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We develop a data-driven reduced-order model
(ROM) to robustly predict the dynamics of fluid
flows across a parametric design space. Our approach
extends a long-short-term memory (LSTM) neural
network with a new design gate, which enables the
network to distinguish dynamic patterns associated
with different design parameters. We first compare
this parametric LSTM (pLSTM) with traditional
LSTMs trained on a Van der Pol oscillator, where the
design parameter is the nonlinear damping coefficient.
The results show that pLSTM can provide accurate
and robust predictions, whereas LSTMs fail to predict
the correct dynamics when evaluated outside the
immediate training data. Next, we use the pLSTM
to predict the two-dimensional incompressible
flow past a heaving and pitching ellipse. The
pLSTM is trained with simulated flow field data
compressed to a latent space, here defined through
a proper orthogonal decomposition. The pLSTM can
successfully predict the long-time dynamics of the
flow field for unseen heaving/pitching kinematic
parameters, while showing exceptional robustness to
noise in the initial states. Taken together, the proposed
pLSTM approach offers a three-aspect ROM approach
(space, time and design space) to benefit prediction,
optimization and control problems across parametric
flow regimes.

1. Introduction

The ability to efficiently predict unsteady flow fields
is imperative for exploration, control and performance
optimization within the design space of a given problem
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[1]. For instance, in biologically inspired underwater propulsion, the use of optimization and
learning has led to new insights into highly performant solutions as well as the fundamental
physical processes [2—6]. Such studies rely on large amounts of numerical simulations or, in some
cases, experimental runs [7-9], each one of which requires a spatio-temporal evolution of the
flow field associated with a different set of design parameters. Data-driven reduced-order models
(ROMs) pose an attractive pathway to capture low-dimensional patterns and system dynamics
based on a small set of high-fidelity training data [10-13]. If successful, the ROMs can then be used
in a design or optimization pipeline for low-cost, high-throughput prediction of flow results.

Model order reduction techniques for developing ROMs are typically categorized as projection
based and data driven [12]. Among the projection-based ROMs, the Galerkin approach is
a popular choice to convert the Navier-Stokes equations into a set of low-dimensional
linear ordinary differential equations (ODEs) [14-16]. However, these models can encounter
inaccuracies and instabilities, especially in nonlinear fluid physics [12,17]. To address this
challenge, the least-squares Galerkin projection (LSGP) [16,18] has been proposed as an enhanced
version of the Galerkin method, offering stability in solving ODEs for nonlinear fluid problems.
Despite its enhanced stability, LSGP necessitates computing Jacobian matrices and solving
Navier-Stokes equations during the ROM evaluation, leading to increased computational cost [16,
18]. For data-driven ROMs, deep learning algorithms have emerged as state-of-the-art tools in
recent years [19]. Approaches using deep neural networks (DNNs), such as those employing
sparse coding [20,21] and network-theoretic methods [22], have attracted attention for building
nonlinear ROMs that are suitable for modelling nonlinear fluid flow problems [1,12,23].

DNN-based ROMs exist for time-averaged or steady-state predictions of fluid flow fields (here
denoted one-aspect modelling in space, or 1A%P?°¢), temporal prediction of scalar quantities such
as hydrodynamic forces (1A%™) or spatio-temporal prediction of entire flow fields (two-aspect
modelling, or 2A). In the category of 1A%, techniques like proper orthogonal decomposition
(POD) [24], dynamic mode decomposition [25] and spectral POD [26] spatially decompose
flow fields, utilizing their outputs in point-to-point feed-forward neural networks for data
decoding. Recent advancements include various DNN models, like convolutional neural network
autoencoders [27,28], sparse convolutional autoencoders [29], hierarchical autoencoders [30]
and variational autoencoders [31], which extract fluid flow features to reconstruct high-
dimensional flow fields. However, these 1ASP2® models have DNN architectures that are
suitable for non-consecutive predictions, hindering their efficiency in addressing unsteady flows,
such as vortex dynamics and wake structures behind bluff bodies. For sequential prediction
of temporal solutions, these feed-forward networks lose efficacy, confined to point-to-point
predictions, leading to neglect of input data’s temporal dependencies and inadequate learning
of dynamics [32].

In the category of 1A%™¢, recurrent neural networks (RNNs) [33] are DNN models employed
for sequential data analysis, particularly efficient in learning system dynamics due to their
feedback mechanism [32]. The long—short-term memory (LSTM) network, a popular RNN variant,
effectively mitigates the diminishing gradient problem often encountered in RNNs [34,35].
However, LSTMs are mainly suitable for low-dimensional sequential data. Two-aspect models,
combining RNNs with the above-mentioned 1A% models, have been developed to construct
ROMs effectively predicting spatio-temporal dynamics for complex systems. With such 2A
approaches, researchers have successfully used LSTMs for building ROMs for complex systems
such as turbulence [19,34,36], unsteady wind turbine wakes [37], classifying vortex dynamics [33]
and unsteady flow around various bluff bodies [38]. Moreover, regarding the dynamical discovery
of nonlinear systems, LSTM networks were used in the main structure of ROMs as a nonlinear
time-stepper [39]. The LSTM was also utilized as equation-free flux reconstructions of dynamical
systems in extreme events [40]. Figure 1 illustrates the schematic representation of ROM
frameworks based on the 1A and 2A models. In 1A%™e a low-dimensional matrix of state is
given to the LSTM and this LSTM can predict future solutions. In 1A%**¢, where solutions remain
unchanged over time (i.e. steady state), a matrix of high-dimensional states contains various
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Figure 1. Schematic of ROM frameworks for 1A and 2A modelling using conventional LSTM. Here, u, q are vectors of the
state and latent solution, respectively. Furthermore, § and @ are vectors of the predicted latent solution and decoded state,
respectively. Superscript and subscript indicate the time interval and vector of the design parameter, s;, respectively. The state
and latent solutions are also stored in matrices X and Q, respectively. The autoencoder is represented by & and the temporal
predictions are done via the LSTM model. Further details can be found in §2.

design parameters and an autoencoder can project high-dimensional states to a low-dimensional
latent space and vice versa. For a high-dimensional unsteady problem, the 2A framework contains
both an autoencoder and an LSTM model to predict latent solutions in the future. The predicted
solutions are ultimately lifted back onto the high-dimensional space.

Most ROMs built based on 1A or 2A modelling encounter difficulties in learning prominent
physics when predicting solutions across a wide range of design parameters. A naive merging
of the design space with the latent space causes these models to learn all dynamical behaviours
within the same latent space, often resulting in inaccurate predictions. To resolve this limitation,
we propose a three-aspect (3A) modelling approach, enabling simultaneous learning of spatio-
temporal flow fields across a design space. This method is particularly well suited for the
optimization and control of high-dimensional nonlinear flow problems. Our proposed novel
DNN architecture integrates a design gate within the LSTM, effectively increasing its learning
memory capacity. This architecture functions as a versatile system capable of learning attractors
(dynamical patterns) across various design parameters within the design space.

The rest of this article is structured as follows: §2 focuses on the mathematical explanations
of a dynamical system, dimensionality reduction, ROM development and its associated DNN
architectures. In §3, the pLSTM is proposed and explained as a new variant of the LSTM. In
§4, we compare the predictions of the conventional and proposed variant of LSTM models for
a low-dimensional problem, the Van der Pol oscillator, to show model performances for different
linear and nonlinear dynamics. Subsequently, we pivot towards a high-dimensional Navier—
Stokes problem and §5 provides insights into the flow solver used to construct a high-dimensional
dataset and outlines the training details and framework architecture for ROM development. The
comparative analysis between the proposed framework and conventional methods is presented
in §6. Section 7 demonstrates the performance and robustness of the proposed ROM concerning
augmented data in both initial conditions (ICs) and real-time modelling. The investigation of the
high-dimensional results predicted by the proposed ROM and their validation against the ground
truth CFD results is covered in §8. Finally, §9 summarizes the contents, concludes the study and
discusses potential challenges and future avenues of work.
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2. Reduced-order modelling

We consider a semi-discrete dynamical system with discrete state vector ue RN evolving
according to the full-order model

dd—? =f(u,t), uyg=u(t=0), (2.1)
where t € T is time in the time domain T, u, represents the ICatt =0 and f : RN« — RN« represents
the discrete flux function. To derive a ROM, the main assumption is that the dynamics of
equation (2.1) in the high-dimensional physical space can be reconstructed in a low-dimensional
space (i.e. latent space). The latent space is spanned by basis functions containing spatial patterns.
The projection of the state u onto the latent space yields the temporal evolution of latent
solutions that contain information representing the dynamics of the problem. This information
can be used to reconstruct the dynamics of the system in the latent space, identify the key
features and build a ROM. Based on equation (2.1), the semi-discrete form of a ROM can be
written as

d
Re(q, 1) = d—? - F(q,1), (2.2)

where q € R’ is the vector of the latent solution with a dimension of € Z indicating the rank of
the basis functions (i.e. the number of solutions in the latent space). Also, R; € R" represents the
residual of the ROM, and F : R" — R’ is the flux function that drives the ROM. The task in ROM
is to find an appropriate function for ¥, such that R; remains minimum for all time in T. This
continuous form of the ROM is usually used in projection-based approaches, such as Galerkin
projection [15,41] and LSGP [16,18]. For data-driven DNN models as considered in this study,
instead the ROM is represented in a fully discrete form. Below, we will first describe our approach
to obtain the basis of the latent space and subsequently proceed to the fully discrete dynamics of
the system in latent space.

(a) Building basis functions using POD

The high-dimensional data from physical space PP are decomposed and projected onto a low-
dimensional latent space H (i.e. Hilbert space) through the basis functions. In this study, the basis
functions are built by computing a POD of a discrete numerical solution to the system. Denoting
by n the total number of time steps in the numerical solution and recalling that N, is the number
of degrees of freedom in the state vector, we construct the matrix X € RN Each column of this
matrix is the vector of state across all spatial degrees of freedom at a single time step, so that we
can write

| | | n
1 .
X=|lu®-a u?-a .. u®?—a|leRN a= N Du®, (2.3)
| | | "=l

where @ € RN represents the temporal mean value of the state vector. Subsequently, we build the
POD modes using

®=POD(X), and Xw~®Q, 2.4)

where the POD operator extracts the orthonormal basis functions (i.e. POD modes) denoted by
@ e RN such that @7 ® = I. Further, r is the number of POD modes considered so that r is equal
to the dimension of the solutions in the latent space. Additionally, Q € R™" denotes the latent
solutions that contain temporal information representing the dynamics of the system in the latent
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space, defined as

| | |
Q= q(l) q(2) q(”) eR™", (2.5)

The state vector at any time step i is then approximated by u® ~ &q® + i, so that we can define
the residual 1) € RN as

O = u® - — oq. (2.6)

This residual represents the maximum accuracy of the state reconstruction that can be achieved
during the development of a ROM using a latent space of r dimensions. In the next section, we
will discuss the development of a ROM for the dynamics of the system in the latent space.

(b) Dynamical system in the latent space

Since the aim of this study is to develop a data-driven ROM, we convert the semi-discrete form
of the ROM in equation (2.2) to a fully discrete form. Denoting the latent solution at the ith time
step (i.e. iAf) as q), we write the fully discrete form of the ROM as

2 = g 9@< g, ..., g2, q(i‘l)>, (2.7)

where § €R’ is the predicted latent solution by the ROM. Furthermore, 3 : R™" — R’ is the
DNN mapping function that advances the latent solution to the next time value i and 7, is the
number of sequential time steps that we consider as input data for the DNN model. Finally,
IR‘(;) € R’ is the residual vector of the ROM at time step i. Note that the performance of mapping
function G is obtained by the matrix of learning coefficients and the vector of bias, both obtained
during DNN training. Here, this mapping function is developed by LSTM architecture elaborated
in the next subsection.

(c) Long—short-term memory

LSTM architecture includes forget and input gates that resolve the main issues in RNNs [35,42,43]
(see §1). Here, we will briefly recall conventional LSTM architecture, followed by a discussion of
some of the shortcomings of LSTMs for parametric design in the next section.

The conventional LSTM cell receives the latent solution §(t — At), cell state c(t — At) and
the output of the previous LSTM cell, h(t — Af). These inputs are given to neural networks
as follows

()= a(q(t — ADU; + h(t — ADW, + bi),
F(t) = o(g(t — ADU; + h(t — ADW; +by), 2.8)
o) = a(q(t — ADU, + h(t — ADW, + bg),

where I(t), F(t) and O(t) are input, forget and output gates, respectively. Moreover, o is the
sigmoid function, U and W are matrices of learning coefficients and b is the vector of bias. Note
that the subscripts of matrices and vectors denote to what gate they belong. The candidate to
update the cell state, C(t), at present instant is computed as

C(t) = tanh (§(t — ADU, + h(t — ADW, +b,). 2.9)
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Figure 2. Architecture of (a) conventional and (b) parametric LSTM cells. The triangles are activation functions (red: sigmoid
and purple: tanh). Note that the tanh activation function can be replaced by any other activation function based on the
applications.

Subsequently, the cell state and the output values from the LSTM cell are computed as

o(t) =F(t) x c(t — AD) + I(£) x C(b),
(2.10)
h(¢) = tanh (c(t)) x O(t),

where X is the element-wise product between matrices. Figure 2a depicts the architecture of a
conventional LSTM cell and its relative connections. Note that for 1, sequential data given to the
input of the LSTM model, we need to connect r1, LSTM cells in series, and the final h(#) is projected
onto a dense fully connected output layer to obtain §(#).

(d) Shortcomings of LSTM for parametric design

According to figure 24, the conventional LSTM cell learns based on the inputs q(tf — At), h(t — At)
and c(f — At). There is no pattern recognition or classification gate in the conventional LSTM that
can change dynamics based on differences in design parameters. Therefore, if the conventional
LSTM model is trained for different case studies with different design parameters, the only
adjustable parameter to change the dynamics of the problem to another one is the sequential latent
solutions from previous time intervals. This is also visible in the formulation of equation (2.7),
where the design space has no clear and independent identity in the LSTM architecture, and
design parameters often appear as a ghost in the latent space. It is known that while LSTMs are
designed to capture long-term dependencies, they may still struggle with noisy or ambiguous
data [44], leading to instability of the model with error accumulation in the sequential solutions.
This sensitivity to small perturbations, combined with the lack of any mechanism to constrain the
latent-space dynamics to a specific design parameter, means that conventional LSTM is ill-suited
to predict solutions across an entire design space.

3. Parametric LSTM

If the latent solutions in the ROM depend on a vector of design parameters s € RYs with a
dimension of N, then the discrete state vector and discrete latent solution can be written as u(t; s)
and q®(s), respectively. To add the design space as another aspect in the ROM, we propose to
develop a design network that correlates the design parameters s with the attractors existing in
the latent space H. This design network is generically defined as follows

8=D(s), 3.1)

where § € R™" is the output of the network (i.e. the output layer), and D : R¥ - R™™ is the
mapping function. The goal of the design network in equation (3.1) is to capture correlations
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that exist in the design space, encode them and connect them to the latent solutions in the
latent space. With this addition, the formulation of a DNN-based ROM can be represented
as follows

jel(;‘) — q(i) _ 921')((1(1;%)’ o, q(i—z)’ q(i—l);s)’ (3.2)
where 920 is now parameterized by the design parameters through a new network gate proposed
in this study.

Specializing this idea to an LSTM network, we can add a design gate to the LSTM cell as
shown in figure 2b, leading to our proposed parametric LSTM (pLSTM) approach. This design
gate directly involves design parameters in the learning process, which allows the ROM to learn
different patterns of the dynamical system with respect to the design parameters in the design
space. Therefore, the proposed pLSTM design gate is defined as follows:

81 =D4(s),
8y = Dy(s), (33)
Q(t, S) = q(t) X 81 + 82,

where Q(t;s) is the output layer of the design gate. In this way, the pLSTM-gate has two separate
design networks D; and D,, and makes a linear correlation to obtain Q(t; s). This strategy provides
better flexibility to find correlations between the state vector s and the latent solution §, compared
with alternative layer merging approaches (i.e. concatenation or element-wise adding). For a
conventional merging method, including the effect of design parameters on all latent solutions
as the input of the model requires concatenating all 7, sequential data. This would lead to an 1,
fully connected network, increasing the risk of over-fitting and excessive sensitivity of the DNN
model to the augmented latent solutions. Moreover, in preliminary tests, we observed that pure
adding or pure multiplication does not perform well in capturing the dependency of the latent
solutions on the design parameters. In the proposed solution, we therefore opt to use two design
networks that complement each other to relate the latent solutions to the design parameters. The
new architecture of the pLSTM, including this design gate, then turns into the following equations

() = cr(Q(t — AtS)U; + h(t — ADW, + b,-),

F(H)=0(0(t - AL)Uy + h(t — ADW, + by),
(3.4)
O(t)=a(Q(t - A 5)U, + h(t — AOW, + b, ),

e = tanh(Q(t — A5)U, + h(t— ADW, +b,).

Note that the rest of the architecture remains the same as the conventional LSTM. In general, the
pLSTM uses the design gate to improve its fixed memory capacity that targets learning dynamics
and can further memorize information about the attractors across different design parameters.
Our proposed design gate approach contrasts with a more naive approach of creating a new
network to directly control the weights inside the LSTM network, such as a hypernetwork [45,46].
The advantages of our approach are the increased tolerance of the model, reduced complexity
in architecture and lower training costs. Specifically, by being integrated within the LSTM cell,
pLSTM is able to suppress the noise in the solutions, leading to a stable DNN model for long-term
future prediction of solutions. Further, to control all LSTM weights the output size of a hyper-
DNN should be four times the input size of the conventional LSTM cell, which is much larger
than our pLSTM design gates. Therefore, having such a DNN for tuning trainable parameters in
the LSTM network may decrease the efficiency of the model both in training and prediction.

To summarize our proposed pLSTM-based 3A modelling approach, figure 3 illustrates the
schematic of the ROM framework. In the case of 3A modelling, a similar hybrid framework
in 2A is used, but employing pLSTM instead of conventional LSTM to incorporate the design
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Figure 3. Schematic of ROM framework developed for 3A modelling using pLSTM.

space for ROM construction. The data matrix, X**, is a multi-block matrix containing multiple
XflA matrices, each labelled with a distinct design parameter s; with i=1,2,...,m, where m is
the number of cases with different design parameters, considered in the model training. Each
XflA matrix includes sequential states. Utilizing @7, a multi-block matrix of latent solutions,
QSA is derived, encompassing latent solutions matrices (i.e. Qi’q) labelled with different design
parameters. Subsequently, the ROM is trained by simultaneously feeding design parameters and
the corresponding latent solutions into the pLSTM. Finally, the developed ROM can be utilized for
predicting the dynamics of latent solutions in case studies involving unseen design parameters,
denoted as s*. Ultimately, these predicted low-dimensional results are projected back onto the
high-dimensional physical space using the @ basis functions.

4. Modelling of the Van der Pol oscillator

In this section, we aim to compare our proposed pLSTM approach with the conventional LSTM
models for a low-dimensional nonlinear ODE. First, we construct a DNN based on the LSTM
architecture leading to 1A% aspect modelling, and then we add design space as the second
aspect to the model by replacing the LSTM with our proposed pLSTM. Though the latter does
not represent a 3A approach, applying pLSTM to this system does provide an opportunity to
investigate the effect of adding design gates to an LSTM within a simple, low-dimensional setting.

The ODE considered is the Van der Pol oscillator, a non-conservative system widely used to
simulate diverse engineering phenomena due to its nonlinear behaviour. The dynamics of the
oscillator is governed by the second-order ODE

i 2% 0 w20 =N, B=0)=N0.1 41
ﬁ_l‘[( -8 E‘i'g_’ g _)_ (a ) E(_ = ’)’ ()

where g : T — R denotes the oscillator’s position as a function of time, and ¢ € R* is the damping
parameter defining the nonlinearity level in the oscillator. Moreover, N'(0, 1) is a random number
between 0 and 1. Small damping parameter values typically result in periodic or quasi-periodic
motion, while surpassing a critical value around u = 2 leads to chaotic behaviour characterized
by irregular oscillations and sensitivity to ICs.

We numerically marched the ODE forward in time with a time step of At =0.05 using the
fourth-order Runge-Kutta (RK44) for 18 different design parameters s =y, with values up to
s =3 contained within the design space. These 18 design parameters are random and uniformly
distributed in the selected range. For the simulation of each case study, the IC is set to N'(0, 1),
and after 50 oscillation cycles, the temporal solution of the oscillator’s position and its velocity, i.e.
q=1Ig %], are collected for eight extra cycles to build a dataset. We also provided the distribution
of the mean squared error (MSE) error in the design space for the developed DNN model in
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Figure 4. Distribution of the prediction error for the DNN used for the Van der Pol oscillator, distinguishing between the seen
(black) and unseen (blue) data.

Table 1. Network architecture and parameters considered in building DNN for modelling of the Van der Pol oscillator.

network layers (LSTM) [210, ReLU(30), Linear(2)]
AAAAAAAAAAAAAAAAAAAAAAAAAA networklayers(pLSTM)[2><10ReLU(30)L|near(2)]
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.......................... earlystoppmgcallbackMSE(Test)

figure 4. As shown, the pLSTM is able to predict the solution of the dynamical system for all
design parameters.

Given this training data, we explore two distinct LSTM approaches to compare against our
proposed pLSTM method. First, we examine a scenario with an LSTM network trained on a single
damping parameter, s; =0.14, and denote this network LSTM; since it is trained on only one
single parameter. Second, we consider an LSTM network that is trained on the entire training
dataset (LSTM, ) but does not include the design gate as proposed in the pLSTM approach. Both
networks are tested in two scenarios. First, we provide each network the exact IC of s;, which
is contained in the training set for both LSTM; and for LSTM;,, and compare the predictions
with the simulated solution. Second, we provide each network the exact IC of another parameter
s, =2.8, which is an unseen case that is not contained in the training data for either LSTM.
Meanwhile, the pLSTM approach is trained on the entire dataset and the associated design
parameters, and then evaluated as well for both s; (seen) and s, (unseen).

The details regarding the final DNN architectures, hyper-parameters and settings employed
for modelling the Van der Pol oscillator are presented in table 1. The network architecture is
provided in a list format, where the initial and last items correspond to the DNN model’s input
and output, respectively. Intermediate items include the activation function alongside the number
of units (neurons) within each hidden layer. For instance, in the LSTM architecture, the input is
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Figure 5. Comparing results of conventional LSTM and pLSTM architectures for the Van der Pol oscillator at (a) s; = 0.14 (seen)
and (b) s, = 2.8 (unseen) design parameters.

structured as 2 X 10, where the first component denotes the number of solutions, and the second
component, 1, =10, means the number of sequential data. Subsequently, a rectified linear unit
(ReLU) activation function is applied to a hidden layer comprising 30 units. The LSTM model’s
output consists of two units with a linear activation function, specifying the size of the output
layer. The pLSTM network has the same architecture as the LSTM model. Additionally, the design
network encompasses a single input, s = y, and its output layer matches the size of the allocated
input layer for the solutions. The optimizer is configured as Adam with an adaptive learning
rate defined by LR(i,) = 1 x 10720.96"/%, where i, stands for the epoch index, and i, represents the
decay step. The loss function is determined by the MSE, mathematically expressed as

Np

1 S0 A
MSE ==, 3, =3, 42)

D i=1j=1

where 17@ denotes the predicted value by the DNN model indexed in vector §”, and N, indicates
the number of data utilized to calculate this error, applicable for both training and test datasets.
The maximum epoch is set to 1000, yet the training may cease earlier due to a callback function
monitoring the validation loss (i.e. test error).

Figure 5 shows the results of LSTM;, LSTM;, and pLSTM for predicting solutions of the Van
der Pol oscillator at s; =0.14 (seen) and s, =2.8 (unseen) in the design space. The IC is selected
from the numerically advanced solution after the 50th cycle. In figure 54, it can be seen that
LSTM; and pLSTM effectively predict the limit cycle attractor solutions associated with their
seen data, while LSTM,, fails. The reason for this failure is that LSTM, is trained over the
entire dataset, but it does not have a notion of the design parameters associated with the data.
Therefore, LSTM;, is unable to extract the relations between the dynamical patterns and the
design parameters. Consequently, LSTM;, is unable to recover the correct dynamics for either
seen or unseen parameters. As depicted in figure 50, when the damping parameter surpasses the
critical value, nonlinear behaviour appears in the attractor, leading to chaos. In this case, to make
sure the attractor is visible, the LSTM models predict the solutions from 50th to 98th cycles. Here,
LSTM, and LSTM, fail to predict accurate solutions compared with the exact one, while pLSTM
is still able to provide a close prediction of the dynamics. The cloud of solutions in the upper and
lower lobes of the attractors indicates the nonlinear behaviour that is expected at s, =2.8.

Consequently, we can state that the LSTM,, trained only on data for s;=0.14, is
understandably able to predict solutions at this parameter value but fails to predict solutions at
s, = 2.8 when fed with the exact IC of s,. The LSTMy,, trained on the entire range of damping
parameters, fails in both predictions despite using the exact IC associated with each of the
design parameters. However, pLSTM, utilizing the design gate, encodes complex nonlinear
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patterns across the design space, enabling predictions for dynamical behaviours even with unseen
damping parameters in the Van der Pol oscillator.

Exploring this low-dimensional ODE highlighted the limitations of the conventional LSTM
when applied to a system with a wide range of dynamic patterns. By contrast, the pLSTM
demonstrated its ability to predict the dynamical system, even when unseen design parameters
were provided.

In §5, we utilize the pLSTM for a true 3A modelling framework in complex fluid dynamic
problems. Specifically, this involves a two-dimensional incompressible flow past a heaving and
pitching ellipse with various kinematic design parameters, which will be elaborated in the
following sections.

5. Set-up for applying pLSTM to a heaving and pitching ellipse

In this section, we detail the numerical flow solver, problem set-up, network architectures and
training approach used for applying the pLSTM to a 3A analysis of the flow past a heaving and
pitching ellipse.

(a) Numerical solver

The flow solver used in this work simulates the two-dimensional incompressible Navier-Stokes
equations in vorticity transport form with a sharp treatment of immersed boundaries [47,48]. The
vorticity transport equation is written as

dw
—=-V:(vw—vVw), (5.1)
ot
where w =V X vis the scalar vorticity, t € T is time in a time space T and v represents the kinematic
viscosity. The divergence-free velocity vector v=[v,,7,] can be expressed in terms of a scalar
stream function 1 that satisfies a Poisson equation

v=VXxy, on Q,

(5.2)
-V2%=w on Q,

on the computational domain Q with dimensions of L, and H,, in x and y directions. The
streamfunction is solved with free-space boundary conditions on the inflow and top/bottom
domain boundaries, and an outflow boundary condition is applied on the downstream domain
boundary [47]. The computation of the velocity field is supplemented with no-through boundary
conditions and appropriate circulation constraints, whereas the vorticity transport equation is
solved with a wall vorticity boundary condition to enforce no-slip [47,48]. Equations (5.1) and
(5.2) are discretized using a second-order finite-difference method, and the solutions are evolved
in time using a third-order Runge-Kutta temporal scheme.

(b) Problem definition

The flapping ellipse with an aspect ratio of 0.12 has a rigid-body motion with following harmonic
heaving and pitching motion

y(t) = A, sinQzft), (5.3)

8(t) = Ag sin(27tft + ¢y), (5.4)

where f is the flapping frequency, A, represents the heaving amplitude, Ag is the pitching
amplitude and ¢g is the phase angle between the heaving and pitching motion. The flapping

65007707 :L8Y ¥ 205y 20id edsy/jeuol/Biobuiysijqndiiaposjedos



Downloaded from https://royal societypublishing.org/ on 21 February 2025

Table 2. Design parameters considered in this study.

design parameters values (number of repetitions)

0.3(9),0.35(9),0.45(18),0.55(7),0.6 (9)

frequency is non-dimensionally expressed using the Strouhal number St = 2fA, /U,,, where U, is
the free-stream velocity. The flow regime is characterized by the Reynolds number Re = Uc/7,
where c is the chord length of the ellipse. In this study, the Reynolds number is fixed to Re = 500
and the heaving amplitude is set to A, = 0.5c.

The simulations are performed in a rectangular domain of resolution 1280 X 768 grid points,
with a grid spacing /i = c/144. The leading edge of the ellipse is placed at a distance of c/2 from
the inflow plane. These settings are chosen based on extensive convergence analysis for problems
at similar or higher Reynolds numbers in [48], as well as previous applications and benchmark
studies using the same code [49,50].

The design parameters are the Strouhal number, the pitching amplitude and the phase shift
between heave and pitch. Therefore, we define the vector of design parameters as s = [St, Ag, ¢g].
We selected m =53 parameter combinations, summarized in table 2 and simulated each one of
them to generate training data for this study. Each case was simulated until 16 ellipse flapping
cycles to ensure the solutions reached quasi-steady conditions. The corresponding dataset for each
case study includes 40 samples per ellipse flapping cycle, captured during the last four cycles
leading to 160 spatial flow fields per simulation.

(c) Architecture and training details

Figure 6 shows a schematic of the 3A-pLSTM framework applied to the current study.
Equation (2.1), which can be understood as a general description of the Navier—Stokes equations,
are solved in the (discrete) physical space [P and the solutions are stored for temporal snapshots t =
[fo, t1, ..., 1] in the time domain T. Since, in the simulation, the ellipse is moving with respect to the
domain, direct application of SVD on this data will not yield efficient data compression [51-53].
Therefore, using the approach proposed in [51,54], we perform a coordinate transform from the
Eulerian coordinates x to Lagrangian coordinates ¥, moving and rotating with the heave and
pitch motion of the ellipse. Therefore, using this transformation, the flapping ellipse remains
stationary with respect to ¥. After transforming the flow fields data to the Lagrangian frame,
we employ equations (2.6) with an orthogonality constraint to transform the data into a low-
dimensional latent space. We employed SVD on the whole dataset built by snapshots from all
case studies together, as sketched in figure 3. The magnitude of some of the POD modes, |¢;], is
shown in figure 6. Moreover, figure 7 shows the changes in the non-dimensional eigenvalues and
accumulation with respect to the rank, i.e. the number of POD modes. Here, y; is the ith eigenvalue.
As shown, after r > 300 the eigenvalues reduce significantly, but keeping this amount of solutions
is too much in the context of ROM. Therefore, the rank is set to r = 150, for which truncated POD
modes contain 98.2% of the energy.

Note that we can choose a higher number of ranks to increase the information accumulation in
the model; however, there are a few technical issues that should be addressed. First, as explained
before, the data are transformed into a Lagrangian frame to avoid spatial flow motions caused by
the moving ellipse. However, by this transformation, the flow itself has some spatial motions in
the domain, resulting in minor noise in the high frequency (i.e. high rank) POD modes. Therefore,
adding extra modes may hurt the accuracy of the model and give fewer improvements in the data
reconstructions. Second, by adding more ranks to the model, the number of input and output units
in the LSTM network increases, leading to an essential need to increase the size of networks in the
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LSTM. Hence, this larger network brings new issues, such as over-fitting, less efficient prediction,
difficulties in training and its higher computational costs and local optima in the loss function
domain, leading to different model predictions after each training procedure.

To establish hyper-parameters for designing the neural network architecture, we conducted a
comprehensive investigation into the number of time steps (11,,), the number of hidden layers (N},)
and the number of units (N,,) concerning the training and test errors, obtained by MSE. Table 3
displays the training and test errors for each architecture alongside the corresponding processing
time per unit. The processing time denotes the time required to train a unit completely within
the neural network. Table 3 reveals a significant reduction in training and test errors when the
number of units is N, = 640, beyond which no substantial error reduction is observed. Notably,
for N,,, = 640, the test error is lower for Nj, = 1 compared with N, = 2. Thus, adding more hidden
layers does not notably affect the model’s accuracy and we selected N;, =1 and N,,, = 640 for each
LSTM cell. When the number of units is sufficiently large (N, =640 or 1280) we can identify
a trend in the number of time steps. For those cases, increasing from n, =5 to n, =10 leads to
a clear reduction in errors, indicating that the amount of information from five previous time
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Table 3. Hyper-parameters and their effect on the training performance of the pLSTM cell.

time steps n, hidden layers N,y units N, train error (VSE) test error (MSE) time (min/N,,)

1.92 x 1072 0.036

v
N
—
=N
S
N
U
v
X

—
9

&

steps provided to the pLSTM is not enough for this system. Interestingly, the main effect of
increasing 7, from 5 to 10 is in the reduction of the testing error. This implies that the architecture

is able to predict the training data even with a small time history, consistent with the Markov
property of the underlying equations. However, when applied to unseen parameter vectors, the
pLSTM architecture requires a longer history to predict the associated dynamics with similar
accuracy. Increasing further to n, = 20 shows stagnating or increasing error values, while training
and prediction costs increase. We thus choose 7, =10. Finally, it is worth mentioning that the
same procedure is applied to set hyper-parameters for LSTM cells and we obtained the same
architecture.

The information about the final DNN architectures, hyper-parameter and settings are provided
in table 4. The LSTM has an input with dimensions of 150 x 10, where the first term is equal to
the rank, »r =150 and the second term is n,= 10. Then, the ReLU activation function is applied
to a hidden layer with 640 units. The output of this LSTM model also has 150 units with a
linear activation function, where the unit indicates the output layer size. The pLSTM network
has the same core architecture as LSTM. The design network has three inputs, i.e. s = [St, Ag, ¢g]
and the output layer of this network is the same size as the input layer allocated to the latent
solutions (i.e. 150). The optimizer is set to Adam with an adaptive learning rate defined as
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Table 4. Network architecture and parameters considered in building DNN reduced-order modelling.

parameter value

network layers (LSTM) [150x10, ReLU(640), Linear(150)]
....................... networklayers(pLSTM)[150x10ReLU(640)L|near(150)]
....................... networklayers(des|gnnetwork)[3,ReLU(150),ReLU(150),150><10]
....................... max|mumepochs1000
....................... e
AAAAAAAAAAAAAAAAAAAAAAA Iearmngrate(LR)1><10—3096’e/’d
....................... test/tra|n|ng02
....................... 0pt|m|zerAdam
....................... L
AAAAAAAAAAAAAAAAAAAAAAA earlystoppmgcallbackMSE(Test)

LR(i,) = 1 x 10730.96"/, the maximum epoch is set to 1000, but the training may stop earlier since
we set a callback function, monitoring the validation loss (i.e. test error).

6. Comparing pLSTM with generalizations of classical approaches

Here, we wish to compare our proposed pLSTM approach with naive applications of LSTM
models across different parameters within a design space. To do so, we follow the approach of §4
and consider two different LSTM approaches. First, we consider a case with LSTM trained on a
single parameter set s; (LSTM, ) and second, we consider the case with LSTM trained on the entire
training set provided in table 2 (LSTM, ). In both cases, we evaluate the LSTM's predictions after
injtializing them with either the IC of s; (contained within the training set) or the IC of s, (unseen
data that are not contained within the training set). We choose parameter sets s; = [0.3,20°,90°]
and s, = [0.55,35°,100°]. We compare their performance with that of pLSTM trained on the entire
dataset and initialized with the same ICs.

The results obtained with LSTM;, LSTM;, and pLSTM are shown in figure 8. The results for
both s; (seen) and s, (unseen) design parameters are provided in two different columns. Here,
Prediction denotes the history of the predicted solutions by the models in three-dimensional phase
space and stable refers to the final solutions when the transition effect vanishes. Furthermore, the
results in three-dimensional phase space are for [g1, 95, g3] and [41, 439, §40], indicating the solutions
in lower and higher frequencies, respectively. Also, the projections of the solutions are shown
in two-dimensional phase spaces, plotted using lighter colours on the three interior faces of the
plotting domain. The exact solution in latent space is obtained directly from the SVD step. Note
that all models are initiated with the exact IC associated with either s; (left column) or s, (right
column). As shown in the first row of figure 8, the LSTM; model with s; parameter set can capture
the dynamics accurately for latent solutions at lower and higher frequencies. When initializing
LSTM; with the exact solution of the unseen parameter set s,, however, it fails to predict correct
solutions. This is also expected: if the latent solutions of different dynamics are given as the IC to
the LSTM; model, it cannot recover and reproduce the whole dynamics because it extrapolates the
pattern of the dynamical system, which is not mathematically correct. Hence, when the solution
of the LSTM; model becomes stable, we observe that the predicted dynamics are not correct.

In the next attempt, we build a ROM by training LSTM,, using the training dataset that
spans the entire design space. This would allow the LSTM;, model to learn different dynamics
based on the various latent solutions given as input to this model. The second row in figure 8
shows the predictions after initializing LSTM;, with either s; or s, parameter sets. The plots
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Seen Unseen
5,=[51=03, Ag = 20°, ¢ = 90°] 5,=[S1=0.55, Ay =35 ¢, = 100°]

Prediction

Exact

Prediction (stable)

Figure 8. Temporal evolution of the latent solutions in the phase space diagram for the LSTM,, LSTM,_,_ and pLSTM models for
51 (seen) and s, (unseen) case studies. These models are initiated by the exact ICs q,(s;) and q,(s,).

show that LSTM;, can predict the latent solutions accurately only for the first few cycles,
after which the prediction diverges from the exact solutions. Eventually, the dynamics of the
stable latent solutions will be different from the original ones. This issue can be attributed to
the error accumulation in the results of LSTM;, at each time step. As mentioned before, the
system identification in this LSTM;, model can only be done using the initial input. However,
if the residual at the output of the LSTM;, model is considerable, the solution vector §® + .’R,(;)
represents a perturbation of the reference dynamical system. As the error accumulates over
the time steps, this deviation will become more significant, and eventually, the predictions
converge to spurious latent solutions. As shown, the prediction of the dynamical system for s;
has converged to a totally different solution, even though s; was part of the training data. The
predicted stable solutions for s, are more similar to the exact ones, but they still do not represent
the correct dynamics. This means that naively training an LSTM model on a parameter set that
spans an entire design space will not yield reliable results, even when initialized with exact
solutions of parameter combinations within the training data.

Finally, we consider the performance of our pLSTM model on the same case studies used for
the previous LSTM models. The last row in figure 8 illustrates the results of the pLSTM model. As
seen, the solutions predicted by the pLSTM model are in good agreement with the exact ones for
both transient and stable conditions even after 40T. For the unseen case study, s,, the results of
pLSTM for the latent solutions are also in good agreement with the exact ones for both lower and
higher frequencies. At higher frequencies, the predicted results have some discrepancies, which
are typical for unseen cases.
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Figure 9. Comparing dynamical characteristics of different LSTM models. These models are tested by exact initial conditions
q,(s1) and q,(s,) for seen and unseen case studies, respectively.

In order to investigate the performance of the LSTM models quantitatively, we measure the
amplitude and frequency of the latent solutions for all models considered in this study and
compare them with those of the exact latent solutions.

Figure 9 shows the results of LSTM models and the exact solutions for both the s; and s,
parameter sets, for low-frequency (41, 4,) and high-frequency (4,0) modes. Additionally, the upper
amplitude of the latent solution is computed for each cycle until T =40, such that Amp(g) =
max (g(t;)) for each cycle T; <t; < Tj,; with i=1,...,40. The first and third columns of figure 9
show the IC given to the models and the latent solutions are plotted until t =3T. The results
confirm what is seen in figure 8: LSTM; is stable and accurate for seen parameters s; but fails
for unseen parameters s,. For s;, LSTMy, initially captures the behaviour well but switches to
predict different dynamics after around T = 10 and its predictions significantly deviate from the
exact latent solutions afterwards (second column). For the unseen parameters s,, LSTM;, shows
increasingly large errors during the first three cycles, and again switches to a different dynamical
system, with much higher amplitudes compared with the exact solution (fourth column). The
pPLSTM results remain stable and relatively accurate for both s; and s,, with some small errors in
the amplitudes for s,.

We can convert these transient predictions of the latent solutions to the frequency domain in
order to evaluate stability and dispersion errors in the predicted results. Since our flow results
are characterized by a limit cycle, we expect our latent solutions to remain periodic as well.
Table 5 shows the frequency results for all cases in figure 9, with all frequencies computed using
FFTs of the transient results and expressed non-dimensionally as Strouhal numbers. For the case
study with s; parameter set, the flapping ellipse has a Strouhal number of St =0.3. As shown,
the LSTM; and pLSTM latent solutions have a primary frequency of St =0.302, while LSTM,
has St=0.324, resulting in errors of 0.66 and 8%, respectively. The exact secondary frequency
for s; is St =0.6, while this frequency for LSTM; and pLSTM is St =0.603 (error of 0.5%), and
for LSTMy, is St = 0.646, resulting in 7.6% error. The LSTM; and pLSTM thus predict the correct
frequencies for the latent solutions with a negligible error, which match the time histories shown
in the left column of figure 9. By contrast, the LSTM;, predicts higher St by default, resulting
in faster variations in the dynamics of the predicted system. For the s, parameter set, the exact
primary frequency also matches the frequency of the flapping ellipse, which is St = 0.55. As shown
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Table 5. Comparing the dominant (primary and secondary) frequencies of the latent solutions obtained by different LSTM
models for case studies with parameter sets of s, and s,.

case model primary frequency (St) error (%) secondary frequency (St) error (%)

$q (seen) exact 0.3 - 0.6 -
.................................. LSTM]0302066060305
..................................... LSTM1+03248064676
..................................... pLSTM0302066060305
AAAAAA Sz(unseen)exact05s_11_
.................................. LSTM1nonenonenonenone
.................................. LSTM1+06051012211
..................................... pLSTM05520361103027

in figure 9, the LSTM; completely fails to predict the latent solutions for the specified design
parameters, so its primary and secondary frequencies are incorrect and shown by None. The
LSTM,, model predicts higher primary and secondary frequencies of St =0.605 and St=1.22,
respectively (with 10 and 11% errors). However, the pLSTM predicts the primary frequency of
St =0.552 with an approximate error of 0.36% with reference to the St given in the parameter set.
Also, the secondary frequency obtained for the results of the pLSTM model is St = 1.103, resulting
in an approximate error of 0.27%.

Finally, one may ask what if we use the concatenation or element-wise approaches to add
the design parameters to the neural network model, instead of the design gate equipped in the
pLSTM. To address this question, we trained models with these two traditional approaches.
In the concatenation approach, the design parameters are concatenated to the solutions before
feeding them to the conventional LSTM model. In the element-wise approach, on the other hand,
the design parameters are expanded with a one-layer fully connected network (i.e. feedforward
neural network) to have an output with the same size as the latent solutions. Then, this fully
connected layer is added to the latent solutions element by element. Figure 10 shows the results
of the latent solutions predicted by conventional LSTM with concatenation and element-wise
adding, compared with the pLSTM results, both for seen (a) and unseen (b) data. As shown in
figure 10a, the concatenation approach can predict the solution for four cycles, while the error
of prediction increases in time. The element-wise approach fails to predict after about ¢/T = 3.
On the other hand, the pLSTM outperforms two other approaches. Figure 10b also shows the
predicted solution for the first latent solution for the unseen case. As shown, the concatenation
and element-wise approaches fail to predict the solution within the first flapping cycle, while the
pLSTM maintains accuracy and stability. Therefore, for both seen and unseen cases, the pLSTM
outperforms two other approaches.

Based on these results, it can be concluded that LSTM models, regardless of the number of
case studies used for training, cannot accurately predict solutions for different design parameters.
This is because they solely rely on the latent solutions from previous time steps and any small
error accumulation in the sequential latent solutions leads to different predictions of attractors,
ultimately resulting in incorrect dynamics. On the other hand, pLSTM models can predict
different dynamics and converge to the actual attractors of the system based on the given design
parameters while remaining stable. This is due to the presence of a design gate in the pLSTM
model, which allows for searching for different dynamics in the design space and acting as a solid
constraint to ensure that the predicted latent solutions remain consistent with the specified design
parameters. Moreover, the design gate limits the growth of error accumulation in the sequential
prediction of the latent solutions.
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Figure 10. (a,b) Comparing results of pLSTM and the conventional LSTM with concatenation and element-wise adding of the
design parameters to the solutions.

7. Robustness to the initial condition and real-time parameter variations

As discussed in the previous section, the design gate in the pLSTM model is responsible for
ensuring that its solution predictions stay within the actual attractor defined by the design
parameters. The design gate plays a crucial role in controlling the stability and accuracy of the
dynamical system. However, it is important to determine the tolerance level of the design gate
in the pLSTM model to errors in the solution. To investigate this, we perturb the ICs and feed
them into the pLSTM model to observe its response to different levels of perturbations. After that,
we investigate the effect of changes in the design parameters on the pLSTM model in real-time
modelling.

(a) Initial condition

We add a scaled matrix of random noise, Q,,, 4 € R™"» with Range(Q,,.4) = [-0.5,0.5] to the exact
IC q,(s), with s the parameter vector considered. The augmented IC of the latent solutions with a
certain noise level is then defined as

qO(S) = qO(S)[1 + 2t'.czrancl]’ (71)

where ¢ is a scalar that tunes the noise amplitude.

Figure 11 displays the stable latent solutions predicted by pLSTM in the phase space, with noise
amplitudes increasing from ¢ =0 (exact) to ¢ =10 (1000% noise). Interestingly, the results show
that the pLSTM model can still recover the original attractors for both seen and unseen design
parameters and the predicted solutions coincide with the corresponding exact solutions. This
means that when the augmented latent solutions are given to the pLSTM, the design gate adds
corrections to the input data before sending them to the other gates. These corrections result in a
prediction in the output of the pLSTM model, which is more likely within the attractor represented
by the specified design parameters. Therefore, after applying these corrections by the design gate
for a few time iterations, the latent solution converges to the desired stable attractor. It is worth
mentioning that the corrections applied by the design gate to the augmented solutions are rapid,
leading to convergence in less than one ellipse flapping cycle.

(b) Real-time parameter changes

Since the model predictions are robust to noise in the initialization, we can further demonstrate
the robustness of the pLSTM model to dynamic variations with respect to the design parameters.
To do so, we identify three different design parameter sets and abruptly switch between them
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Figure 11. Temporal evolution of the latent solutions predicted by the pLSTM model with the augmented initial condition for
the case studies with s; (seen) and s, (unseen).

every tU,, /L, =500 time units, according to the first row in figure 12. Among these three design
parameter sets, [St =0.45, Ag = 20°, g = 90°] and [St = 0.45, Ag = 30°, g = 95°] are among the seen
design parameters, while [St =0.55, Ag = 35°, ¢ = 100°] is unseen. Note that we did not use the
gradual variation of design parameters since our approach is not designed to capture the physics
associated with such transients. Rather, we wish to investigate the long-term stability of our
predictions due to such real-time parameter changes. The second row in figure 12 illustrates
the switch between parameter sets at instants tU,, /L, = 500 (grey) and tU,, /L., = 1000 (yellow).
Moreover, the third row in figure 12 shows the time evolution of the predicted latent solutions (i.e.
q1, 42 and g3). As shown, the latent solutions have harmonic patterns and after sudden changes in
the design parameters, their behaviours undergo a short spurious transient before they become
stable again. In the last row, the latent solutions in the phase space are shown. The switch point
(yellow) indicates the moment that changes are applied, after which the pLSTM model quickly
finds the correct new attractors properly.

8. Physical analysis of the pLSTM predictions

So far, we have focused on the accuracy of the predicted pLSTM results in latent space. Here we
investigate the high-dimensional results in physical space, i.e. the predicted (non-dimensional)
vorticity wc/U,, and velocity components v, /U, and v, /U,, in the computational domain.
Figures 13 and 14 show contours of the normalized vorticity field, wc/U,, and the normalized
velocity magnitude, (|v| — U, )/U,, at four different time instants within a cycle, for both the
s1 (seen) and s, (unseen) parameter combinations, respectively. The upper and lower contours
belong to the prediction by the pLSTM model and the exact solutions, respectively. For s; (left
column), the results of the pLSTM model are in good agreement with the simulation results. The
pLSTM model for this case study captures and recovers the primary flow structures well. For
s, (right column), operating at a higher Strouhal number, we observe higher velocity gradients
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Figure 12. Results of real-time modelling for three sets of design parameters.

and magnitudes, leading to some discrepancies in the predictions. Still, the pLSTM predictions
match well with the exact solutions. Note that some discrepancies exist in the vorticity contours,
which may originate from the fact that pLSTM is trained by the velocity components, and hence,
the vorticity values are computed by the derivatives of those velocity components predicted by
pLSTM. Therefore, some errors in the vorticity contours are expected.

A more quantitative comparison is presented in figure 15, which shows the non-dimensional
velocity profiles at each of the instances in figure 14, measured along the y-axis at x/L,, =
0.34. Note that the exact velocity profiles are the reconstructed ones from 700 POD modes,
containing 99.99% of the total kinetic energy. For s;, the predicted velocity profiles for both v, /U,
and v, /U,, coincide with the exact corresponding non-dimensional velocity profiles (first and
second columns). However, some differences result from the truncated errors of POD modes and
numerical errors in the pLSTM model itself. Moreover, the non-dimensional velocity component
profiles predicted by pLSTM for the case study with s, are also in good agreement with the exact
solutions (third and fourth columns). At t/T = 0.5, pLSTM underpredicts the minimum value of
v,/U,, in the wake, which can be attributed to some information missed in the ROM for this
unseen case study. We believe that this error can be reduced by increasing the rank, 7, in order
to increase the dimensionality of the latent solutions to the DNN model. However, we note that
increasing r too much adds excessive complexity to the model so that, ultimately, the optimal
value of r will be obtained from an application-specific trade-off between required accuracy and
cost.

In general, pLSTM captures the primary flow structures well for both seen and unseen design
parameters. Moreover, comparing the velocity profiles shows that the accuracy of the pLSTM
model is in good agreement with the exact solutions. Therefore, high-fidelity flow fields can be
reconstructed and reproduced for various design parameters to study physical phenomena in a
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by the pLSTM model at four different moments in a flapping cycle T. The results belong to the case studies with s, (seen) and
s, (unseen).

design exploration or numerical optimization context. It is worth mentioning that we observed
both 2S5 and 2P wake types [55], depending on the precise combination of the design parameters.
These wake patterns were covered within the training dataset and were correctly predicted by
pLSTM for both seen and unseen combinations of design parameters.

9. Conclusions

This study introduces a three-aspect reduced-order model (3A-ROM), enabling simultaneous
prediction across spatio-temporal and design spaces. The main contribution is to propose a
parametric LSTM (pLSTM) method, which integrates a design gate with the other gates (such
as input, output and forget gates) in a conventional LSTM cell. This design gate serves as a
crucial link between the design space and dynamical system attractors. It further addresses
challenges found in conventional LSTM models, such as fixed memory capacity and sensitivity to
error accumulation, which can lead to instability of the predicted solution. By incorporating the
design gate, the pLSTM significantly enhances learning memory capacity, enabling the learning
of attractors across diverse design parameters.
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First, we examined the proposed pLSTM and conventional LSTM on a low-dimensional
dynamical system, the Van der Pol oscillator. Second, we explored a high-dimensional fluid
dynamic problem with complex flow structures. For this case, the numerical set-up involved
a two-dimensional flapping ellipse within the domain, simulated using a high-fidelity flow
solver for the incompressible Navier-Stokes equations with moving boundaries. The Strouhal
number, pitch amplitude and phase angle difference between heave and pitch are three design
parameters that alter the kinematics of the flapping ellipse. The Reynolds number was set to
Re =500, and the ROM was trained with 53 different case studies across the design space. For
both applications, pLSTM was trained on an entire parametric dataset and shown to match
the predictive performance of an LSTM trained and evaluated at a single design parameter.
However, pLSTM is unmatched in its ability to predict accurate solutions across the entire design
space, including for unseen parameter vectors. For the flapping ellipse problem, specifically,
the proposed ROM with pLSTM thoroughly captures primary flow structures and reproduces
high-fidelity flow fields.

The proposed pLSTM approach is uniquely suited for outer-loop optimization and uncertainty
quantification problems where spatio-temporal flow field dynamics are required across a
parameter space. Examples are one-way coupled flow and flow-driven multi-physics problems,
such as scalar mixing or optimal sensor placement. Further, the pLSTM approach can provide
initial insights into two-way coupled problems, enabling quick traversal of the parameter space
for such problems as fish schooling. The proposed pLSTM approach can also pave the way
towards predicting two-way coupled problems, initiating new lines of research into architecture
details and training strategies for coupled problems. Further, while we only focused here on
a simple POD-based expression, pLSTM can naturally be combined with more efficient order-
reduction approaches for dynamic problems, such as dynamic mode decomposition [56] and
different types of autoencoders that bring interpretability of latent expressions [57,58]. Finally,
though the main application considered here is in fluid flows, the pLSTM approach is general
and thus holds promise for data-driven ROMs of dynamical systems across many different
applications.
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