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Immersed methods discretize boundary conditions for complex geometries on background 
Cartesian grids. This makes such methods especially suitable for two-way coupled flow-body 
problems, where the body mechanics are partially driven by hydrodynamic forces. However, 
for the vorticity-velocity form of the Navier-Stokes equations, existing immersed geometry 
discretizations for two-way coupled problems only achieve first order spatial accuracy near 
solid boundaries. Here we introduce a sharp-interface approach based on the immersed interface 
method to handle the one- and two-way coupling between an incompressible flow and one or 
more rigid bodies using the 2D vorticity-velocity Navier-Stokes equations. Our main contributions 
are three-fold. First, we develop and analyze a moving boundary treatment for sharp immersed 
methods that can be applied to PDEs with implicitly defined boundary conditions, such as those 
commonly imposed on the vorticity field. Second, we develop a two-way coupling methodology 
for the vorticity-velocity Navier-Stokes equations based on control-volume momentum balance 
that does not require the pressure field. Third, we show through extensive testing and validation 
that our resulting flow-body solver reaches second-order accuracy for most practical scenarios, 
and provides significant efficiency benefits compared to a representative first-order approach.

1. Introduction

Fluid-structure interaction problems are typically governed by complex geometries undergoing non-trivial, large, and a priori

unknown motions. In this context, immersed geometry methods provide an attractive alternative to traditional body-fitted grid ap-

proaches because they allow geometries to move and/or deform independently of the mesh [1,2]. For 2D external flows it is appealing 
to combine immersed methods with the vorticity-velocity formulation of the Navier-Stokes equation, which can reduce simulation 
costs through the use of compact computational domains that only contain the support of the vorticity field. This formulation also 
eliminates much of the numerical complexity associated with the pressure field, such as specialized time integration schemes to 
enforce the incompressibility constraint or odd-even decoupling in the pressure Poisson equation on collocated grids. However, to 
the best of our knowledge no immersed geometry methodology currently exists for 2D vorticity-velocity flow solvers that can handle 
two-way coupled flow-body problems with spatio-temporal accuracy beyond first-order.2 To provide further context to this open 
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challenge, below we will present a brief survey of (1) existing embedded boundary approaches for 2D vorticity-velocity flow solvers, 
and (2) the treatment of moving boundaries in sharp embedded boundary methods.

There are broadly three categories of embedded boundary approaches for 2D vorticity-velocity Navier-Stokes solvers, where we 
exclude classical panel-method type approaches [3,4] that require the formulation and solution of a boundary integral problem. The 
first category contains discrete-forcing approaches based on the immersed interface method (IIM). In [5,6], the first IIM simulations 
of flows past single, stationary embedded bodies were reported, achieving up to second-order convergence in space and time. This 
was extended to simulations past multiple, moving bodies [7] using an overset grid to compute boundary vorticity values, reducing 
the convergence of the near-wall vorticity field to first order. For single, stationary bodies an explicit-jump immersed interface 
method was used in [8], where the use of compact finite-difference schemes led to fourth-order convergence. A similar approach 
was recently used in [9], where flows past multiple, moving bodies were considered using compact, fourth-order spatially accurate 
finite-difference schemes. Immersed interface methods have also been used in combination with a vortex-particle method, first using 
a Lighthill-type splitting method [10,11] and subsequently using a Thom-like vorticity boundary condition [12], both achieving 
second order accuracy. Finally, in a previous paper [13], we proposed a fully explicit second-order accurate IIM-based vorticity-

velocity Navier-Stokes solver that handle multiple stationary bodies using conservative finite-difference methods. The second and 
third categories contain continuous-forcing approaches based on the penalization method and immersed boundary method (IBM), 
respectively. The penalization method was proposed in [14] and combined with remeshed vortex methods in [15]. Subsequently, 
this approach has been developed and enhanced over a sequence of works to handle multiple moving and deforming bodies as well 
as two-way coupling problems [16–21], all while retaining fundamentally a first-order accuracy in space. Engels et al. [22] proposed 
a similar approach that combines the penalization method with a pseudospectral spatial discretization for simulations with thin solid 
bodies and two-way coupled fluid-structure interaction. Lastly, an immersed boundary method for the vorticity-velocity formulation 
was first proposed in [23], and subsequent IBMs have been developed for flows with heat transfer [24] and for simulations based on 
a meshless spatial discretization [25]. More recently, Wang and Eldredge [26] presented a projection immersed boundary method 
for two-way coupling problems with a strong-coupling scheme. The strong-coupling method enables stable simulation of bodies with 
an extremely small density ratio, but the convergence rate of spatial accuracy is still first-order near the boundary. Surveying all 
these contributions, we conclude that in the context of vorticity-velocity formulation with embedded moving boundaries, only the 
IIM provides a sharp boundary discretization. Consequently, only the IIM-based approaches have yielded spatial convergence rates 
beyond first order in the infinite norm. None of these IIM methods, however, have been extended to two-way coupling problems. 
One fundamental challenge related to this is that the vorticity-velocity formulation does not explicitly yield a pressure field. For the 
IBM or penalization method, this can be circumvented because the fictitious forces employed to enforce boundary conditions on the 
flow can be directly related to the forces applied by the flow on the body. For most sharp IIM approaches this approach is unavailable 
and body forces are typically obtained through control volume analyses, which are more challenging to extend to coupled flow-body 
problems.

Nevertheless, sharp immersed methods are particularly advantageous for simulations with moving boundaries, providing accuracy 
on immersed interfaces while avoiding the cost and complexity of maintaining a moving body-fitted mesh. In order to achieve second-

order spatial accuracy and higher for moving boundaries, sharp immersed methods must deal with the challenge of “freshly cleared 
cells” that move from one side of an interface to the other during the course of a time step. This crossing generally creates a 
discontinuity in the time history of the cell that must be explicitly addressed to maintain accuracy near the interface. As noted by 
[27], this issue is unique to sharp immersed methods with moving boundaries and does not appear when using a body fitted mesh, 
a continuous-forcing immersed method, or a sharp immersed method with stationary boundaries.

One of the earliest methods for treating freshly cleared cells appears in the immersed interface method of Li [28], which discretizes 
the Navier-Stokes equations with moving boundaries using a semi-implicit Adams-Bashforth/Crank-Nicolson (ABCN) time integration 
scheme. The authors solve a system of equations to determine the time at which each uncovered point crosses the immersed interface, 
as well as the jumps in the solution and its temporal derivative at the crossing point. All of this information is used to modify the 
ABCN integration scheme at the uncovered point to maintain first order temporal accuracy. Brehm and Fasel [29] further develop this 
method to allow for full second order temporal accuracy near the immersed interface. Their method uses a Crank-Nicolson scheme 
along with a specialized semi-implicit discretization of the nonlinear convective term and relies on a no-slip boundary condition 
to relate derivatives of the boundary motion to derivatives of the unknown solution. A similar approach was pursued by Xu and 
Wang [30], who found that incorporating a temporal jump condition in each stage of a fourth order Runge-Kutta scheme yields 
between first and second order temporal accuracy in the 𝐿∞ norm, and only slightly reduces error when compared to an approach 
that fully neglects the jumps. While these approaches successfully allow for sharp moving interfaces, they are all specialized to a 
particular integration scheme and are difficult to extend to higher order accuracy or PDEs with more complex boundary conditions.

A more general and widely successful approach to treating uncovered points was developed in [27] for diffusion-driven interface 
growth problems and in [31] for the 2D incompressible Navier-Stokes equations. These methods determine the value of the solution 
at uncovered points from a second-order spatial interpolation that uses neighboring solution values and a prescribed boundary con-

dition on the interface. This strategy avoids the need to explicitly identify crossing times and generalizes easily to other semi-implicit 
time integration schemes. For the incompressible Navier-Stokes equations the interpolation-based method was extended to 3D sim-

ulations of biological propulsion mechanisms in [32]. For the compressible Navier-Stokes equations, a similar interpolation-based 
methodology has been extended to higher-order interpolants and higher-order RK integrators for use in large-scale 3D aeroacoustics 
simulations [33] and in 3D simulations with thin compliant structures [34]. A variation on the interpolation method is introduced 
in [35], which allows for moving boundaries and a fully explicit three-stage RK scheme. In this field extension approach the velocity 
2

and pressure fields are extrapolated to points which lie inside a moving solid domain at the end of each time step. Additionally, 
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Fig. 1. (a) One dimensional IIM extensions of order four both with ( ) and without ( ) a boundary condition. Both cases require four interpolation points to 
construct the extension value ( ), but differ in whether to include the boundary condition at 𝑥𝛼 ( ) or the field value at 𝑥𝑖 ( ). (b) Stencils used for a third order 2D 
extrapolation. Point (i) has only one neighbor in the problem domain, and consequently receives an extrapolation along only one coordinate direction. Point (ii) has 
two neighbors, so its value is the average of two separate one-dimensional extrapolations. Points (iii) and (iv) have two neighbors in the problem domain, but there 
are not enough points in the domain to allow for a third-order horizontal extrapolation stencil; consequently, each is filled from a vertical extrapolation only. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

during the time step when these solid points are uncovered their value is interpolated from surrounding solution values and a nearby 
boundary condition. This combination of field extensions and interpolation ensures that points entering the domain have a value at 
the current and previous time steps, providing a time history that can be used by multistep time integrators. The authors demonstrate 
that this approach produces second order accuracy in the 𝐿1 and 𝐿2 norms, and successfully apply their scheme to LES simulations 
of turbulent flows in complex geometries. While the field extension approach of Yang and Balaras [35] succeeds in providing a time 
history of the solution at uncovered points, the interpolation step used in this method requires a known boundary condition at each 
time step. This is not the case for vorticity-velocity formulations of the 2D Navier-Stokes equations, in which the boundary condition 
on the vorticity depends on the full vorticity field and is not available at the start of each time step [12,13].

In the current state-of-the-art on sharp-interface vorticity-velocity solvers, we can thus identify two open challenges: the enforce-

ment of vorticity-based boundary conditions on moving sharp interfaces, and devising two-way coupling algorithms that do not 
rely on a pressure field. In this work we aim to address the above challenges to develop an IIM-based vorticity-velocity solver that 
can handle moving boundaries and two-way coupled problems of one or more rigid bodies. In section 2 we describe a variation 
on the field extension approach for moving sharp boundaries, that replaces the interpolation step with an extrapolation of the time 
derivative. The resulting method has several attractive properties that extend to PDEs other than the vorticity-velocity Navier-Stokes 
equations, including compatibility with higher-order RK schemes and a simplified implementation that does not require the identifi-

cation of uncovered points. Through careful numerical experimentation we demonstrate that the additional errors introduced by this 
moving boundary treatment do not dominate the existing spatial and temporal errors for simulations in which the time step is limited 
by a CFL constraint. In section 3 we combine this approach with our existing second-order Navier-Stokes solver for stationary bodies 
[13], and show its validation and convergence analyses of the 2D Navier-Stokes solver. In section 4 we present our extension towards 
two-way coupled flow-body problems of rigid bodies and validate the momentum balance algorithm through different test cases. 
We compare our results with analytic solutions, results from literature, and results from an in-house penalization-based approach. 
Finally, in section 5 we conclude our results and lay out thoughts for future research.

2. Immersed interface method

In this section we introduce the immersed interface method (IIM) for irregular domains with fixed boundaries, then extend this 
method to moving boundaries while maintaining high-order temporal accuracy.

2.1. IIM for fixed boundaries

In the IIM an irregular domain boundary is superimposed on a background Cartesian grid, and standard finite difference stencils 
are used for PDE discretizations away from the domain boundaries. Near the irregular boundary these stencils are no longer valid and 
require local corrections to retain their order of accuracy. This is accomplished by extending each field beyond the domain boundary 
using a high-order polynomial extrapolation and applying standard finite difference stencils to the extended field. Provided that the 
order of the extrapolation is sufficiently large, the order of accuracy of the original finite difference scheme is preserved.

For illustration, consider a uniform 1D grid with grid spacing ℎ and grid points 𝑥𝑗 = 𝑗ℎ for 𝑗 ∈ℤ, as well as an irregular domain 
boundary at 𝑥𝛼 with 𝑥𝑖−1 < 𝑥𝛼 < 𝑥𝑖 (Fig. 1a). The position of the boundary is characterized by the non-dimensional distance 𝜓 =||𝑥𝑖 − 𝑥𝛼

||∕ℎ, which satisfies 0 < 𝜓 < 1. On this grid any smooth function 𝑓 (𝑥) can be represented by the point values 𝑓𝑗 = 𝑓 (𝑥𝑗 ), 
possibly augmented by a prescribed Dirichlet boundary condition 𝑓𝛼 = 𝑓 (𝑥𝛼). To calculate the second derivative of 𝑓 (𝑥), the second 
3

order difference stencil
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d2𝑓
d𝑥2

)
𝑖

≈
𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

ℎ2
(1)

can be applied to each grid point in the domain, which requires the known function values 𝑓𝑖, 𝑓𝑖+1, … as well as a ghost value 𝑓𝑖−1
which lies outside of the problem domain. To construct this ghost value, we distinguish two separate types of IIM field extensions: 
those with a boundary condition and those without. For an 𝑁 -th order extension with boundary condition, an interpolating poly-

nomial 𝑝𝑁 (𝑥) of degree 𝑁 − 1 is constructed using data at the 𝑁 points {𝑥𝛼, 𝑥𝑖+1, … , 𝑥𝑖+𝑁−1}. The grid point 𝑥𝑖 is omitted from the 
interpolation stencil to ensure that the interpolation is well-conditioned for arbitrarily small 𝜓 . The interpolating polynomial is then 
used to define a ghost value 𝑓𝑖−1 = 𝑝𝑁 (𝑥𝑖−1) at the point 𝑥𝑖. For an extension without boundary condition, the procedure is repeated 
using data at the points {𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑖+𝑁−1}, which excludes any boundary condition prescribed on the domain boundary. For larger 
finite difference stencils, additional ghost values {𝑓𝑖−2, 𝑓𝑖−3, … } are constructed by evaluating the interpolating polynomial 𝑝𝑁 (𝑥)
at the corresponding points {𝑥𝑖−2, 𝑥𝑖−3, … }. Generally an 𝑀 -th order discretization of a 𝐷-th order differential operator will retain 
its accuracy provided that 𝑁 ≥𝑀 +𝐷; for this example, the stencil in (1) will retain its second order accuracy near the boundary 
provided that 𝑁 ≥ 4.

This extension-based IIM extends well to complex 2D domains, and can be used to treat PDEs with Neumann boundary conditions 
[11], elliptic PDEs in unbounded domains [19], and conservative finite difference schemes for advection-diffusion equations [13]. 
Here we use the 2D extension methodology outlined in Gabbard et al. [13], which relies on 1D extrapolation along grid lines for 
computational efficiency and permits complex 2D domains with non-convex boundaries (Fig. 1b). For brevity we omit the specifics 
of the extrapolation procedure here, focusing instead on the extension of a generic extrapolation-based IIM to time-dependent PDEs 
with moving boundaries.

2.2. IIM for moving boundaries

For time-dependent PDEs with stationary boundaries, the IIM can be combined with a method-of-lines time discretization in a 
straightforward way. The PDE solution is represented by its values on the Cartesian grid while spatial derivatives are discretized 
with the IIM, yielding a large system of ODEs that can be solved with standard time integrators. The picture is more complicated 
for PDEs with moving boundaries, primarily because grid points enter and exit the problem domain as the simulation progresses. 
Exiting points are typically easy to deal with: once a point leaves the domain it is no longer used in the spatial discretization, and the 
associated unknowns can be removed from the system of ODEs. Points which enter the domain (typically called “fresh” or “freshly 
cleared” cells [27,31,32,36,29]) must be provided with an initial value before they are added to the system, and for more complex 
time integrators these points may also need some form of artificial time history.

In this paper we investigate the issue of freshly cut cells in the context of multi-stage time integrators, particularly low-storage 
Runge-Kutta methods. For a generic discretized PDE of the form 𝜕𝑡𝑢 = 𝑓 (𝑢, 𝑡) these integrators store only the state 𝑢(𝑥𝑗 , 𝑡) and a single 
history field 𝑦(𝑥𝑗 , 𝑡), which both reduces memory requirements and simplifies the task of providing a time history for freshly cleared 
cells. For an 𝑠-stage RK integrator let 𝑢(𝑖), 𝑦(𝑖), and 𝑡(𝑖) refer to the state, history, and simulation time at 𝑖-th stage. To advance the 
system from time 𝑡𝑛 to time 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡, the state and temporary register are initialized with 𝑢(0) = 𝑢𝑛 and 𝑦(0) = 0, and for 𝑖 = 1 to 𝑠
the stage values are updated with the low-storage update

𝑦(𝑖+1) = 𝑎𝑖𝑦
(𝑖) + Δ𝑡𝑓 (𝑢(𝑖), 𝑡(𝑖))

𝑢(𝑖+1) = 𝑢(𝑖) + 𝑏𝑖𝑦
(𝑖)

𝑡(𝑖+1) = 𝑡(𝑖) + 𝑐𝑖Δ𝑡

(2)

The value of the next step is taken to be 𝑢𝑛+1 = 𝑢(𝑠). To apply a low-storage Runge-Kutta method to an IIM discretization with moving 
boundaries, both the state 𝑢(𝑖) and the right hand side 𝑓 (𝑢(𝑖), 𝑡(𝑖)) are extrapolated before applying each stage update, and all unused 
values that fall outside the domain at the next stage are removed after the update. To make this precise, let Ω(𝑡) represent the moving 
problem domain. We define an operator 𝐸(𝑖)

𝑓
[⋅] that performs an IIM extrapolation without boundary condition (Fig. 1a, blue) for a 

field defined on Ω(𝑡(𝑖)), constructing ghost values and storing them in locations outside of the problem domain. The operator 𝐸(𝑖)
𝑢 [⋅]

is defined similarly, but performs an IIM extrapolation using any boundary conditions prescribed on the field 𝑢 (Fig. 1a, green). 
Finally, we define a zeroing operator 𝑍(𝑖) that sets all points that fall outside the domain Ω(𝑡(𝑖)) to a zero value. With this notation 
the IIM-adapted low-storage update for PDEs with moving boundaries becomes

𝑦(𝑖+1) = 𝑎𝑖𝑦
(𝑖) + Δ𝑡𝐸(𝑖)

𝑓

[
𝑓 (𝑢(𝑖), 𝑡(𝑖))

]
𝑢(𝑖+1) =𝑍(𝑖+1)[𝐸(𝑖)

𝑢

[
𝑢(𝑖)

]
+ 𝑏𝑖𝑦

(𝑖)]
𝑡(𝑖+1) = 𝑡(𝑖) + 𝑐𝑖Δ𝑡

(3)

In this work we choose extrapolation operators that act on all points with a nearest neighbor in the problem domain. Consequently, 
each point that enters the problem domain will have a valid time history so long as it has not appeared outside the problem domain 
along with all of its immediate neighbors during the same time step. This can be prevented by placing an upper bound on the distance 
any boundary point moves during a single time step, expressed as constraint on the body CFL number 𝐶𝑏 =max𝑠 ‖‖𝐯𝑏(𝑠)‖‖Δ𝑡∕ℎ where 
𝐯𝑏(𝑠) is the velocity of the moving boundary at surface coordinate 𝑠. Geometric arguments indicate that when Ω(𝑡) is the region √
4

exterior to a convex body, 𝐶𝑏 < 1∕2 is sufficient. When Ω(𝑡) is exterior to a nonconvex region, the body CFL constraint depends 
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on the curvature of the boundary. Letting 𝜅 be the largest negative (concave) curvature encountered on the boundary, a body CFL 
constraint of

𝐶𝑏 <

√
1
2
−

(
1|𝜅ℎ| −

√
1|𝜅ℎ|2 − 1

2

)
= 1√

2
− |𝜅ℎ|

4
− |𝜅ℎ|3

32
+(|𝜅ℎ|5) (4)

will guarantee that each point has a valid time history. This bound is obtained by taking Ω(𝑡) to be a circle of radius 1∕|𝜅|, and is less 
strict for well-resolved geometries with small 𝜅ℎ.

The convergence behavior of the update in Eq. (3) is slightly more complex than the equivalent LSRK scheme applied to a method-

of-lines discretization. Based on the numerical experiments described in section 2.3 we observe that applying an 𝑁 -th order LSRK 
scheme to an 𝑀 -th IIM spatial discretization with moving boundaries yields an error of magnitude

‖‖𝑢− 𝑢𝑒
‖‖ ∼(Δ𝑡𝑁)

+(ℎ𝑀)
+(Δ𝑡ℎ�̃�)

. (5)

Unlike a method of lines discretization, this treatment of moving bodies couples accuracy of the spatial and temporal discretizations, 
in that it contains a leading-order error term that cannot be additively separated into spatial and temporal contributions. Throughout 
this work we treat the coupled term primarily as a first-order temporal error with a prefactor proportional to ℎ�̃� , with the exponent 
�̃� determined by the order of spatial discretization and the order of the extension operators 𝐸𝑓 [⋅] and 𝐸𝑢[⋅]. We show below that in 
practice, when the extension operators are of order 𝑀 or higher and the time step Δ𝑡 is limited by a body CFL criterion, this moving 
boundary error term is dominated by the spatial error term and does not affect the overall convergence of the method.

2.3. 1D Moving boundary temporal convergence

To illustrate the convergence behavior, consider an initial boundary value problem for the advection equation

𝜕𝑢

𝜕𝑡
= 𝑐

𝜕𝑢

𝜕𝑥
on Ω(𝑡) = [0, 1] ⧵ [𝑥𝛼(𝑡), 𝑥𝛽 (𝑡)], (6)

with solid boundaries translating at constant speed 𝑣𝑏 so that 𝑥𝛼(𝑡) = 𝑥𝛼,0 + 𝑣𝑏𝑡 and 𝑥𝛽 (𝑡) = 𝑥𝛽,0 + 𝑣𝑏𝑡. We take the wave speed 𝑐 to 
be positive and greater than the boundary velocity 𝑣𝑏, so that an inflow boundary condition is required at 𝑥𝛽(𝑡) while 𝑥𝛼(𝑡) acts 
as an outflow. The domain is periodic with 𝑢(0, 𝑡) = 𝑢(1, 𝑡), while the initial condition 𝑢(𝑥, 0) = sin(2𝜋𝑘𝑥) and time-dependent inflow 
boundary condition 𝑢(𝑥𝛽 (𝑡), 𝑡) = sin

(
2𝜋𝑘(𝑥𝛽 (𝑡) − 𝑐𝑡)

)
are set to match the periodic exact solution 𝑢𝑒(𝑥, 𝑡) = sin(2𝜋𝑘(𝑥− 𝑐𝑡)). The spatial 

domain is discretized with 𝑁𝑥 uniformly spaced points so that 𝑥𝑖 = 𝑖∕𝑁𝑥 for 𝑖 = 0 to 𝑁𝑥−1, and the time integration runs from 𝑡 = 0 to 
𝑡 = 𝑇 with 𝑁𝑡 time steps of size Δ𝑡 = 𝑇 ∕𝑁𝑡. The spatial derivative is discretized with the third order upwind finite difference scheme(

𝜕𝑢

𝜕𝑥

)
𝑖
=
𝑢𝑖−2 − 6𝑢𝑖−1 + 3𝑢𝑖 + 2𝑢𝑖+1

6ℎ
+(ℎ3). (7)

At the moving boundaries this finite difference scheme is applied to an extended field constructed using the IIM methodology 
described in section 2.1 and illustrated in Fig. 1a. At a given time 𝑡, let 𝑖𝛼 be the index of the grid point immediately left of the 
outflow boundary 𝑥𝛼(𝑡), and let 𝑖𝛽 be the index of the grid point immediately right of the inflow boundary 𝑥𝛽 (𝑡). The field 𝑢(𝑥, 𝑡) is 
extended to the grid point 𝑥𝑖𝛼+1 using a fourth order IIM extension without boundary condition, and to the grid points {𝑥𝑖𝛽−2, 𝑥𝑖𝛽−1}
using a fourth order IIM extension that incorporates the prescribed inflow boundary condition at 𝑥𝛽 (𝑡). For simulations with stationary 
boundaries, this 1D advection discretization is shown to be third order accurate and stable under the CFL constraint 𝑐Δ𝑥∕Δ𝑡 < 1.07 in 
[37]. To integrate the semi-discrete system in time, we use low storage Runge-Kutta methods of order two (Heun’s method) and three 
(Williamson [38]). The extension operator 𝐸𝑓 [⋅] uses a third order IIM extension without boundary condition at both boundaries, 
while the extension operator 𝐸𝑢[⋅] uses a third order IIM extension with a boundary condition at 𝑥𝛽 (𝑡) and without a boundary 
condition at 𝑥𝛼(𝑡). For the numerical experiments shown here we take 𝑐 = 1, 𝑣𝑏 = 0.25, 𝑘 = 1, 𝑇 = 0.7, 𝑥0,𝛼 = 0.261, and 𝑥0,𝛽 = 0.447.

To evaluate the temporal convergence of the moving boundary algorithm, the number of grid points 𝑁𝑥 is fixed while the 
number of time steps 𝑁𝑡 is varied across two orders of magnitude. For each simulation, the 𝐿∞ error in the solution 𝑢(𝑥, 𝑇 ) is 
evaluated relative to a solution generated with 𝑁𝑡,𝑟𝑒𝑓 time steps for 𝑁𝑡,𝑟𝑒𝑓 much larger than 𝑁𝑡. This eliminates any purely spatial 
errors from the comparison. Fig. 2a and 2b illustrate the resulting temporal convergence for low storage RK2 and RK3 integrators 
respectively; in both cases the convergence is initially (Δ𝑡𝑁 ) for 𝑁 = 2, 3 before dropping to (Δ𝑡) as the step size increases. If the 
spatial resolution 𝑁𝑥 is varied, the magnitude of the initial (Δ𝑡𝑁 ) error is unchanged, indicating that this is the purely temporal 
error of the RK scheme. The prefactor in the (Δ𝑡) region varies with ℎ3, indicating a mixed error term of magnitude (Δ𝑡ℎ3) due to 
the moving boundary treatment.

To further probe this behavior, the experiment above is repeated with an initial boundary value problem for the diffusion equation

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
on Ω(𝑡) (8)

on the same periodic 1D domain with moving boundaries. The initial condition and Dirichlet boundary conditions at 𝑥𝛼(𝑡) and 𝑥𝛽 (𝑡)
are set to match the exact solution 𝑢𝑒(𝑥, 𝑡) = exp(−𝜈𝑘2𝑡) sin(2𝜋𝑘𝑥). The spatial operator is discretized with a second order centered finite 
difference stencil (1), and at both Dirichlet boundaries the field 𝑢(𝑥, 𝑡) is extended by one point using a fourth order IIM extension 
with boundary condition before the finite difference stencil is applied. We take 𝜈 = 0.01 along with the parameter values used for 
5

the advection case. The temporal convergence of the scheme is evaluated as above with RK2 and low-storage RK3 time integration, 
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Fig. 2. Temporal convergence of the advection equation with moving boundaries at a fixed spatial resolution with an RK scheme of order two (a) or three (b). For 
each data point, the 𝐿∞ error is measured relative to a simulation with the same spatial resolution and a much finer temporal resolution (𝑁𝑡 ≈ 1.3 × 105). For a third 
order spatial discretization and 𝑁 -th order RK scheme, the temporal error consists of an (Δ𝑡𝑁 ) term which dominates at low temporal resolutions and an (Δ𝑡ℎ3)
that dominates at higher temporal resolutions.

Fig. 3. Temporal convergence of the diffusion equation with moving boundaries at a fixed spatial resolution with an RK scheme of order two (a) or three (b). In both 
cases the error is dominated by an (Δ𝑡ℎ2) moving boundary error term with a prefactor that is roughly the same for both integrators.

using IIM extension operators 𝐸𝑓 [⋅] of order two without boundary condition and IIM extension operators 𝐸𝑢[⋅] of order two with 
boundary condition. The convergence results for RK2 (Fig. 3a) and low-storage RK3 (Fig. 3b) both indicate a moving boundary error 
term of magnitude (Δ𝑡ℎ2) which dominates the purely temporal error for all tested resolutions.

Generally, the observed convergence order for these numerical experiments can vary with the character of the PDE, the order of 
the free-space stencil, the order of the IIM boundary treatment, the order of the extension operators 𝐸𝑓 [⋅] and 𝐸𝑢[⋅], and the order 
of the time integration scheme. We leave an in-depth investigation for future work, but note here that in practice, if the extension 
operators 𝐸𝑓 [⋅] and 𝐸𝑢[⋅] are of sufficiently high order and the time step Δ𝑡 is limited by a CFL criterion, the moving boundary error 
term has magnitude (ℎ�̃�+1) and is dominated by the (ℎ𝑀 ) spatial error. This is corroborated by the numerical convergence tests 
shown in sections 3.4 and 4.2.

2.4. 2D Moving boundary temporal convergence

To test the convergence of the moving IIM discretization in 2D, we consider the advection diffusion equation

𝜕𝑢

𝜕𝑡
+∇ ⋅ (𝐜𝑢) = 𝜈∇2𝑢 (9)

with constant velocity 𝐜 = [𝑐𝑥, 𝑐𝑦] and diffusivity 𝜈, posed on the periodic unit square Ω = [0, 1] × [0, 1]. The domain contains a single 
immersed body in the shape of a thickened arc, as shown in Fig. 4a, which provides an interface with both locally convex and locally 
concave regions. The arc translates with constant velocity 𝐜𝑏 = [1, 1] and rotates about its center point with constant angular velocity 
6

𝑤𝑏 = 2. The manufactured solution
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Fig. 4. (a) Thickened arc geometry used for the 2D advection diffusion test case. For all results the shape parameters are held constant with 𝑟𝑎 = 0.1701, 𝑟𝑏 = 0.0535, 
and 𝜃𝑏 = 2.4. The initial position is defined by the coordinates 𝑥0 = 0.287, 𝑦0 = 0.289 and the angular coordinate 𝜃𝑎 = 0.5. Throughout the simulation the body translates 
with constant velocity 𝐜𝑏 = [𝑐𝑥, 𝑐𝑦] and rotates with constant angular velocity 𝑤𝑏 , which are varied from test case to test case as described in the text. (b) Setup for the 
2D moving convergence tests. The moving domain Ω(𝑡) is defined by the body velocity 𝐜𝑏 and body angular velocity 𝑤𝑏 . The flow velocity 𝐜 for the through flow case 
is also depicted.

Fig. 5. Spatial convergence of a 2D IIM discretization of the advection-diffusion equation with stationary boundaries, moving through-flow boundaries, and moving 
no through-flow boundaries. The resulting error is third order when dominated the advection term and second order when dominated by the diffusion term, with the 
crossover occurring at cell Peclet number Peℎ ≈ 1. All three boundary types lead to roughly the same errors, indicating that the treatment of moving boundaries is not 
a dominant source of error.

𝑔(𝑥, 𝑦, 𝑡) = exp
(
−𝜈(𝑘2

𝑥
+ 𝑘2

𝑦
)𝑡
)
sin

(
𝑘𝑥(𝑥− 𝑐𝑥𝑡)

)
sin

(
𝑘𝑦(𝑦− 𝑐𝑦𝑡)

)
(10)

with 𝑘𝑥 = 𝑘𝑦 = 4𝜋 is prescribed as both an initial condition and as a Dirichlet boundary condition on the immersed body, as shown 
in Fig. 4b. The PDE is discretized with the conservative finite-difference IIM developed in [13], which uses third order upwind 
advective fluxes and second order centered diffusive fluxes. Each test case is integrated in time from 𝑡 = 0 to 𝑡 = 0.3 with a third order 
low-storage RK scheme and a fixed time step, and the 𝐿∞ norm of the error at the final time is recorded. For each simulation the 
time step is set to be 75% of the maximum linearly stable time step for the free space finite difference scheme, as determined by 
the method in [13]. At moving boundaries the time integration is performed with extension operators 𝐸𝑓 [⋅] of order two without 
boundary condition and extension operators 𝐸𝑢[⋅] of order three with boundary condition.

The qualitative nature of the solution depends on the Peclet number Pe𝐿 = ‖𝑢‖2𝐿∕𝜈, for which we use the domain length 𝐿 = 1
as a reference scale. We consider here both advection-dominant cases with Pe𝐿 = 1414 and more diffusive cases with Pe𝐿 = 71.7. We 
also consider three different combinations of flow and body motion: a stationary reference case with 𝑤𝑏 = 0, 𝐜𝑏 = [0, 0] and 𝐜 = [1, 1]; 
a no through-flow case with 𝑤𝑏 = 0 and 𝐜 = 𝐜𝑏 = [1, 1]; and a through flow case with 𝑤𝑏 = 2, 𝐜𝑏 = [1, 1], and 𝐜 = [1, −1]. Figs. 5a and 5b

plot the solution error as a function of the spatial resolution for the high and low Pe cases respectively. For all cases the convergence 
order depends on the cell Peclet number Peh = ‖𝑢‖1ℎ∕𝜈 and mimics that of the free-space finite difference scheme: for Peℎ ≫ 1 the 
error is dominated by the third order advection term, and for Peℎ ≪ 1 the error is dominated by the second order diffusive term. 
There is little difference in the error between the stationary, through-flow, and no through-flow cases, demonstrating that the error 
introduced by moving boundaries is dominated by the existing spatial discretization error across a wide range of Peclet numbers and 
7

resolutions.
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3. One-way coupled vorticity-velocity based Navier-Stokes simulations

Throughout this work we discretize the Navier-Stokes equations in vorticity-velocity form using a second-order IIM discretization 
originally developed for stationary bodies in [13]. In this section we briefly review this algorithm while describing a novel extension 
to moving bodies with one-way coupling that makes use of the moving IIM approach developed in section 2. Then we show the 
convergence and verification results of the one-way coupling method.

3.1. Navier-Stokes algorithm

Taking the curl of the 2D incompressible velocity-pressure Navier-Stokes equations and invoking the continuity constraint ∇ ⋅𝐮 = 0
yields the vorticity transport equation

𝜕𝜔

𝜕𝑡
= −∇ ⋅ (𝐮𝜔− 𝜈∇𝜔). (11)

This advection-diffusion equation requires a single boundary condition on all solid boundaries. Here we follow Gillis et al. [12] and 
compute the boundary vorticity field directly from the velocity field, so that

𝜔𝑏 =∇× 𝐮 on 𝜕Ω. (12)

This is not the only possible choice, and we refer readers to [39] for a thorough discussion of numerical boundary conditions for the 
vorticity transport equation. Assuming that the volume of each immersed body is constant, so that the boundary velocity 𝐮𝑏 satisfies

∮
𝜕𝐵𝑘

𝐮𝑏 ⋅ 𝐧d𝑠 = 0 for 1 ≤ 𝑘 ≤𝑁𝑏, (13)

the velocity field 𝐮 can be expressed in terms of a scalar stream function 𝜓 that obeys a Poisson equation with circulation constraints:

𝐮 =∇×𝜓 on Ω,

−∇2𝜓 = 𝜔 on Ω,

𝜓 = 𝜓𝑏,𝑘 + �̄�𝑘 on 𝜕𝐵𝑘,

−∮
𝐶𝑘

𝜕𝑛𝜓 d𝑠 = Γ𝑘 for 1 ≤ 𝑘 ≤𝑁𝑏.

(14)

Here Γ𝑘 is the circulation about a stationary closed contour 𝐶𝑘 encircling the 𝑘-th solid body, �̄�𝑘 is an unknown constant associated 
with the 𝑘-th solid body, and 𝜓𝑏,𝑘 is any fixed boundary condition that satisfies 𝜕𝑠𝜓𝑏,𝑘 = 𝐮𝑏 ⋅ �̂� on 𝜕𝐵𝑘. Condition (13) ensures that it 
is always possible to construct a single-valued function 𝜓𝑏,𝑘 defined on each solid boundary by the integral

𝜓𝑏,𝑘(𝑠) =

𝑠

∫
𝑠0,𝑘

𝐮𝑏(𝑠) ⋅ �̂�d𝑠 for 𝑠 ∈ 𝜕𝐵𝑘. (15)

Here each integral is taken counterclockwise over the boundary 𝜕𝐵𝑘 beginning at an arbitrary boundary point 𝑠0,𝑘. The full velocity 
reconstruction problem is completed by an additional boundary condition on the far field or on the edge of the computational 
domain; appropriate conditions for periodic, unbounded, and interior domains are discussed in section 4.1 of [13]. The system is 
closed by applying Kelvin’s circulation theorem to each of the closed contours 𝐶𝑘, yielding a relationship between the circulations 
Γ𝑘 and the flux of vorticity across the contour:

dΓ𝑘
d𝑡

= −∮
𝐶𝑘

(𝐮𝜔− 𝜈∇𝜔) ⋅ �̂�d𝑠 . (16)

This constraint is obtained by integrating the tangential component of the velocity-pressure Navier-Stokes equations around 𝐶𝑘, and 
represents a separate constraint that cannot be derived directly from the vorticity transport equation.

The discretization of Equations (11) through (16) is taken directly from the second-order IIM developed for flows with stationary 
bodies in [13]. As in that work, the simulation state is captured by the discretized vorticity field and a set of circulations {Γ𝑘}, 
one for each immersed body, which are defined as the circulation of the velocity field around a bounding box 𝐶𝑘 (here termed the 
“circulation box”) associated with each body. Both the vorticity field and the circulations {Γ𝑘} are evolved in time with a second 
or third order Runge-Kutta time integrator. The main difference with [13] is that during time integration, we apply the moving 
boundary treatment outlined in section 2.2 at solid boundaries. Here the operators 𝐸𝑢[⋅] applied to the vorticity field use a third-

order IIM extension that incorporates the vorticity boundary condition 𝜔𝑏, while the operators 𝐸𝑓 [⋅] applied to the time derivative 
8

𝜕𝑡𝜔 use a second order IIM extension without boundary condition.
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Fig. 6. The configuration of a control volume for computing forces and torques on immersed bodies. Black dotted lines ( ) are grid lines, the black solid line ( ) 
is the boundary of the body, the red solid line ( ) is the boundary of the force box 𝜕𝑅𝑘 , the blue region represents 𝑅𝑘∖𝐵𝑘 for the area integral, and the black arrow 
shows the direction of the normal unit vector �̂�.

3.2. Force calculation

The use of the vorticity-velocity formulation in this work means that the surface pressure field is not directly available for force and 
torque calculations. Instead, we use a control volume approach3 that does not rely on pressure to obtain body forces and moments. 
This method was first introduced in [40], then widely used in the force calculation of the immersed boundary method [41–43]. 
This was further applied to the immersed interface method in [13]. In this section, we briefly review the force calculation of [13]

in preparation for our two-way coupling method in section 4. Specifically, we create a grid-aligned control volume around each 
immersed body as shown in Fig. 6. We use the ‘momentum 4’ approach from [40] to find expressions for the body force given 
integral quantities over the area and boundaries of this control volume:

𝐅𝑓 = − d
d𝑡 ∫

𝑅𝑘∖𝐵𝑘

𝐮d𝐴− d
d𝑡 ∮

𝜕𝑅𝑘

𝐱 × (�̂� × 𝐮) d𝑠+ ∮
𝜕𝑅𝑘

�̂� ⋅ 𝜸 d𝑠 , (17)

where �̂� is the normal unit vector, 𝑅𝑘 is the region covered by the force box, which is identical to the circulation box in all 
our simulations, 𝐵𝑘 is the region covered by the body, and 𝜕𝑅𝑘 represents the boundary of the force box. Here we only consider 
2D domains, so the integrals over 𝑅𝑘∖𝐵𝑘 and 𝜕𝑅𝑘 are area and boundary integrals respectively. The quantity 𝜸 is a tensor with 
miscellaneous terms measured on the boundary of the force box:

𝜸 = 1
2
|𝐮|2 − 𝐮𝐮− 𝐮(𝐱 ×𝜔�̂�) + 𝐱 ⋅ (∇ ⋅𝐓) − 𝐱(∇ ⋅𝐓) +𝐓, (18)

where  is the identity tensor, 𝐓 = 𝜈(∇𝐮 +∇𝐮𝑇 ) is the viscous stress tensor, and �̂� = �̂� × �̂� is the tangential unit vector. Similarly, the 
fluid moment on the obstacle about the origin (0, 0) is [13],

𝑀𝑓,0 = − d
d𝑡 ∫

𝑅𝑘∖𝐵𝑘

𝐱 × 𝐮d𝐴+ d
d𝑡 ∮

𝜕𝑅𝑘

|𝐱|2
2

�̂� × 𝐮d𝑠+ ∮
𝜕𝑅𝑘

𝝀d𝑠 , (19)

where the quantity 𝝀 collects miscellaneous terms on the force box boundary:

𝝀 = 1
2
|𝐮|2(𝐱 × �̂�) − (𝐱 × 𝐮)(𝐮 ⋅ �̂�) − |𝐱|2

2
�̂� × (𝐮 ×𝜔�̂�) + |𝐱|2

2
(∇ ⋅𝐓) × �̂�+ 𝐱 × (𝐓 ⋅ �̂�). (20)

The moment about the origin 𝑀𝑓,0 can be transferred to a moment around the center of rotation of the body 𝐱𝑐 by replacing 𝐱
with 𝐱 − 𝐱𝑐 in the equations above. We note that none of these expressions require boundary integrals over the body surface, which 
simplifies their implementation in our specific context compared to some of the other approaches discussed in [40], or used in [3].

As in [13], the line integrals are discretized with the trapezoidal rule. The area integral excludes the obstacle region inside the 
control volume and is discretized by combining a polynomial extrapolation with the second order level-set integration method from 
Towers [44]. Time derivatives of these integrals are computed in post-processing using central differences.

For simulation cases with a single obstacle, the control volume can cover the whole domain. With multiple bodies in the same 
domain, we choose the size of the control volume around each body to be relatively large, e.g. for a cylinder at least one diameter 
away from the perimeter. Larger control volumes in practice significantly reduce spurious noise in the force measurements, especially 
when the flow field within the region exhibits strong dynamic changes. Specific to the moving bodies considered in this work, the 
control volumes are regularly (every 10-20 timesteps) reset to match the updated location of the body. We record the changes and, 
in post-processing, perform one-sided differences to compute time derivatives immediately before and after the resets.
9

3 Since we are in 2D, this could be more appropriately denoted as ‘control area’.
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Table 1

Simulation parameters for the impulsively moving cylinder case, where 𝑁𝑥 =
𝑁∗∕𝐷 with 𝑁∗ =𝐷∕ℎ is the number of grid points along the diameter.

Element Parameters

Grid 𝐱𝑖𝑗 = (𝑖∕𝑁𝑥, 𝑗∕𝑁𝑦) for 0 ≤ 𝑖 ≤𝑁𝑥 − 1, 0 ≤ 𝑗 ≤𝑁𝑦 − 1. 𝑁𝑥 = 2𝑁𝑦

Time 𝑡∗0 = 0.0, 𝑡∗
𝑓
= 3

Obstacle 𝐱𝑐 = (3.75𝐷,1.2525𝐷), 𝐷 = 0.4
Motion 𝐮𝑏 = (−1.0,0.0)
Flow 𝐔∞ = (0.0,0.0)

3.3. Pressure distribution

The control volume approach provides the overall force and torque coefficients, but does not provide insight into the distribution 
of surface tractions 𝐭 = −𝑝�̂� + 𝜏 �̂�, with 𝑝 surface pressure and 𝜏 the surface shear stress. The shear stress distribution can be directly 
evaluated from the wall vorticity: 𝜏(𝑠) = 𝜈(𝜔𝑏(𝑠) − 2Ω𝑏), where Ω𝑏 is the angular velocity of the body. To compute the pressure 
distribution, we can evaluate the Navier-Stokes equations at the boundary:

𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅∇)𝐮 = −∇𝑝+ 𝜈∇2𝐮, (21)

where 𝜈∇2𝐮 is equivalent to −𝜈∇ ×𝜔 since 𝜔 =∇ ×𝐮 and ∇ ⋅𝐮 = 0. In a frame moving with the boundary, equation (21) can be written 
as:

d𝐮
d𝑡

= −∇𝑝− 𝜈∇×𝜔, (22)

where d∕d𝑡 is the Lagrangian time derivative. If a no-slip boundary condition is enforced on the body, then the fluid acceleration is 
identical to the body acceleration 𝐚𝑏(𝑠). The tangential component of this equation can then be written as:

𝜕𝑝

𝜕𝑠
= 𝜈

𝜕𝜔

𝜕𝑛
− 𝐚𝑏 ⋅ �̂�, (23)

which relates the pressure gradient to the normal vorticity flux. From the vorticity flux we can find 𝑝(𝑠) by choosing an arbitrary 
point at 𝑠0 on the boundary and integrating around the body surface:

𝑝(𝑠) = 𝑝(𝑠0) +

𝑠

∫
𝑠0

(
𝜈
𝜕𝜔

𝜕𝑛
− 𝐚𝑏 ⋅ �̂�

)
, (24)

where the normal vorticity flux is numerically obtained as sketched in [13], section 5.4. Note that this finds the pressure distribution 
only up to an arbitrary, potentially time-varying constant.

3.4. One-way coupling results

Here we discuss convergence and verification results for the presented Navier-Stokes solver with one-way coupled bodies, i.e. 
bodies with prescribed kinematics. All results are created with a second-order Runge-Kutta time integration scheme using a timestep 
that is 70% of the maximum possible stable step given the explicit treatment of the viscous and advective terms [13]; in practice 
this leads to a CFL number around 0.5. Below we first show the convergence of our approach using a test case of an impulsively 
moving cylinder. Then we demonstrate our algorithm on a pitching plate case and compare the results and convergence with a 
first-order penalization approach. Finally, we simulate a linearly oscillating cylinder to demonstrate a long-time simulation as well 
as the computed pressure distribution for accelerating obstacles.

3.4.1. Convergence: impulsively started cylinder

The short-term forces on a stationary cylinder in an impulsively started rectilinear flow are frequently used to compare results 
between vorticity-velocity based approaches. Here we change the frame of reference to move the cylinder with an impulsively started 
constant rectilinear motion in an otherwise stationary fluid. Specifically, a cylinder of diameter 𝐷 and initial center 𝐱𝑐 = (𝑥𝑐, 𝑦𝑐) is 
placed in a stationary flow with kinematic viscosity 𝜈. At 𝑡 = 0, the cylinder begins moving with a constant speed 𝐮𝑏 = (𝑢𝑏,𝑥, 𝑢𝑏,𝑦). The 
dynamics of the flow for 𝑡 > 0 depend only on the Reynolds number Re = 𝑢𝑏𝐷∕𝜈, and the normalized time 𝑡∗ = 𝑢𝑏𝑡∕𝐷, where 𝑡∗ is in 
a time interval [𝑡∗0 , 𝑡

∗
𝑓
]. In order to first validate the one-way coupling method, here we consider an impulsively started cylinder with 

parameters in Table 1, where 𝐔∞ is the velocity of fluid flow, 𝑁∗ = 𝐷∕ℎ represents inverse of the non-dimensional grid spacing. 
The drag coefficient, 𝐶𝑑 = 2𝐹𝑥∕(𝜌𝑓 𝑢2𝑏𝐷), is compared with results of the impulsively started flow around a stationary cylinder from 
our previous work [13], Gillis [45], Marichal [11], and Koumoutsakos and Leonard (K and L) [46]. We choose 𝑁∗ identical to our 
previous study of a stationary cylinder in [13], leading to 𝑁∗ = 204.8 for Re = 550 and 𝑁∗ = 409.6 for Re = 3000. Figs. 7a and 7b

show that the results of the moving cylinder and stationary cylinder are in good agreement for both Reynolds numbers, and that our 
10

results also match well with the reference results.
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Fig. 7. Drag history for the impulsively moving cylinder at (a) Re = 550 and (b) Re = 3000.

Fig. 8. Spatial and temporal convergence for the impulsively moving cylinder at Re = 550.

We proceed by using this test case to demonstrate the convergence rate of the one-way coupling algorithm. Here we define the 
norms of error in [𝑡∗0 , 𝑡

∗
𝑓
],

𝐿2 =

√√√√√√√ 1
𝑡∗
𝑓
− 𝑡∗0

𝑡∗
𝑓

∫
𝑡∗0

(𝑓 (𝑡) − 𝑓𝑟𝑒𝑓 (𝑡))2d𝑡, (25)

𝐿∞ = max
|||𝑓 (𝑡) − 𝑓𝑟𝑒𝑓 (𝑡)

|||, (26)

where 𝑓 (𝑡) is the quantity for evaluation, and 𝑓𝑟𝑒𝑓 (𝑡) is the reference data. We take 𝑡∗0 = 1.0, 𝑡∗
𝑓
= 2.0, and 𝑓 (𝑡) = 𝐼∗

𝑥
(𝑡), where 𝐼𝑥 is the 

x-direction component of 𝐈 in Section 4, which is normalized as 𝐼∗
𝑥
= 𝐼𝑥∕(𝐷2𝑢𝑏). We run our convergence test with constant CFL, so 

that Δ𝑡 ∼(ℎ), and at dimensionless grid spacing 𝑁∗ =𝐷∕ℎ ranging from 𝑁∗ = 102.4 to 𝑁∗ = 409.6. Results at resolution 𝑁∗ = 819.2
are taken as a reference for the error computation. We set Re = 550, and keep all the other settings the same as Table 1. From 
the convergence plot in Fig. 8a, we can conclude that our one-way coupling method achieves second order spatial convergence, as 
expected.

To measure temporal convergence, we consider the same case as above but now fix the resolution at 𝑁∗ = 51.2 and decrease 
the non-dimensional timestep Δ𝑡∗ = 𝑢𝑏Δ𝑡∕𝐷 from 8.0 × 10−3 to 2.5 × 10−4. The solution at Δ𝑡∗ = 2.5 × 10−5 is taken as reference for 
computing the error in 𝐼∗

𝑥
. Fig. 8b shows that we achieve second-order temporal convergence for larger timesteps, reducing to first-

order convergence at small timesteps. This is consistent with the results in section 2.3: for large timesteps we observe the free-space 
temporal convergence error from the RK2 time integrator, at very small timesteps we observe an (Δ𝑡ℎ2) mixed error term.

Overall, the convergence results for one-way coupled bodies imply that at practical timestep values, our approach to moving 
11

bodies has the same convergence behavior as our previous second-order IIM for stationary bodies [13].
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Table 2

Simulation parameters for the pitching plate case, where 𝑁𝑥 = 3𝑁∗ with 𝑁∗ =
𝑐∕ℎ is the number of grid points along the chord.

Element Parameters

Grid 𝐱𝑖𝑗 = (3𝑖∕𝑁𝑥,3𝑗∕𝑁𝑦) for 0 ≤ 𝑖 ≤𝑁𝑥 − 1, 0 ≤ 𝑗 ≤𝑁𝑦 − 1. 𝑁𝑥 =𝑁𝑦

Time 𝑡0 = 0.0, 𝑡𝑓 = 2.0
Obstacle 𝐱𝑐 = (0.51,2.0), 𝑐 = 1.0
Flow 𝐔∞ = (1.0,0.0), 𝜈 = 1.0 × 10−3

Fig. 9. Lift and Drag history for the pitching plate at 𝐾 = 0.2 (blue) and 𝐾 = 0.6 (orange), where the non-dimensional start time of each simulation is 𝑡∗ = −𝐾 . Present 
results are in solid lines, and results from Eldredge and Wang (E and W) [47] are in circles.

3.4.2. Pitching plate

To demonstrate our algorithm on a test problem with more practical relevance, we reproduce one of the pitching plate cases 
discussed in [47] in the context of leading-edge vortex dynamics. The body is a thin plate of chord length 𝑐 and thickness 0.023𝑐, with 
semicircular edges. The plate pitches around its leading edge 𝐱𝑐 in an incompressible flow with Reynolds number 𝑅𝑒 =𝑈∞𝑐∕𝜈 = 1000, 
where 𝑈∞ is the velocity of the incoming flow. The angle of attack, 𝛼, varies dynamically according to the function

𝛼(𝑡) = 𝛼0
𝐺(𝑡)
𝐺max

, (27)

where the maximum angle, 𝛼0, is fixed to 45 degrees. The function 𝐺(𝑡) describes a smooth pitch-up motion

𝐺(𝑡) = ln
[
cosh (𝑎𝑠𝑈∞(𝑡− 𝑡1)∕𝑐)
cosh (𝑎𝑠𝑈∞(𝑡− 𝑡2)∕𝑐)

]
− 𝑎𝑠𝑈∞(𝑡1 − 𝑡2)∕𝑐, →𝐺max = 2𝑎𝑠(𝑡2 − 𝑡1), (28)

where the dimensionless parameter 𝑎𝑠 controls the speed of transitions between kinematic intervals; here 𝑎𝑠 = 11 throughout. The 
times 𝑡1 and 𝑡2 control the time of transition during the pitching motion. Following [47] we place the start of the pitch-up at time 
𝑡1 = 𝑐∕𝑈∞ and parametrize the end time 𝑡2 = 𝑡1 + 𝛼0∕�̇�0 with a non-dimensional pitch-rate defined by 𝐾 = �̇�0𝑐∕(2𝑈∞).

We simulated cases with 𝐾 = 0.2 and 𝐾 = 0.6 using the parameters in Table 2. The resulting lift and drag are normalized as 
𝐶𝑙 = 2𝐹𝑦∕(𝜌𝑓𝑈2

∞𝑐) and 𝐶𝑑 = 2𝐹𝑥∕(𝜌𝑓𝑈2
∞𝑐), and time is normalized as 𝑡∗ =𝐾(𝑡𝑈∞∕𝑐 − 1) so that the simulations start at 𝑡∗ = −𝐾 . Fig. 9

shows a comparison between results of [47] and our own results at 𝑁∗ = 512, demonstrating good agreement between the two 
results.

To compare the effect of our second-order interface treatment with a first-order smooth immersed boundary treatment, we 
simulate the same pitching plate test case with a volume penalization method [14,17]. Specifically, we implemented the penalization 
algorithm presented in [20] using the same free-space spatial discretization operators as our IIM implementation. As reported in 
[17,20], the resulting algorithm has convergence rates that are first-order in space and time in the infinity norm.

We used both the penalization method and our current immersed interface method to run the pitching plate simulation with 
settings as in Table 2, at different spatial resolutions. For all penalization simulations, we used the same timestep criterion as for 
the IIM simulations, and set the non-dimensional penalization parameter 𝜆𝑐∕𝑈∞ = 105 — in-line with best practice values used in 
literature [17,18,20]. Fig. 10 shows the computed lift coefficient evolution for both methods at different resolutions. We note that the 
IIM results are converged at 𝑁∗ = 𝑐∕ℎ = 256, whereas the penalization results are still changing substantially even up to 𝑁∗ = 1024, 
12

the highest resolution considered.
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Fig. 10. Comparison of IIM and penalization results for the pitching plate benchmark case proposed in [47].

Fig. 11. Vorticity field error convergence plot from IIM method (IIM) and penalization method (Penal) at 𝑡∗ = 0.

To quantify this behavior we define the non-dimensional vorticity error field as

𝑒(𝐱𝑖𝑗 , 𝑡∗) =
|𝜔(𝐱𝑖𝑗 , 𝑡∗) −𝜔𝑟𝑒𝑓 (𝐱𝑖𝑗 , 𝑡∗)|

𝜔𝑟𝑒𝑓,max(𝑡∗)
, (29)

where 𝜔𝑟𝑒𝑓 is the reference vorticity field. Since we do not have an exact solution, we use the IIM-computed vorticity field at 
resolution 𝑁∗ = 1024 as the reference for both methods. This is motivated by the fact that if both methods represent convergent 
discretizations of the same continuous equations, and the IIM has a demonstrably higher convergence rate than the penalization 
approach, then the IIM field at 𝑁∗ = 1024 represents the most accurate solution available. The errors are evaluated at time 𝑡∗ = 0.0, 
and all spatial resolutions are chosen so that any grid point location at a lower resolution is also available in the reference field. 
Lastly, since the penalization method does not offer a sharp boundary treatment, the errors for all cases are computed only at grid 
points that are farther than 0.01𝑐 from the body surface or outside of the penalized mollification region which spans a distance of √
2ℎ outside of the body, whichever is largest.

Fig. 11 plots the 𝐿2 and 𝐿∞ norms of this error field at resolutions 𝑁∗ = 128 to 𝑁∗ = 512 for the IIM method, and 𝑁∗ = 128 to 
𝑁∗ = 1024 for the penalization method. The results confirm the second-order convergence rate of IIM in both the 𝐿2 and 𝐿∞ norm. 
The penalization method is first order in the 𝐿∞ norm, and somewhere between first and second order in the 𝐿2 norm - consistent 
with previous findings [17,20] and theoretical estimates. Directly comparing the error values between the two approaches at these 
resolutions, we find that for the same accuracy the IIM approach requires about four to five times less grid points per dimension, 
or about 20 times less grid points in total. This emphasizes the results shown in Fig. 10, namely that the second-order approach 
significantly improves the fidelity of simulations at practical grid resolutions.

We refrain from directly comparing computational performance as our penalization implementation is not optimized. We do note 
that for both the penalization and the IIM approaches, the free-space Poisson solve takes the most amount of time per timestep. In 
the penalization algorithm, we perform two free-space Poisson solves per timestep; in IIM, we perform four. Together with other 
overheads related to the sharp-interface treatment, we would expect that for the same resolution grid our IIM solver would be roughly 
13

3 times more expensive per timestep than the penalization implementation. The above convergence plot indicates that these expenses 
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Table 3

Long-time statistics of the lift and drag forces on an oscillating cylinder with 
𝑓𝑒∕𝑓0 = 0.8, where �̄�𝑑 is the mean of drag coefficient, 𝐶 ′

𝑑
is the root mean square 

of drag coefficient and 𝐶 ′
𝑙

is the root mean square of lift coefficient.

Author �̄�𝑑 𝐶 ′
𝑑

𝐶 ′
𝑙

Present 1.260 0.046 0.085

Guilmineau and Queutey [50] 1.195 0.036 0.080

Yang et al. [51] 1.281 0.042 0.076

Schneiders et al. [48] 1.279 0.042 0.082

Fig. 12. Vorticity and pressure distribution on the oscillating cylinder when it reaches the top-dead end. 𝜃 is the angle measured clockwise from the stagnation point.

are more than offset by the gains in resolution requirements for a given error level, which motivates the use of even higher-order 
discretization approaches in the future.

3.4.3. Pressure distribution: oscillating cylinder

To examine the ability of our method to simulate long-time flow evolutions, we consider the diagnostics of a cylinder of diameter 
𝐷 oscillating transversely in a flow with uniform velocity 𝑈∞ in the 𝑥-direction. The cylinder’s 𝑦-direction displacement is Δ𝑦(𝑡) =
−𝐴 cos (2𝜋𝑓𝑒𝑡) with amplitude 𝐴 = 0.2𝐷 and frequency 𝑓𝑒. The Reynolds number Re = 𝑈∞𝐷∕𝜈 = 185 and the Strouhal number is 
𝑆0 = 𝑓0𝐷∕𝑈∞ = 0.195, where 𝑓0 is the natural vortex-shedding frequency obtained from the corresponding flow past a fixed cylinder 
in [48]. The non-dimensional oscillation frequency in our simulations is 𝑓𝑒∕𝑓0 = 0.8. The domain size is set as [40𝐷, 9𝐷], and to 
obtain long-time flow diagnostics we set the downstream domain boundary in 𝑥 direction as an outflow boundary, as described in 
[49,13]. The resolution is 𝑁∗ =𝐷∕ℎ = 64. The simulation is run until a dimensionless time 𝑡∗ = 𝑈∞𝑡∕𝐷 = 96.15, before which point 
the force coefficients 𝐶𝑑 = 2𝐹𝑥∕(𝜌𝑓𝑈2

∞𝐷) and 𝐶𝑙 = 2𝐹𝑦∕(𝜌𝑓𝑈2
∞𝐷) reach a periodic state. The average and root-mean-square values of 

the force coefficients are shown in Table 3. Present results show a good agreement with those of Guilmineau and Queutey [50] and 
Yang et al. [51], who both use immersed boundary methods, and Schneiders et al. [48], who use a cut-cell method. We note that 
the smallest reported domain sizes in these works cover a five times larger area than our simulations, emphasizing the efficiency of 
vorticity-based approaches for external flows, even with an outflow boundary.

When the cylinder reaches its maximum 𝑦-direction displacement in the periodic state, in this case 𝑡∗ = 96.15, we compare the 
vorticity and pressure distributions around the surface of the cylinder with those from Guilmineau and Queutey [50]. Here we define 
the pressure at the most upstream point of the cylinder as 𝑝0, and measure the pressure distribution relative to this value. Fig. 12

shows the non-dimensional vorticity distribution 𝜔∗ = 𝜔𝐷∕𝑈∞, and the non-dimensional pressure distribution 𝐶𝑝 = 2(𝑝 − 𝑝0)∕(𝜌𝑓𝑈2
∞), 

which agree very well with the reference curves.

4. Two-way coupled vorticity-velocity based Navier-Stokes simulations

In this section we extend our 2D Navier-Stokes solver towards two-way coupling problems of rigid bodies. We describe our 
approach to resolve the momentum balance with coupled bodies, then show its validation and convergence results through different 
test cases.

4.1. Momentum balance

When the body kinematics are partially or fully governed by fluid forces, the two-way coupling between flow and body needs to 
14

be addressed. In this section we describe our approach to resolve the momentum balance with coupled bodies based on the control 
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volume method in section 3.2. For notational convenience, we leave out the subscript 𝑘 associated with the different 𝑁𝑏 bodies, as 
each body can be treated independently. To further simplify the notation, we rewrite the linear momentum balance (17) and angular 
momentum balance for any given control volume as

𝐅𝑓 = 𝜌𝑓

(
− d
d𝑡
𝐈+𝐀

)
, (30)

𝑀𝑓 =𝑀𝑓,0 + 𝐅𝑓 × 𝐱𝑐 = 𝜌𝑓

(
− d
d𝑡
𝐼𝑚 +𝐴𝑚

)
. (31)

Here the new vectors 𝐈 and 𝐀 are defined as

𝐈 ≡ ∫
𝑅∖𝐵

𝐮d𝐴+ ∮
𝜕𝑅

𝐱 × (�̂� × 𝐮) d𝑠 , (32)

𝐀 ≡ ∮
𝜕𝑅

�̂� ⋅ 𝜸 d𝑠 , (33)

whereas the scalars 𝐼𝑚 and 𝐴𝑚 are defined as

𝐼𝑚 ≡ ∫
𝑅∖𝐵

(𝐱 − 𝐱𝑐 ) × 𝐮d𝐴− ∮
𝜕𝑅

|𝐱|2
2

�̂� × 𝐮d𝑠− 𝐱𝑐 × ∮
𝜕𝑅

𝐱 × (�̂� × 𝐮) d𝑠 , (34)

𝐴𝑚 ≡ ∮
𝜕𝑅

𝝀d𝑠− 𝐱𝑐 × ∮
𝜕𝑅

�̂� ⋅ 𝜸 d𝑠− 𝐮𝑏 × 𝐈. (35)

Note that for the angular momentum equation (31), we explicitly shift the moment around the origin 𝑀𝑓,0 as defined in equation (19)

to the moment around the body’s center of rotation 𝐱𝑐 , whose position generally varies in time.

For a coupled body with constant volume and density, the linear and angular velocity components are governed by Newton’s 
second law:

𝜌𝑏𝑉𝑏
d𝐮𝑏
d𝑡

= 𝐅𝑓 + 𝐅𝑒, 𝜌𝑏𝐼𝑏
dΩ𝑏

d𝑡
=𝑀𝑓 +𝑀𝑒 (36)

where 𝐅𝑒 and 𝑀𝑒 are the external forces and torques acting on the body, 𝜌𝑏 is the body density, 𝑉𝑏 is the body volume, 𝐼𝑏 is the body 
area moment of inertia, and Ω𝑏 is the body angular velocity. We can combine these equations with equations (30) and (31) to obtain

d
d𝑡

(
𝜌𝑏𝑉𝑏

𝜌𝑓
𝐮𝑏 + 𝐈

)
=𝐀+ 1

𝜌𝑓
𝐅𝑒,

d
d𝑡

(
𝜌𝑏𝐼𝑏

𝜌𝑓
Ω𝑏 + 𝐼𝑚

)
=𝐴𝑚 + 1

𝜌𝑓
𝑀𝑒 (37)

where all time derivatives are collected on the left-hand side. For convenience, we define

𝐋 ≡ 𝜌𝑏𝑉𝑏

𝜌𝑓
𝐮𝑏 + 𝐈, 𝐿𝑚 ≡ 𝜌𝑏𝐼𝑏

𝜌𝑓
Ω𝑏 + 𝐼𝑚, (38)

thus we get

d𝐋
d𝑡

=𝐀+ 1
𝜌𝑓

𝐅𝑒,
d𝐿𝑚

d𝑡
=𝐴𝑚 + 1

𝜌𝑓
𝑀𝑒. (39)

These equations represent linear and angular momentum balance on a control volume with an immersed, coupled body, and must 
be integrated in time alongside the vorticity-velocity Navier-Stokes equations (11) and (16).

To do so, we opt for a simple weak coupling approach using an explicit, second- or third-order accurate Runge-Kutta integration 
for all time derivatives. In any given Runge-Kutta substep, starting from a vorticity field; a set of 𝑁𝑏 linear and angular body positions 
and velocities; and a set of 𝑁𝑏 circulation constraints, we perform the following steps.

Step 1: Velocity reconstruction. The velocity reconstruction is performed as described in section 3.1. This leads to a unique velocity 
field satisfying the appropriate far-field boundary conditions, as well as the no-through boundary condition on each body.

Step 2: Right-hand side computation. After the velocity reconstruction we compute for each of the 𝑁𝑏 control volumes the vectors 𝐈
and 𝐀, and the scalars 𝐼𝑚 and 𝐴𝑚, according to the equations from (32) to (35). Further, we compute at all grid points the right-hand 
side for the vorticity transport equation, as well as the right-hand sides for each of the 𝑁𝑏 circulations Γ𝑘 as shown in section 3.1.

Step 3: Time integration. Next, we integrate the vorticity transport equation, the body positions, and the quantities 𝐋 and 𝐿𝑚, and the 
circulation constraints in time using the appropriate Runge-Kutta substep algorithm.

Step 4: Body velocity update. Before advancing to the next timestep, we need to extract the body linear and angular velocities from 
the updated quantities 𝐋 and 𝐿𝑚, respectively. Denoting values that have been advanced in time with superscript 𝑛 +1, we are faced 
15

with the following equation for the linear velocities
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𝐋𝑛+1 =
𝜌𝑏𝑉𝑏

𝜌𝑓
𝐮𝑛+1
𝑏

+ 𝐈𝑛+1, (40)

where the left-hand side is known from the Runge-Kutta time integration, but 𝐮𝑛+1
𝑏

and 𝐈𝑛+1 are both unknown because they haven’t 
been explicitly updated. Further, since 𝐈𝑛+1 depends on the velocity field 𝐮𝑛+1, which in turn depends on 𝐮𝑛+1

𝑏
through the boundary 

conditions in the velocity reconstruction step, the right-hand side is in fact an implicit expression in 𝐮𝑛+1
𝑏

. Here we make the simple 
approximation 𝐈𝑛+1 ≈ 𝐈𝑛 to get an explicit expression for the new body velocities. For a time step size of Δ𝑡, this approximation incurs 
a first-order time integration error:

𝐮𝑛+1
𝑏

=
𝜌𝑓

𝜌𝑏𝑉𝑏

(
𝐋𝑛+1 − 𝐈𝑛

)
+ 1
𝑉𝑏

𝜌𝑓

𝜌𝑏
((Δ𝑡)) . (41)

An analogous assumption is made for the angular momentum, leading to a similar first-order accurate temporal discretization error 
in the angular velocity.

We note that our approach in equation (41) can be interpreted as a first step within an iterative strong coupling algorithm, as 𝐈𝑛+1
relies on 𝐮𝑛+1

𝑏
through the velocity field 𝐮𝑛+1. Following a simple fixed-point iteration scheme, one can use an updated 𝐮𝑏 to recompute 

the velocity field 𝐮 using Step 1, then execute Steps 2–4 to find an updated body velocity 𝐮𝑏, and repeat this until equation (40)

is satisfied. We show below (section 4.2.1) that this indeed leads to second-order temporal convergence even at low density ratios. 
However, in this naive formulation each iteration involves solving a global elliptic equation, leading to a prohibitive computational 
cost in practice. We therefore rely on equation (41) in the rest of this work, instead focusing on analyzing the consequence of the 
first-order temporal error in practical simulations below.

4.2. Two-way coupling results

In this section we demonstrate the ability of the two-way coupling algorithm on a set of test problems where the obstacle motion 
is driven both by fluid forces and external forces.

4.2.1. Convergence: forced Lamb-Oseen vortex

To investigate the convergence properties of the two-way coupling algorithm, we construct a test case based on the analytic 
Lamb-Oseen vortex flow. The Lamb-Oseen vortex is an axisymmetric Gaussian patch of vorticity with circulation Γ that diffuses over 
time in an unbounded domain:

𝜔𝐿𝑂(𝐱, 𝑡) =
Γ

4𝜋𝜈𝑡
𝑒−𝑟

2∕(4𝜈𝑡), (42)

where 𝑟 = ‖𝐱 − 𝐱𝑐‖. In previous work [13], we initialize a simulation with a Lamb-Oseen vortex evaluated at some time 𝑡 > 0, and 
place a solid cylinder of radius 𝑅 at the center of the vortex. By setting the time-dependent angular velocity of the cylinder to

Ω𝑏(𝑡) =
Γ

2𝜋𝑅2

(
1 − 𝑒

− 𝑅2
4𝑡𝜈

)
, (43)

the rotational velocity at the cylinder boundary matches that of the exact solution. Consequently, the Lamb-Oseen vortex field 
remains an exact solution to the flow field outside of the cylinder and can thus be used for error analysis. Here this approach is 
revisited as a two-way coupling problem. Since the intersections of this geometry with the Cartesian grid do not change over time, 
this case is especially useful to analyze errors associated with the momentum balance in isolation from errors associated with body 
motion.

To establish this test case as a two-way coupling problem, we use the exact solution to the Lamb-Oseen vortex to find the exact 
angular acceleration 𝛼𝑏(𝑡) as well as the hydrodynamic torque 𝑀𝑓 (𝑡) on a cylinder of radius 𝑅 placed at the center of the vortex:

𝛼𝑏(𝑡) = − Γ
8𝜋𝑡2𝜈

𝑒
− 𝑅2

4𝑡𝜈 ,

𝑀𝑓 (𝑡) = −Γ𝜈

(
2𝜌𝑓 −

𝜌𝑓 (𝑅2 + 4𝑡𝜈)
2𝑡𝜈

𝑒
− 𝑅2

4𝑡𝜈

)
.

(44)

From Newton’s second law we know that 𝜌𝑏𝐼𝑏𝛼𝑏 =𝑀𝑓 +𝑀𝑒, where 𝐼𝑏 = 𝜋𝑅4∕2 is the area moment of inertia of the cylinder, so that 
the external torque 𝑀𝑒 must be

𝑀𝑒(𝑡) = Γ𝜈
[
2𝜌𝑓 −

(
𝜌𝑏

𝑅4

16𝑡2𝜈2
+ 𝜌𝑓

𝑅2 + 4𝑡𝜈
2𝑡𝜈

)
𝑒
− 𝑅2

4𝑡𝜈

]
. (45)

Consequently, imposing 𝑀𝑒(𝑡) as an external torque in the two-way coupling approach should lead to the correct angular acceleration 
of the cylinder.

We simulate this case with the settings in Table 4, using a Reynolds number of 𝑅𝑒 = 1000𝜋 ≈ 3142. The resulting angular velocity 
Ω𝑏 is normalized to Ω∗

𝑏
= Ω𝑏(2𝜋𝑅2)∕Γ, and we use the 𝐿2 and 𝐿∞ norms of the error in the time evolution of Ω∗

𝑏
(𝑡) between times 

𝑡0 and 𝑡𝑓 as error metrics. We measure the convergence of these error metrics independently with spatial and temporal resolution 
refinements. For spatial refinement, simulations are run at a constant CFL-based timestep criterion, so that Δ𝑡 ∼ ℎ, and errors are 
16

computed with respect to the exact solution for resolutions 𝑁∗ = 11 to 𝑁∗ = 683, with 𝑁∗ =𝐷∕ℎ. For temporal refinement, we fix 
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Table 4

Simulation parameters for the two-way coupling Lamb-Oseen case, where 𝑁𝑥 = 0.9𝑁∗∕𝐷
with 𝑁∗ =𝐷∕ℎ is the number of grid points along the diameter.

Element Parameters

Grid 𝐱𝑖𝑗 = (0.9𝑖∕𝑁𝑥,0.9𝑗∕𝑁𝑦) for 0 ≤ 𝑖 ≤𝑁𝑥 − 1, 0 ≤ 𝑗 ≤𝑁𝑦 − 1. 𝑁𝑥 =𝑁𝑦

Time 𝑡0 = 3.0, 𝑡𝑓 = 3.5
Obstacle 𝐱𝑐 = (0.457,0.457), 𝑅 = 0.15, 𝐷 = 2𝑅
Flow Γ = 𝜋, 𝜈 = 0.001

Fig. 13. Spatial and temporal convergence of a two-way coupling cylinder in Lamb-Oseen vortex.

the resolution to 𝑁∗ = 11, the density ratio to 𝜌𝑏∕𝜌𝑓 = 0.4, and reduce the timestep Δ𝑡∗ = Δ𝑡Γ∕(2𝜋𝑅2) from 7.1 × 10−2 to 2.2 × 10−3. 
Here we use the results from an even smaller timestep, Δ𝑡∗ = 2.2 × 10−4, as the reference value for the error computation.

Fig. 13(a)–(c) shows the spatial convergence at density ratios of 𝜌𝑏∕𝜌𝑓 ∈ [0.1, 0.2, 0.4]. For small values of 𝑁∗, we observe a 
third-order convergence consistent with the behavior of our algorithm for convection-dominated flows [13]. When 𝑁∗ increases, the 
convergence plot shows a second regime where the spatial error behaves as (ℎ). Since here Δ𝑡 ∼Δℎ, this error is associated with the 
first-order temporal error introduced in our two-way coupling algorithm, as discussed in section 4.1. As argued there, the temporal 
error is divided by the density ratio 𝜌𝑏∕𝜌𝑓 , so that we expect the error values to decay as the density ratio increases. This behavior is 
demonstrated in panels (a) – (c) in Fig. 13: as 𝜌𝑏∕𝜌𝑓 increases, the prefactor for the first-order error term decreases. Consequently, 
the transition from third- to first-order convergence occurs at higher values of 𝑁∗ as 𝜌𝑏∕𝜌𝑓 increases.

Panel (a) also shows the spatial convergence of 𝜌𝑏∕𝜌𝑓 = 0.1 under the iteration method discussed above in section 4.1. For these 
results, the iterations are stopped when the relative error of Ω𝑏 reaches 10−8. The convergence plot shows a third-order convergence 
throughout all the resolutions at the lowest density ratio tested, providing further support for the origin of the first-order temporal 
error term and a direction for future developments. However, as discussed in section 4.1, the iteration method requires prohibitive 
17

computational cost, especially at high resolutions, so we focus on equation (41) in the rest of this work.
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Table 5

Steady-state values of the y-direction body velocity with dif-

ferent resolutions 𝑁∗ , where �̄�∗
𝑏,𝑦

is the mean value of 𝑢∗
𝑏,𝑦

. 
The y-direction terminal velocity from [52] is 1.129.

𝑁∗ 48 64 96 128

�̄�∗
𝑏,𝑦

1.091 1.104 1.117 1.121

Fig. 14. Results for sedimentation of a cylinder at Archimedes number 𝐴𝑟 = 138.42.

Panel (d) of Fig. 13 shows the error evolution associated with temporal refinement at fixed spatial resolution, and indicates 
first-order temporal convergence. Since the boundary of the cylinder remains stationary with respect to the background grid, we 
do not need to consider the mixed error term associated with boundary motion discussed in section 2.3. The first-order temporal 
convergence can thus be solely attributed to the (Δ𝑡) error in the coupling approach.

Overall, Our error analysis for a two-way coupled problem confirms the theoretical prediction: there exists a first-order temporal 
error that becomes more dominant at lower density ratios. For larger density ratios the spatial error of the uncoupled algorithm 
dominates, in which case the two-way coupling approach does not detract from the overall second-order convergence behavior of 
the free-space discretization.

4.2.2. Sedimentation of a cylinder

To test the two-way coupling behavior on a case with moving boundaries, we consider the sedimentation of a cylinder in a 
quiescent flow, both in comparison to reference results and in a convergence analysis.

Comparison with references We follow the work in [52], which has since been used in several other validation studies. For this case, 
a cylinder with radius 𝐷 and density ratio 𝜌𝑏∕𝜌𝑓 = 1.01 is released from rest in a viscous flow with viscosity 𝜈. Besides the density 
ratio, the resulting dynamics are governed by the Archimedes number, which here is 𝐴𝑟 = 𝑉𝑔𝐷∕𝜈 = 138.42 with 𝑉𝑔 =

√|1 − 𝜌𝑏∕𝜌𝑓 |𝑔𝐷
the gravitational velocity scale [53]. Time is normalized as 𝑡∗ = 𝑡𝑉𝑔∕𝐷, and the body velocity is normalized as 𝐮∗

𝑏
= 𝐮𝑏∕𝑉𝑔 . From 

[52], the Reynolds number based on their computed terminal velocity 𝑈 is 𝑅𝑒 = 𝑈𝐷∕𝜈 = 156.31, associated with a relative terminal 
velocity 𝑈∕𝑉𝑔 =𝑅𝑒∕𝐴𝑟 = 1.129.

Our simulations are run in a domain of size [16𝐷 × 120𝐷] until 𝑡∗ = 90 with free-space boundary conditions on all sides. We use 
resolutions of 𝑁∗ =𝐷∕ℎ ∈ [48, 64, 96, 128]. For 𝑁∗ = 128 an initial perturbation is added to the cylinder to break symmetry, since the 
numerical error alone does not do so until late in the simulation. The perturbation consists of an imposed angular velocity of the 
cylinder when 𝑡∗ < 4 of form Ω𝑏 = 0.05𝑈 sin(0.5𝜋𝑡∗)∕𝐷, after which the angular velocity is released to be determined by the two-way 
coupling algorithm.

Steady-state values of the terminal velocity as a function of spatial resolution are shown in Table 5, showing that the terminal 
velocity at the two higher resolutions matches well (within 1%) with the reference. The time variations of the linear velocities for the 
case 𝑁∗ = 96 are shown in Fig. 14, compared with the combined finite-element method results from [52] and the penalization-based 
18

approach in [17]. At early time, we observe that our approach matches well but delays the shedding until significantly later times 
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Fig. 15. Convergence plot of Δ𝑦∗
𝑐

of a falling cylinder.

than the other references. Once the cylinder starts its vortex shedding, our results again match well with steady-state values in all 
three velocity components.

Convergence To examine the convergence of our two-way coupling algorithm with a moving interface we repeat the above setup 
with a density ratio 𝜌𝑏∕𝜌𝑓 = 1.2. Further, we fix the horizontal and angular degrees of freedom and conduct a convergence analysis 
based on the error in the time evolution of Δ𝑦∗

𝑐
= Δ𝑦𝑐∕𝐷 between 𝑡∗0 = 0.0 and 𝑡∗

𝑓
= 0.2. The domain size in all convergence tests is 

10𝐷∕3 × 10𝐷∕3.

For spatial convergence, we vary 𝑁∗ =𝐷∕ℎ in the range 𝑁∗ = 9.61 to 𝑁∗ = 307.2, and use a result from 𝑁∗ = 614.4 as reference. We 
use a CFL-based timestep constraint so that Δ𝑡 ∼ ℎ throughout. Fig. 15a shows a second-order spatial convergence rate, demonstrating 
that at this density ratio and resolution range, the first-order coupling error does not dominate. This underscores that in many 
practical scenarios of interest, our algorithm for two-way coupling with moving boundaries is effectively second-order accurate.

For temporal convergence, the spatial resolution is fixed at 𝑁∗ = 9.6, and different time step sizes Δ𝑡∗ from 3.8 ×10−2 to 1.2 ×10−3
are tested. The result using Δ𝑡∗ = 1.2 × 10−4 is used as a reference for the error computation. Fig. 15b shows that the temporal error 
has a first-order convergence rate arising from our two-way coupling approach.

4.2.3. Single elastically mounted cylinder

Our last two test cases concern the long-time diagnostics of elastically mounted cylinders in a free-stream flow. First, we consider 
a single cylinder of mass 𝑚 and diameter 𝐷 mounted on a spring with linear stiffness constant 𝑘. The cylinder is allowed to move 
in the 𝑦 direction, forced by an incoming flow with velocity 𝑈∞ in the 𝑥-direction. The 𝑥-displacement and angular displacement 
of the cylinder are fixed at all times. We follow the setup considered in [54] and further used in [55] with Reynolds number 
𝑅𝑒 = 𝑈∞𝐷∕𝜈 = 150, reduced velocity 𝑈2

red = 8𝜋2𝑈2
∞𝜌𝑓∕𝑘, and reduced mass 𝑀red = 𝜋∕2(𝜌𝑏∕𝜌𝑓 ) = 4. Time is non-dimensionalized as 

𝑡∗ =𝑈∞𝑡∕𝐷.

Our simulation domain is set as [12𝐷, 40𝐷] with resolution 𝑁∗ =𝐷∕ℎ = 64. The downstream domain boundary set as an outflow 
boundary. Initially, for 𝑈red from 4 to 7, the cylinder is set with an initial displacement Δ𝑦∕𝐷 = 0.1 to trigger the vortex shedding. 
We simulate cases with 𝑈red increasing from 3 to 8 and report the maximum amplitude of each case in Fig. 16. All the simulations 
are run until 𝑡∗ = 105. Our results match very well with the references in [54,55], who both used an Arbitrary-Lagrangian-Eulerian 
(ALE) formulation.

4.2.4. Tandem elastically mounted cylinders

To investigate the performance of our approach with multiple moving obstacles in a two-way coupling setting, we consider 
tandem spring-mounted cylinders in a free-stream flow. Here each cylinder is connected to springs with stiffness 𝑘 in both 𝑥 and 𝑦
directions. At rest, the cylinders are spaced 5𝐷 apart in the 𝑥-direction, and aligned in the 𝑦-direction. The cylinders are released 
to move in both 𝑥 and 𝑦 directions, with the angular velocity kept to zero at all times. The domain is chosen as [16𝐷, 60𝐷], and 
as for the single spring-mounted cylinder, the downstream 𝑥 boundary is treated as an outflow plane. Vortex shedding is triggered 
by initializing both cylinders with a vertical displacement of Δ𝑦∕𝐷 = 0.05, and all the simulations are run until 𝑡∗ = 300. All other 
settings for the simulations of tandem-mounted cylinders are the same as the single-mounted cylinder considered above. Fig. 17

shows for each cylinder the mean and root-mean-square value of the drag coefficient 𝐶𝑑 = 2𝐹𝑥∕(𝜌𝑓𝑈2
∞𝐷) as well as the root-mean-

square value of the lift coefficient 𝐶𝑙 = 2𝐹𝑦∕(𝜌𝑓𝑈2
∞𝐷) for eight different values of 𝑈red . We compare the results with those reported in 

[55] computed using an Arbitrarily-Lagrangian-Eulerian method, and observe good agreement. This demonstrates that our algorithm 
19

is capable of handling multiple moving bodies in a two-way coupled setting with high-fidelity.
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Fig. 16. Left: Maximum amplitude response versus the reduced velocity compared with Ahn and Kallinderis [54] (A and K), Bao et al. [55] and Borazjani and 
Sotiropoulos [56] (B and S), where 𝑅𝑒 = 150 and 𝑀red = 4. The inset shows the numerical setup. Right: Vorticity field visualized at 𝑡∗ = 105 for 𝑈red = 3 (top right) and 
𝑈red = 7 (bottom right).

Fig. 17. Configuration of the tandem-mounted cylinder and drag and lift force coefficient versus different reduced velocities, where 𝑅𝑒 = 150 and 𝑀red = 4. Present 
results (black lines/squares) are compared with results from Bao et al. [55] (green lines/circles). In all plots, solid lines correspond to the upstream cylinder and 
dashed lines correspond to the downstream cylinder.

5. Conclusion

In this work we presented a 2D vorticity-velocity Navier-Stokes solver with sharp boundary treatment that can handle one-

and two-way coupled bodies. To achieve this, we have derived and analyzed a treatment for moving sharp interfaces that can be 
combined easily with explicit Runge-Kutta type time integrators and does not require knowledge of a boundary condition on the 
solution. Our numerical experiments in 1D and 2D have shown that the scheme leads to a mixed spatio-temporal error term that 
does not deteriorate the convergence of the algorithm under a fixed CFL condition.

Based on this moving sharp interface treatment, we extended a stationary-body IIM vorticity-velocity solver to handle moving 
bodies, and provided a range of validation and convergence tests for one-way coupled problems. Notably, we simulated an im-

pulsively started cylinder using a body-based and flow-based frame of reference, and observed that the discretization errors do not 
significantly change between simulations where the boundary is moving relative to the grid compared to those where the boundary is 
stationary. Further, we compared our approach with a first-order penalization scheme and demonstrated that, to achieve a maximum 
error of about 1% compared to a high-resolution reference solution, our IIM approach requires about 20 times less grid points than 
the penalization method.

Finally, we extended our one-way coupled Navier-Stokes solver to two-way coupled problems by means of a control volume 
method. The approach does not require any pressure computation, and our validations demonstrate that is suitably reproduces 
reference results on cylinder sedimentation and spring-mounted cylinders. Our weak coupling strategy leads to a first-order temporal 
error term that becomes dominant when considering small density-ratio bodies; for large density ratios, our two-way coupling 
approach effectively converges with second order convergence under constant CFL.

Beyond these contributions, our methodology carries over some advantageous features of our previous work [13]. First, the 
sharp-interface treatment enables the computation of the vorticity flux on immersed boundaries, which, when integrated, yields a 
pressure distribution over the body surface in a computationally inexpensive post-processing step. Second, the use of conservative 
finite differences leads to exact discrete conservation of circulation in any grid-aligned control region, which provides a robust way 
to enforce Kelvin’s circulation theory around multiple obstacles embedded in the same domain. Third, the outflow condition devised 
in [49] and further tested in [13] enables long-time simulations in compact domains. Together, this leads to an efficient and accurate 
20

solver for rigid-body flow-structure interaction simulations.
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Future work will address three possible extensions of this work. First, we consider improving the two-way coupling strategy to a 
strong coupling approach. This will eliminate the first-order error term and make the algorithm second-order for all density ratios. It 
will further improve stability of our approach for small density ratios, as the added mass term will be treated implicitly. Since the term 
in the two-way coupling that is current treated weakly is linear in the flow variables, a strong coupling strategy can be envisioned 
using fast linear solvers. Second, we consider the extension from rigid bodies to those with deforming boundaries. For one-way 
coupled problems with deforming boundaries (e.g. self-propelled swimmers with imposed kinematics), the current streamfunction-

based velocity reconstruction needs to be amended with a velocity potential. For two-way coupled problems with deforming bodies 
(e.g. flows interacting with bulk elastic structures), the algorithm further needs to use surface integral force distributions instead 
of our current control volume approach. Though our simulations indicate this approach is viable, high-fidelity force distributions 
would likely require higher resolutions than high-fidelity force integrals [13]. Third, we consider the extension to 3D problems. 
Here the use of high-order immersed geometry discretizations is likely to significantly reduce the computational cost of high-fidelity 
simulations, especially in combination with high-order multiresolution grid adaptation techniques [57]. On the other hand, the use 
of the vorticity-velocity formulation comes with significant challenges, such as maintaining the solenoidal nature of the vorticity 
field, as well as costs, such as solving a vector Poisson equation each timestep. Extending the IIM approach described here to 3D, 
high order simulations for multiphysics flow problems are currently an active area of research in our group.
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