliptical vortex rings (not shown in Figure 12) exhibits a persistent power-law regime with −7/3
slope (Figure 15) that is further discussed in Sec. IV C.

We mention that in Ref. 47 the role of axial flow in the breakup of vortex structures is studied
for an experimental vortex ring at Re = 1600. The breakup in that study differs however from the
breakup observed in ours (both cases 1 and 2). The breakup in our results is dominated by a Kelvin-
Helmholtz instability originating from anti-parallel axial flows, whereas the breakup of the vortex
ring in Ref. 47 is dominated by waves amplified by the Widnall instability, together with an induced
uniaxial axial flow. That is, our breakup is dominated by shear, whereas theirs by compression of
vortex lines.

B. Case 2: q = 0.958

The shearing of the vortex sheet during the first collision observed in case 1 is even more
pronounced in case 2, due to the increased axial flow strength. Again the sheet undergoes rapid
instability and the small-scale vortical structures get rapidly advected downstream. This can be seen
in Figure 12 as clusters of small-scale vorticity structures swirling around each of the main tubes.
The related smaller localization of strong vorticity is visible in the diminished value of the maximum
vorticity of case 2 with respect to case 1 (Figure 14, right), and the much higher enstrophy values
(Figure 13, right).

Table I shows that the reconnection time and the maximum circulation transfer rate for case
2 are between those for case 0 and case 1. The onset time for reconnection as well as the time of
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FIG. 14. (Left) Circulation in half of the x = 0 and z = 0 planes as a function of time, normalized by the circulation in the
z = 0 plane at t = 0. (Right) Evolution of maximum vorticity over time, normalized by the vorticity at t = 0. Case 0 (no
symbols—blue online), case 1 (squares—red online), and case 2 (circles—green online).
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TABLE I. Comparison of several characteristic reconnection quantities with varying axial flow strength.

Flow case max d�∗/dt td�∗/dt,max t0.95 t0.5 tR

0 1.042 3.07 2.86 3.46 0.60
1 1.901 3.20 2.91 3.37 0.45
2 1.649 3.63 3.37 3.89 0.52

maximum circulation rate are both delayed with respect to the previous cases. Furthermore, Figure 14
(left plot) shows that the circulation transfer is smaller than for both case 0 and case 1, as the
circulation transfer flattens out at t ≈ 5.

Again we find a power-law regime in the energy spectrum with −7/3 slope (Figure 15), which
will be further discussed in Sec. IV C.

C. Energy spectrum

The −7/3 energy spectrum characterizes the second collision of vortex reconnection without
any initial axial flow (case 0) (Figure 3, right), as well as the first and second collisions of vortex
reconnection, for both cases 1 and 2, with imposed initial axial flow (Figure 15). In both cases the
common characteristic is the presence of axial flow during the collision of the vortex structures.

We remark that the −7/3 energy spectrum has been associated with a cascade of energy dictated
solely by the rate of helicity transfer, η. In Brissaud et al.,54 based on dimensional analysis, it is
argued that in a flow with energy dissipation rate ε = 0 and helicity dissipation rate η 
= 0, the spectra
of energy and helicity in the inertial range have the form

E(k) ∼ η2/3k−7/3, (10)

H (k) ∼ η2/3k−4/3. (11)

This is referred to as the pure helicity cascade or direct helicity cascade, and is contrasted with the
case of a joint cascade of energy and helicity, where η 
= 0 and ε 
= 0, such that

E(k) ∼ ε2/3k−5/3, (12)

H (k) ∼ ηε−1/3k−5/3. (13)

Numerical computations have not shown the existence of the pure helicity cascade in isotropic
homogeneous turbulence, instead the simultaneous cascade of energy and helicity has consistently
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FIG. 15. Three-dimensional energy spectrum of case 0 (no symbols—blue online), case 1 (squares—red online), and case 2
(circles—green online) at t = 3.8 (left) and t = 15.5 (right). The dashed line in both plots corresponds to a −7/3 slope.
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been found.49, 55, 56 In an experimental study on vortex bursts in a laminar flow,57 the time-averaged
velocity spectrum downstream from the burst region seems to develop a slope close to −7/3 (Figure 4
in Ref. 57), although this development is not mentioned by the authors.

For all three simulations discussed here, we have plotted the helicity H (t) = ∫
V u · ω dV in

Figure 16. For vortex reconnection without initial axial flow, the helicity deviates from zero after
t ≈ 13, which coincides with the time when the −7/3 slope first appears. In order to examine this
correlation we have repeated the case 0 computation in one-fourth of the computational box, using
symmetric boundary conditions to ensure zero helicity at all times, and still find the −7/3 slope in
the energy spectrum during the second collision.

We computed the helicity spectrum for cases 1 and 2 during the first collision. For case 0,
the helicity is close to zero, therefore the helicity spectrum integrates to a value close to zero. The
definition of an inertial range for the helicity spectrum is thus not meaningful in this case. For cases
1 and 2 the helicity is positive and the spectrum at t = 3.8 is shown in Figure 16 (right). Due
to oscillations in the spectrum, the slope cannot be conclusively identified: for case 1 the slope is
around −3 whereas for case 2 the slope can be interpreted both as −4/3 or −5/3.

We conclude this discussion by noting that in our simulations, the energy dissipation rate is
ε > 0 at all times, which should exclude the direct helicity cascade possibility.54 The results and the
above discussion do not conclusively explain the −7/3 energy spectrum slope and its relationship to
helicity in turbulent flows, which remains a subject for further study.

V. CONCLUSIONS

We have performed long-time direct numerical simulations of the reconnection of two anti-
parallel vortex tubes at Re = 10 000 with and without initial axial flow. The collision process is
described through visualizations of the vortex structures as well as the corresponding energy spectra.
The present simulations demonstrate the imparting of an axial flow on the vortex structures formed
after the first collision, that largely influences the subsequent collision that is here revealed for the
first time.

Vortex reconnection without initial axial flow exhibits a −5/3 slope in the energy spectrum
during the first collision, as well as a constant-slope energy decay after the collision—both features
commonly associated with turbulent flows. The threads of this collision undergo an interaction of
their own which is dominated by diffusion due to their low Re. The elliptical vortex rings resulting
from the first collision undergo a full oscillation due to axis-switching before they collide, with a
burst of small-scale vortical structures. The repeated vortex collisions exhibit features common to
turbulent flows, supporting the notion that reconnection events play an important role in the dynamics
of turbulent flows. The present simulations do not show however a vortex reconnection cascade,
due to the small circulation of the threads and their susceptibility to instabilities. This observation
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challenges the suggestion that a vortex reconnection cascade could actually be realized, even at
initial Re much larger than 10 000.

The present simulations elucidate also the role of axial flow in vortex collision dynamics. In the
case of non-initial axial flow, upon the first collision, elliptical vortex rings are formed and the coiled
vortex lines connecting the rings to the threads impart an axial flow inside their cores, directed away
from the connection region. During the evolution of the elliptical vortex rings we observe repeated
axis-switching accordingly associated with changes in the direction of the axial flow. This axial
flow determines the dynamics of the subsequent vortex ring collision that results in a multitude of
strong albeit small-scale vortical structures. We wish to stress the notion that reconnection between
structures without axial flow leads to structures with axial flow as this may be highly relevant to
vortex dynamics of turbulent flows.

Adding an initial axial flow to the vortex tubes, with a swirl number of q = 0.383, was found
to decrease the reconnection time and increase the rate of maximum circulation transfer, while the
main flow structures and global diagnostics remain largely unchanged. Further increasing the swirl
number to q = 0.958 leads to a rapid breakup of the vortex sheet formed at the onset of the collision.
Our simulations show the occurrence of a −7/3 energy spectrum for a high Reynolds number vortex
collision with non-zero axial flow. The possible relationship of this spectrum to helical turbulent
flows and in particular the pure helicity cascade remains subject to further research.

Further work involves studies at higher Reynolds numbers, in order to examine the possibility
of a reconnection cascade, using wavelet adapted multi-resolution particle methods.58
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