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Abstract. We present the derivation, implementation, and analysis of a multiresolution adap-
tive grid framework for numerical simulations on octree-based three-dimensional block-structured
collocated grids with distributed computational architectures. Our approach provides a consistent
handling of nonlifted and lifted interpolating wavelets of arbitrary order demonstrated using second-,
fourth-, and sixth-order wavelets, combined with standard finite-difference-based discretization op-
erators. We first validate that the wavelet family used provides strict and explicit error control when
coarsening the grid, and show that lifting wavelets increase the grid compression rate while con-
serving discrete moments across levels. Further, we demonstrate that high-order PDE discretization
schemes combined with sufficiently high-order wavelets retain the expected convergence order even at
resolution jumps. We then simulate the advection of a scalar to analyze convergence for the temporal
evolution of a PDE. The results shows that our wavelet-based refinement criterion is successful at
controlling the overall error while the coarsening criterion is effective at retaining the relevant infor-
mation on a compressed grid. Our software exploits a block-structured grid data structure for efficient
multilevel operations, combined with a parallelization strategy that relies on a one-sided MPI-RMA
communication approach with active post-start-complete-wait synchronization. Using performance
tests up to 16,384 cores, we demonstrate that this leads to a highly scalable performance. The
associated code is available under a BSD-3 license at https://github.com/vanreeslab/murphy.
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1. Introduction. Solutions to partial differential equations (PDEs) are typically
characterized by unsteady spatial scale separations. In incompressible fluid dynamics,
for example, flows within a boundary layer include important structures on the small-
est viscous length scales, whereas the wake is characterized by much larger, inertial
structures. Moreover, these flows are intrinsically unsteady and often coupled with the
motion or deformation of immersed boundaries, making the resolution requirements
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difficult to predict a priori. Especially in three-dimensional (3D) problems, where
performance and memory constraints of computing resources constrain the range of
applications, it is desirable to construct methods that can adapt the local resolution
of the grid to the physical requirements of the PDE solution evolved on that same
grid. To achieve accurate solutions, such methods need to be able to discretize and
evolve the PDE consistently across different resolutions, detect the need to refine
or opportunity to coarsen, and perform the actual coarsening or refinement of the
field. Further, their (parallel) implementation needs to be sufficiently efficient so that
any increase in computational overhead due to the required memory access patterns,
load balancing, and synchronizations does not cancel the gains from the reduction
in computational elements, compared to uniform resolution grids. Consequently, the
algorithms and implementations of such adaptive grid refinement methods are signifi-
cantly more complex than uniform grid methods and have seen significant development
over the last three to four decades of research in scientific computing.

An established family of methods is formed by the patch-based adaptive mesh
refinement (pAMR) approach, which considers nested overlapping grids of increasing
resolution [3, 2]. This approach is prevalent across many application domains and
has mature implementations inside several software frameworks such as Chombo [1],
SAMRAT [25], and AMReX [45]. Overlapping grids simplify the use of coarsening and
refinement operators and provide straightforward integration with multigrid-based
elliptic solvers. Excluding more expensive adjoint approaches [18], grid adaptation
decisions in pAMR are typically made on the basis of either a heuristic measure of
the field values and/or their derivatives or an estimate of the truncation error through
a Richardson extrapolation technique [2], or some combination of both [35]. If the
chosen measure is larger than a user-defined threshold, the grid is refined, and if it
is smaller than a second user-defined threshold, the grid is coarsened. Such heuristic
measures are easy to implement but generally provide no a priori sense of the error
made. The Richardson extrapolation method is more rigorous but also more challeng-
ing to implement [1] and requires the simultaneous evolution of the discrete equations
on multiple levels. After the decision to adapt a grid has been made, the actual
coarsening/refinement approaches and the evaluation of differential operators across
resolution boundaries are most often based on polynomial interpolation. Most ap-
proaches achieve second-order accuracy in space throughout these operations, though
extensions to fourth order have been demonstrated as well [44, 41].

Our work falls under a different family of methods which does not consider over-
lapping grids but instead uses an octree-based approach. This was demonstrated first
in Gerris [32] and has a more general distributed implementation in pdest [6], which
itself is successfully used across different application clients such as the finite-volume
solver ForestClaw [7]. The dyadic recursive structure associated with these approaches
can be combined with a wavelet-based multiresolution analysis of any signal on the
grid [30, 31]. Combining wavelet-based grid adaptation with node-based collocated
PDE solution methods such as finite-difference techniques leads to the wavelet collo-
cation method [24, 8, 36]. Wavelet collocation methods typically rely on interpolating
wavelets, which distinguish the information between two levels through the deviation
of fine-level values from an interpolating polynomial constructed from coarse-level
values [13]. The interpolating wavelets have been cast in a formal basis through the
addition of the biorthogonality [9] and extended to include moment preservation and
reduce aliasing through the lifting scheme [37, 10, 38]. The lifted interpolating wave-
lets form the basis of so-called second generation wavelet collocation methods [43].
Existing codes using wavelet-based grid adaptation with finite-difference-based PDE
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evolutions are MRAG [42, 34], which uses nonlifted interpolating wavelets for incompress-
ible flow simulations with shared-memory parallelism, and wabbit [15], using nonlifted
and lifted interpolating wavelets on distributed memory architectures for weakly com-
pressible flow simulations. Overall, despite the potential advantages of high-order grid
adaptation, formal multiresolution analysis, explicit error control, and parallel per-
formance, there is a significantly smaller body of work on the implementation details
and performance analysis of nonlifting and lifting wavelets on block-structured grids,
as compared to pAMR methods.

In this work, we describe the derivation, implementation, and analysis of a par-
allel, scalable implementation of a 3D multiresolution adaptive grid solver for PDEs
on collocated grids, supported by nonlifted or lifted wavelets for scale detection, grid
adaptation, and ghost reconstruction. In section 2 we provide a brief background
of the wavelet theory and show how this translates to block-structured multilevel
grids. We emphasize here the consistent treatment of resolution jumps to preserve
polynomial order and lifting properties in multiple dimensions. Section 3 details our
implementation, using one-sided MPI-RMA communication strategies to handle par-
allel communication. In section 4 we validate our approach on static grid adaptation
tests by demonstrating error control and convergence of high-order finite-difference
schemes for all wavelets and moment conservation for lifted wavelets. Section 5 applies
the resulting software to solve PDEs, where we provide detailed analysis of the error
as a function of the wavelet-based thresholding parameters. Here we limit ourselves
to linear and nonlinear scalar advection equations as examples of challenging prob-
lems involving dynamically changing scales, though our framework as presented can
already handle a wider set of problems including advection-diffusion and reaction-
diffusion equations, and will be further extended in future work. In section 6 we
demonstrate that our code retains parallel efficiency across more than 16,000 com-
pute cores and conclude our work with a perspective and future work in section 7.

2. Wavelet-based multiresolution. Our work relies on a few key contribu-
tions that have been made to the field of wavelets theory that include the multireso-
lution analysis, biorthogonal interpolating wavelets, and the lifting scheme. Though
a complete overview of wavelet theory is beyond the scope of this manuscript, we pro-
vide a concise review of the concepts required to detail the mathematical framework
for our multiresolution grid adaptation below.

2.1. Interpolating wavelets. Throughout our work we use interpolating wave-
lets. These were first introduced by [13] and generalize the polynomial interpolation
procedure on nested dyadic grids presented in [11, 12] using wavelet theory, as detailed
in [14]. Interpolating wavelets can be constructed through polynomial interpolation,
thus avoiding the Fourier transform. Through the introduction of the orthogonal
multiresolution analysis first, and the biorthogonal multiresolution analysis second,
they have been formalized within the framework of second-generation wavelets, and
through the lifting scheme they can be generalized to achieve moment conservation
properties and reduce aliasing. Here we will briefly touch upon these concepts and
their mathematical background.

2.1.1. The orthogonal multiresolution analysis. The multiresolution analy-
sis [29, 9, 37] defines nested orthogonal subspaces decomposition of Ls(R) indexed by
L. Mathematically the nested spaces can be written as VZ C VE*! for L € Z, where
the union UyczVF is dense and orthogonality implies that the intersection Npez V'’ is
empty. The subspaces are further defined with dilation and translation characteristics
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that guarantee the existence of a unique function ¢(x), such that for any L € Z the
translated and dilated family of functions ¥ (z) = V2L @(2F k) for k € Z is an or-
thonormal basis of V¥ [29]. Orthonormality here means that (of(z) , ¢F(z)) = 6
V{k,i} € Z, where (f(z), g(z)) = [~ f(z)g(z) dx. The difference between two
spaces VL and VI is characterized by a new subspace W’ as the orthogonal com-
plement of V¥ to VE*! so that W= = (VEn VL“)J', hence VI @ Wt = Vit
Similarly to V¥, a basis for W is obtained through the dilatation and translation of
the wavelet function t(z), such that ¥% (z) = V2L ¢(2Fx — m) with m € Z.

With these definitions, a given function f(z) € L2 (R) can be projected onto either
basis to define the scaling coefficients /\,5 and detail coefficients 'y,f,

(2.1) ME(f(2), wi(2))  and v 2 (f(2), U (2)

We can then build a hierarchy of projections of f(z) into the wavelet subspaces. We
start with the projection of f(x) onto level L denoted as

(2.2) Z PYRAC

Further, given that VZ @ WL = VE+L we can relate the projection of f(z) onto level
L + 1 to lower levels through the refinement relation:

23 PP@ 2 A o) = M ekl + Xk vh)

Applied recursively, (2.3) can be used to create a hierarchy of nested decompositions
from level Lg to level L:

(2.4) PEFY[f ZAL“ Py =) N0 e (@) + Y Y Ak ()
k Lo<I<L m

2.1.2. Biorthogonality and linear filters. To generalize the multiresolution
analysis to a broader class of wavelet functions such as the symmetric or interpolating
ones, one can relax the criteria for finding scaling and corresponding wavelet func-
tions using the dual multiresolution analysis based on biorthogonality [9, 38]. With
biorthogonal wavelets, the basis of VL, ¢l (z), no longer needs to be orthonormal.
Instead, one uses another subspace VL and the associated basis functions <,5£ (x) such
that

(2.5) (of(z), ¢F(x)) =6 with {i,k}€Z .

The spaces V¥ and VL have nonorthogonal complements W’ and Wk, respectively,
such that V& L WE and VE L WL, This leads to the definition of the primal (dual)
scaling functions ¢ () and the primal (dual) wavelet functions ¢ (¢), which form
bases of their respective subspaces and satisfy

(2.6) (PF(@) , vE@) = (BF@) , pE@)) =0 and
<¢£<x> : so£<x>> = (@), BF@)) = di

The definitions of the scaling and detail coefficients become

(2.7) M2 (f@), pb@)  and vk 2 (f@), Dh@) .
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and the refinement relation remains unchanged:

(2.8) PEFf1 () = DA of @) = )AL wb (@) + D dm(e)
k

7 m

Following the nested subspace decomposition a linear filter can be associated to
each primal/dual basis function [38], binding two levels together:

(2'9) @k th,J (p]L+1 ) ng n @L+1 )

th @7 (x)  and ng n G ().

Combined with the biorthogonal refinement relation, the filters provide the relations
for the forward wavelet decomposition (also known as the analysis operation):

(2.10)
)\L _ thj)\LJrl S f{k,j )\jl_ﬂrl and ,Y#L _ Z 7J)\]LJrl A émﬂ' /\]['z+1’
J
where we used the Einstein summation convention to simply the notation. The inverse
wavelet decomposition (also known as synthesis operation) is obtained as

(2.11) N =S"hie de 4 D Gim v & Hix M+ Gim 7, -
k m

Both the forward and inverse transforms have linear computational complexity
in the number of degrees of freedom and are easily represented as a block diagram, as
illustrated in Figure 2.1(b).

2.1.3. Interpolating wavelets. Our work relies on the interpolating wavelets
first proposed by [13] based on the Deslauriers-Dubuc interpolation filters [11, 12].
This wavelet family provides a nonorthogonal basis [13] but their construction can
be framed within the context of a biorthogonal multiresolution analysis as detailed in
[37, 38].

Like the orthogonal wavelets, interpolating wavelets are characterized by the di-
latation and translation of a (nonorthonormal) scaling function ¢f = ¢(2Fx — k)
[13]. The interpolating property of the scaling function is given by ¢(i — k) = §; 5, for
i,k € Z. It is convenient at this point to define x, j £ k2L as the coordinate asso-
ciated to an index k € Z at level L such that pX (2 ;) = p(i — k). The interpolating

Forward Inverse Forward Inverse

(a) The dual/primal lifting filters (b) Biorthogonal filter bank

FiG. 2.1. The forward and inverse wavelet transform as the combination of the dual and primal
lifting steps, expressed through the dual/primal filters (a) and through the full biorthogonal filter
bank (b).
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nature then implies that the evaluation of the projection of the function at zp ; is
equal to the associated scaling coefficient at that coordinate, AF:

(2.12) PEf] (wp.:) ZM ¢k (wri) = A

Interpolating wavelets can be classified by their degree of interpolation N, which
corresponds to the number of moments of the scaling function,

(o)

(2.13) / zP p(x) dz = dp, 0<p<N .
— 00

This relation guarantees the ability of the scaling functions to exactly reproduce

polynomials of order N — 1.

Interpolating wavelets are well suited to wavelet collocation methods because it is
convenient to use function evaluations at x, ; interchangeably with scaling coefficients
AL, However, in general this does incur an error associated with the truncation of
detail coefficients at any given level. This error can be captured by comparing the

exact function with the function P~ [f] (x) defined as P’ [f] (z) & Zk f(zrx) ek(x).
This corresponds to a similar projection as (2.12), but replacing AL with f(zr ). A
bound on the difference can be found as [39]

(2.14) P /@) - f@)| <0 (27 ")

Specifically at location x, ; we then find ’f(xLyk) — )\ﬂ <0 (2*L N). Since 27 L =
Trk+1 — 2r,x ~ h relates to the grid spacing on level L, this relation implies that
using function values in an Nth order interpolating wavelet-based projection incurs a
discretization error of O(hV).

The simplest family of interpolating wavelets is the Donoho interpolating wave-
lets [13, 37, 38], which are classified here with the code N.0, with N the degree of
interpolation. For the Donoho interpolating wavelets, the dual scaling function is a
Dirac impulse located at the origin [37], ¢£(z) = §(z — ). Hence, it follows that
at any level

(2.15) M= (f(z), ek (2)) = flarp)

which means the scaling coefficients at level L do not just equate the function pro-
jection evaluation at level L, as in (2.12), but they equate the function evaluation
itself: P[f] (xrx) = P[f] (zpx) = f(zrk) = Ak. However, these wavelets do not con-
serve moments when compressing information, and are characterized by considerable
aliasing in the wavelet transform as reported in [37]. One potential avenue to address
these issues is by increasing N, the number of zero moments of the wavelet function.
This can be done through the lifting approach proposed in [37] as discussed in the
next section.

2.1.4. Lifted interpolating wavelets. The lifting scheme has been introduced
as a general and convenient way to construct biorthogonal and second generation
wavelets and their associated linear filters [37, 40, 10, 38]. Although the scheme can
be generalized to any wavelet family, we restrict ourselves here to the interpolating
wavelet. Starting with a set of scaling coefficients on level L+1, the lifting scheme uses
the following three different steps to obtain the set of scaling and detail coeflicients
on level L:
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1. The splitting step splits the fine scaling coefficients into temporary coarse
scaling (even indices) and detail (odd indices) coefficients. This step is also
known as the application of the “lazy wavelet” and can be captured by the
filters flk,j = dop,; and ﬁm,j = 02m+1,5- After this first step, we have a set
of coarse scaling and detail coefficients

(2.16) M= k=B,

2. The dual lifting applies the filter S to the scaling coefficients and uses the
result to update the detail coefficients:

(2.17) Vo = i+ S A

3. The primal lifting applies the filter S to the detail coefficients and uses the
result to update the scaling coefficients:

(2.18) M M+ Semns

The successive application of the three steps is illustrated in Figure 2.1 and can be
expressed through composite filters H* and G* that combine all stages into single
operators. Reversing the sequence of operations and individual steps leads to the
corresponding inverse transform, captured by the H® and G* filters.

The Donoho interpolating wavelets discussed in the previous section can be cast
in the format of the lifting scheme by setting S to the filter coefficients of [11, 12],
which ensure exact interpolation for polynomials of degree up to N — 1, and setting
all primal lifting filter coefficients S = 0.

To “lift” these wavelets, following [37], one can choose the primal filter S in such
a way that the first N moments of the primal wavelet function vanish:

(2.19) / P () dz =0, 0<p<N .

—0o0
If this holds, we ensure the conservation of the first N moments across levels:

(2.20)

/ R [Zxﬁ“ ﬁ“m] dz = / T lZAﬁ eh(@) + Y vk wm] dx
o0 k -0 k m
2/00 aP lZ)\ﬁ gpf(w)] dz
oo -

for 0 < p < N. Using the moment properties on (z) from the interpolating wavelet,
the pth moment on level L can be expressed as

(2.21) /OO 2P PLf] (z) dz = Z )\,ﬁ/ 2P oF(z) de =27F Z N (zrn)?
k k

oo
— o —00
which allows us to rewrite the moment conservation identity of lifted interpolating
wavelets (2.20) between two levels L + 1 and L as

(2.22) SN @p )" =2 M (woa)”
J k

for 0 < p < N.
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TABLE 2.1
_ Dual-lifting coefficients, S; [4, Appendix B.3]. For uniform grids the filter is symmetric, i.e.,
S_i = Sl

N S_o S_1 So S1 So S3

2 ~1/2 ~1/2

4 1/16  —9/16  —9/16  1/16

6 | —3/256 25/256 —75/128 —75/128 25/256 —3/256

To satisfy (2.19), on a uniform grid and assuming N < N it can be shown that
SN = —1/2 SN [37, Theorem 12], where S are the dyadic interpolation coefficients
from [11, 12] and given in Table 2.1. The lifting scheme thus results in an interpolating
filter bank for interpolating wavelets indexed by the corresponding interpolation and
moment properties N.N, which can be used for refinement (H = H® and G = G°)
and coarsening (H = H® and G = G?®) operations. Nonlifted (Donoho) interpolating
wavelets have N = 0, whereas lifted wavelets have N > 0; numerical values for
the filters are given in section SM1. All our results in this work are restricted to
N € {2,4,6} and N € {0,2}.

Last, we note that lifting the interpolating wavelets leaves the primal scaling
function ¢(x) unaffected, but does change the dual scaling function ¢(x) from a delta
function to a continuous distribution. This means the identity f(zyx) = AL of the
Donoho interpolating wavelets is lost, and instead we fall back on the general error
bound A — f(zr k)| < O (275 N) provided in (2.14).

2.1.5. Compression. Relying on the multiresolution theory, compression can
be achieved by discarding all the detail coefficients whose absolute values are smaller
than a tolerance e. This yields a coarser (or compressed) representation of the infor-
mation,

(2.23) PEfl(@) =) Al @@ + D > (@)

k Lo<I<L |ym|>e

It can be shown [13, 43, 26] that the error committed by this approximation is of the
order of ¢,

(2.24) |PE1£] (2) = PEIf] (@)] , < Cue

where C; depends on f(x). In practice, with a reasonably smooth function the value
of Cq =~ 1, which means that € is an accurate estimate of the local error committed.

2.2. Extension to block-structured grids. In this section we describe how to
adapt the multiresolution analysis described above to block-structured grids. Through-
out this work, we limit the jump of resolution between two adjacent blocks to 1 (de-
noted as the 2:1 constraint), which considerably simplifies the operations and the
implementation complexity. Below we discuss three fundamental operations that are
required in the implementation: coarsening describes the compression of data in 2¢
blocks into a single block at the next lower resolution level, with d the number of
spatial dimensions of the grid; refinement describes the refinement of data in a single
block into 2¢ new blocks at the next higher resolution level; and ghost point recon-
struction relates to the construction of ghost points for blocks across a resolution
jump, so that finite-difference stencils can be evaluated on each block at its own local
uniform resolution.
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We describe each of these operations in one dimension in more detail below, focus-
ing on the wavelet 2.2 for simplicity. Subsequently, we will discuss how implementation
choices lead to the treatment of grid points near resolution jumps, and how we define
the criteria for compressing or refining a block. We note beforehand that our sketches
use grid “blocks” and associated numbering that do not reflect a practical setting,
but rather provide the minimum number of points needed to explain the respective
operations for ease of interpretation.

2.2.1. Coarsening. Starting from a uniform resolution one can coarsen a block
using the filter H,. The coarsening pattern is illustrated in Figure 2.2 for wavelet 2.2
where the “left” (green) and “right” (blue) fine scaling coefficients at level L + 1 =
1 (top row) are converted into coarse scaling coefficients at level L = 0 (bottom
row) through subsequent application of the dual lifting (5) and lifting (S) filters.
After these steps, only the scaling coefficients at level L are retained while the detail
coefficients are discarded. Due to the lifting step, ghost points are required for a block
to coarsen when using wavelets with N > 0, with the precise number specified in the
first column of Table 2.2. In the example of Figure 2.2(a) for wavelet 2.2, the green
region needs one ghost point at the back (A}, needed to compute \Y) and the blue
region needs two ghost points at the front (A} and A}, required to compute \2).

Discarding the detail coefficients on level L does not affect the scaling coefficients
on that level; however, when N > 0 discarding these details does affect the scaling
coefficients of adjacent blocks whose resolution has not changed. This can be seen
and accounted for by performing an inverse wavelet transform from level L back to
level L+ 1 after discarding the details, and updating the values of the affected scaling
coefficients:

0 X0 X8 X o o+ @ X——O—X—
A A S S S S S I

X
XN
x1/
/1N

(b) update step

F1G. 2.2. Sketch of the steps required to coarsen the left (green) and right (blue) grid regions
using wavelet 2.2, with the central (red) region remaining at fine resolution. First we apply the dual
lifting (DL) and lifting (L) steps successively to compute the coarse-level scaling coefficients, and
discard the neglected detail coefficients (a). When N > 0 the information encoded in the discarded
detail coefficients must also be removed from the fine-level information on the central (red) region,
by using the inverse lifting (iL) and inverse dual lifting (iDL) filters during the update step (b).
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TABLE 2.2

Ghost points requirement for a block when coarsening (see Figure 2.2(a)), for a block at level
L+ 1 performing the update step when a neighbor at level L has coarsened (see Figure 2.2(b)), and
when refining a block (see Figure 2.4). The coarse region extension indicates how many additional
scaling and detail coefficients at level L have to be computed outside of the blocks boundaries to
perform the update step. The associated ghost points are required at the level L + 1 of the block
whose neighbor has coarsened. The size of these regions can vary between one and three dimensions,
as explained in subsection 2.3.

[ [Coarsening| Update after neighbor has coarsened [Refinement|

Wavelet| # ghost coarse region # ghost # ghost
order points extension points points
front back front back
N N |front back |(1D / 3D) (1D /3D)|(1D / 3D) (1D / 3D)|front back
2 0 0 0 0/0 0/1 0/0 0/1 0 1
2 2] 2 1 1 2 2 3 0 1
4 0 0 0 0/2 0/3 0/4 0/5 1 2
4 2] 4 3 3 4 6 7 1 2
6 0| 0 0 0/4 0/5 0/8 0/9 2 3
6 2| 6 5 5 6 10 11 2 3
(2.25) S D VI €

where v are all the detail coefficients that we have discarded. To perform the update
step on a fine block whose neighbor has coarsened, the fine block needs to have enough
ghosts points to compute the values of L that are discarded, which increases signif-
icantly the ghost point requirements of the update step as shown in Table 2.2. The
distance (in index space) to the farthest detail to be discarded depends on the wavelet
order and N and is shown in Table 2.2 under the column coarse region extension.

In the specific example of Figure 2.2, though the middle red region does not
change resolution, we must still remove all the information associated with the dis-
carded detail coefficients of the coarsened green and blue regions. For wavelet 2.2, this
corresponds to discarding the information associated with 79 on the left and 7Y on
the right. To achieve this, starting from the original uniform grid on the top line of
Figure 2.2(a), the red region requires two ghost points in front (AJ and A}, needed to
compute ) and three ghost points in the back (M, Al;, and A5, needed to compute
79), in order to perform the update step associated with the coarsening of both its
neighboring grid regions. Last, as indicated in Figure 2.2, for wavelet 2.2 we addition-
ally discard the detail coefficient 49 when the left region coarsens and +{ when the
right region coarsens, which will be explained further in the next two sections.

2.2.2. Ghost point reconstruction. For any grid configuration with blocks at
multiple levels of resolution, we have to be able to compute ghost points for each block
at their local resolution level. We choose here to rely on the wavelets to do so for all
ghosting operations, in order to be consistent with the grid adaptation operations.

Figure 2.3 shows the computation of the ghost points for a fine region (in red)
surrounded by neighboring coarse regions (in green and blue) for wavelet 2.2 in one
dimension. Ghost points to be computed are shown with open circles (on the coarse
level) and open squares (on the fine level), whereas known scaling coefficients are
shown in colored symbols with black outlines. A naive wavelet transform indicates
the immediate problem that the ghost points for the finer region and those for the
coarser region are interdependent: for instance, to compute A} we would need to apply
inverse lifting on A9, but A9 is in turn dependent on A} through the dual lifting. This
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F1G. 2.3. Sketch of the process used to reconstruct ghost points (open symbols) for a 1D fine-
resolution grid region (in red) surrounded by coarse grid regions on the front (green) and back (blue),
using wavelet 2.2. The arrows denote the flow of information from grid values to the unknown ghost
points. After the ghost points for the fine region have been computed, the ghost points for both coarse
regions can be found from a standard coarsening procedure (Figure 2.2(a))

interdependency gets more intricate in higher dimensions and for higher-order wave-
lets. Though these systems can be solved as proposed in [34] for nonlifting wavelets,
the associated implementation requires expansive look-up tables that significantly in-
crease the memory footprint of the solver, especially in three dimensions [42]. To
avoid this complication, we choose to discard the fine-region detail coefficients that
cause the interdependency between the wavelet transforms on the two levels, which
we denote the “coarse-extension assumption”. In the case illustrated in Figure 2.3
specifically, this means we discard the detail coefficients 7§ and 7J. On a more ab-
stract level, this choice means that we effectively extend the coarse-level region across
the resolution jump into the first few grid points on the neighboring fine resolution
block. To consistently follow through with this assumption requires additional steps
in our implementation that we will discuss more below. For now, with this assumption
in place the ghost reconstruction across a resolution jump can be done in two steps.
First, we can use the wavelet transform to compute ghost values for the fine resolution
block through what is essentially a local refinement of the coarse grid, which can now
be done explicitly.

In Figure 2.3 we illustrate this approach for the computation of the fine ghost val-
ues with the wavelet 2.2. Focusing first on the right resolution jump, our assumption
of explicitly discarding ~ formally sets the ghost point Al = AJ and further allows
us to directly evaluate Al; as A}, = 1/2(A2 + A2). This is essentially a refinement
procedure where we take the coarse-level scaling coefficients and refine them under
the assumption that all unknown detail coefficients involved in this process are zero,
irrespective of the side of the interface where they exist.

For the left resolution jump, the specific grid layout enables us to proceed in one of
two ways. The first way is conceptually similar to how we describe the right interface,
where by assumption 79 = 0 even though this detail resides in the fine resolution grid.
Under this assumption, A = A} and the ghost point A§ = 1/2 (A? + A}) is obtained
from the inverse wavelet transform of the coarse-level data. The second way relies on
the inverse of the dual lifting step: we can directly write \§ = 1/2 (A} + A?) without
explicitly considering 9. The two approaches are identical if 4 = 0. Note that this
is possible only on the left interface; on the right interface, the value of A}, is not
readily available unless 7§ = 0, since A, belongs to the coarse region. In practice, we
use the first approach and explicitly assume that both 43 and ~) are zero. We do so
because the implementation of the inverse dual lifting in multiple dimensions is not
trivial (see subsection 2.3), which would complicate the second approach.

This concludes the computation of the ghost points for the fine level; afterward,
we can treat the region of the fine resolution as a local uniform grid that we coarsen
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F1G. 2.4. Sketch of the refinement procedure of a 1D coarse grid region (in red) using wavelet
2.2. Starting from the coarse-level scaling coefficients (bottom line), we use inverse lifting (iL) and
inverse dual lifting (iDL) to compute the fine-level scaling coefficients (top line). For this wavelet,
only one ghost point on the back of the refined region is required, indicated in blue.

in order to obtain the ghost points for the coarse grid levels. This procedure poses no
further difficulties and is identical to the coarsening described above.

2.2.3. Refinement. The refinement operation of a block away from resolution
boundaries is trivially done through the subsequent application of the lifting and dual
lifting filters. Near resolution boundaries, we retain the coarse-extension assumption
introduced for the computation of ghost points described in the previous subsection,
which enables the explicit computation of the fine-level scaling coefficients. This
process is illustrated in Figure 2.4 for the special case of the wavelet 2.2, in which case
only the ghost point A? is required on the right resolution jump to compute the new
scaling coefficient A§. The number of ghost points needed for a block to refine for any
other wavelet considered here is shown in the last column of Table 2.2.

2.2.4. Substitution. In the previous subsections we motivated and detailed the
coarse-extension assumption, where we neglect specific fine-level detail coefficients
near coarse-fine resolution jumps to facilitate explicit ghost reconstruction and refine-
ment operations. We explained that this is essentially equivalent to an extension of
the coarse-level region into a small band of the adjacent fine-level block. In practice
however, these specific detail coefficients on the fine-level block may not be zero due
to field operations on the associated fine-level scaling coefficient, such as during the
evolution of a PDE. Without addressing this, we would inconsistently neglect high-
frequency information during the grid adaptation and ghost reconstruction due to our
coarse-extension assumption.

To avoid that this spurious information persists and leads to an inconsistent wave-
let transform on the two sides of the interface, we perform an additional “substitution”
step where we overwrite each fine-level scaling coefficient associated with a neglected
detail coefficient locally with wavelet-reconstructed values that will enforce a zero
detail coefficient. To achieve this step, we use the dual lifting relationship

L L+1 L+1 L+1
(226) 7 =0 = G A" = Gl isemin At men T Aami =0
L+1 L+1
= A1 & G izem) Aj 2 (@mt1)
where we used the fact that Gy, ; = 1 for all wavelets considered in this work. We
note that in one dimension, the proposed approach is exactly the inverse of the dual
lifting step, as illustrated in Figure 2.5. This substitution step is subtle so we point
out that this step does not affect the order of accuracy of the wavelet operations, only
removes detail coeflicient values that are generated during the PDE evolution starting
from values below the coarsening threshold, and can be rigorously understood as the
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FiG. 2.5. Sketch of the substitution process, where spurious information associated with ne-
glected detail coefficients in fine resolution grid regions adjacent to coarse resolution regions is
explicitly discarded. For wavelet 2.2 in one dimension, as shown here, substitution is equivalent to
the inverse dual lifting.

consistent enforcement of the coarse-extension assumption. In practice, we apply the
substitution step as part of the ghost point reconstruction, immediately after the
computation of the fine ghost points and before computation of the coarser ghost
points.

2.2.5. Block adaptation criteria. Subsection 2.1.5 describes how to compress
a signal in one dimension given its wavelet transformation. Here we explain how we
transform this condition to compress data on a block-structured grid, detect emerging
scales, and manage the need to refine during a simulation.

Compression. Starting with the former, for each block at level L we compute all
associated details v ! through the forward wavelet transform and take the maximum
value for each block b as |y~1|%, . Consistent with our coarse-extension assumption
above, we consider within this local infinite norm also the set of details that we
require to be negligible when computing ghost points, the refinement relation, and
the coarsening steps, even though these detail coefficients might physically reside
in adjacent blocks. The number of additional details considered beyond the block
boundary is given in the column coarse region extension in Table 2.2. Once we have
the maximum detail coefficient on each block, we decide on an action to take. Due
to the octree nature of our grid, we can only coarsen all leaf blocks within a single
tree node simultaneously. Therefore, for each set of 2¢ leaf blocks in the grid where d
is the spatial dimension, we reduce them to a single coarser level block if each of the
leaf blocks b satisfies |y 1%, < e., with ¢, the coarsening threshold. This criterion
constitutes a generalization of (2.23) to a block-structured grid. This approach implies
that the compression rate of a given signal decreases as the block size increases, due
to a reduced granularity in the grid. We emphasize here that by including the details
neglected during the coarse-extension assumption within our definition of |y*~1|%_,
the compression approach remains consistent with (2.23).

Refinement. The criterion to refine is necessarily more ad hoc, as it aims to
predict where new scales are expected during the evolution of the equations based
on an instantaneous analysis of the field. Different approaches exist within existing
wavelet-based adaptive grid methods, such as increasing the resolution of neighboring
blocks to take into account the smallest scales created by the PDE [26]. Here we follow
[34] to rely on a user-specified tolerance €, > €. that determines whether refinement
is necessary. Using this approach, a block b is refined if [y2~1[% > ¢, i.e., if the
detail coefficients of the current information exceed a user defined threshold. We will
analyze this choice in the validation and result sections below.

Under the above compression policy, we are guaranteed by the wavelet framework
to discard only information encoded by detail coefficients that do not exceed €.. With
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the refinement approach, the maximum detail coefficients during the evolution of the
equations are guaranteed to never exceed €,., since we would refine when that happens.
Specifically, if we refine a block at level L for which |[y2~1|% > €., we create new
blocks at level L + 1, each one of which is characterized by |y”|% = 0. This means
we have to make sure we do not coarsen blocks just after they have been refined, even
though technically their detail coefficients are smaller than the coarsening threshold.
The implementation of this requirement is discussed in section 3.

Ratio between compression and refinement thresholds. From (2.14) we know that
|7]%, oc RN with N the interpolation order of the wavelet. This means that coarsening
a block will generally increase its detail coefficient by a factor 2. Consequently, if we
choose €, /e. < 2V and a block with |y only slightly below the coarsening threshold
is coarsened, its details will exceed €, after coarsening. In this case, the block will be
flagged for refinement again, leading to flip-flops in the grid adaptation. Conversely,
choosing €, /e. > 2V can lead to a nonunique grid: if we consider a block with |y|%
slightly above the coarsening threshold and therefore admissible on the grid, the same
block coarsened by one level would also be admissible on the grid. In this case the
adaptation is therefore not unique and the obtained grid depends on external factors
such as the initial level.

In practice, we observe ¢, to be the threshold that determines the overall accuracy
of the simulation, since this is the threshold that sets the maximum value of detail
coefficient admissible on the grid. Then ¢, determines the compression rate, or how
much information we are willing to discard for a given €,. This can be controlled
by the ratio €,/e., which we make sure to set to €./, > 2V to prevent the flip-
flopping described above. The effect of both €, and the ratio €, /€. is discussed through
numerical experiments below.

Adaptation frequency. For transient problems we have to choose a frequency of
adaptation that balances the need to adjust the grid to dynamically evolving scales
against the computational cost of changing the grid. In general, lowering the mesh
adaptation frequency will lead to wavelet detail coefficients in the grid that fall more
and more below the compression threshold in some regions, and increase more and
more beyond the refinement threshold in others. The former will not increase the
errors made during the simulation, but the latter could potentially lead to the grid
not capturing emerging or transported scales that are relevant to the PDE evolution.
A counterpoint to this is that the block-structured grid contains significant “inertia,”
which grows with the block size, due to the fact that we refine even when one single
detail in a block exceeds the threshold.

To put the adaptation frequency into context, we can consider a transport problem
with characteristic velocity U. In this case, the time it takes for the solution to travel
a grid points at level L is 27La/U (assuming a unit cube as root domain). If we
adapt every N, time steps and follow a CFL-based time step constraint, the solution
has traveled CFL N, grid points between successive adaptations. Though in practice
likely problem-dependent our results in subsection 5.1 show that for a smooth signal
and suitably small refinement threshold this number is allowed to be of comparable
value as the block size N, leading to N, ~ N;/(CFL).

2.3. Extension to multiple dimensions. Here we detail the extension of the
above methodology to multiple spatial dimensions, starting with the coarsening oper-
ation and subsequently emphasizing some of the implementation details to consider.

The filter application in three dimensions relies on the successive application of
the corresponding 1D filters in each dimension. To clarify the notation we use a
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superscript on all the filters to denote the direction in which the filter is applied. For
coarsening we then obtain

(2.27) )\ﬁz,ky,kz = [H x H{ x HZ] A"

which exclusively relies on the H* filter applied tensorially on the scaling coefficients
at level L + 1.

To compute the detail values we alternatively apply the filters H* or G* depending
on the scaling or detail behavior in the considered dimension, as dictated by whether
the associated index in that dimension is even or odd. This means we can distinguish
different “degrees” of detail coefficients, given by the number of directions in which
the coefficient behaves as detail information. Specifically, the first degree detail coef-
ficients, which we collectively denote as v{, have an odd index in one direction only
and are given by

(2.28) Yme = [G% X HY x Hz] ANMFL 0y = [HE x Gy x Hg] AMH,

VL =[H% x Hy x GZ] AFTL

Similarly the second degree detail coefficients, which we collectively denote as i,
have two odd indices and we obtain

(229)  Yi,m, =[Gk X Gy x HZ] AL yf =[Gk x HY x GZ] AP,

Ymgam. = [H x G x GZ] AFFL
Finally, the third degree scaling coefficients, which we collectively denote as 71, are
obtained as

(2.30) Vg mym. = [G% X G% x Gg] XL

In order to relax further the notation, for all detail coefficients v% = {vf, v, 7%} we
will refer to the fine scaling coefficients located at the same positions as {/\fo“7 /\50“,
>\§o+1}, respectively. We also have the “zeroth” degree scaling coefficients associated
with even indices in all three directions, which we denote by )\OLQL U so that A+ =
PV ARIDYARIDYARIPE AR

Revisiting the coarse-extension assumption we made in one dimension, its exten-
sion to three dimensions can be formulated as discarding any first, second, and third
degree detail coefficients in a fine block adjacent to a resolution jump that are involved
in the multidimensional refinement scheme. This is reflected by the higher 3D values
in the column coarse region extension of Table 2.2, which represents the index-space
distance from the block boundary to the farthest detail coefficient that is discarded.
As before, we discard this information through the substitution procedure, which in-
verts locally the inverse dual lifting step. In three dimensions, the substitution on

first degree scaling coefficients is performed as
(2.31) Mo =[G ypoy XM = AT < (G0 AT

where we used that [G“] ()=(0) = 1 for all wavelets considered in this work. For second
degree scaling coefficients, this becomes
(2.32)

e =[G % G jy 200 AN = AT (G X G 200 AT
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and for third degree, we find

(2.33) 150 =[G X G* X G s 20000 AT+ A

= A [Grx G x G*) (i j.1)%(0.0.0) AL

At first it seems that each equation is interdependent since the first, second, and third
degree scaling coefficients are all included in A**!. However, analyzing the filter G°
reveals that the first degree scaling coefficients )\ILOH only need )\éoﬂ to be updated, the
second degree coefficients 35" need Af-"! and Afst!, and so forth. This means we can
consistently and explicitly perform the substitution step in three dimensions by first
updating the first degree, then the second degree, and finally the third degree scaling

coefficients according to the values of the respective neglected detail coefficients.

2.4. Boundary conditions. All theory described above is for infinite signals
and grids, and the validation and results cases below rely on fields with compact
support, so that boundary conditions are not relevant. In practice, we do need an
implementation of boundary conditions for finite signals, which we created by relying
on interpolation and extrapolation at the domain boundary. Our solver currently
supports zero value (Dirichlet), zero flux (Neumann), plain zeros filling, and extrap-
olation boundary conditions. They all rely on polynomial interpolation done at the
order of the wavelet used, which is compatible with the nonlifted wavelet theory but
doesn’t conserve the moments when used with lifted wavelets. To improve the nu-
merical properties of the interpolation we use Neville’s algorithm [33]. Wavelets on
the interval [13] would provide more consistent implementations of such boundary
conditions, and the lifting scheme provides avenues for moment conservation [17], but
we reserve this for future work.

3. Implementation and algorithms. In this section we discuss high-level im-
plementation choices of the ghost reconstruction and grid adaptation operations, de-
ferring the details to section SM2 in the supplementary materials. Our entire code
base relies on the external library pdest [6] to handle the meta-data infrastructure
of the octree, while all grid adaptation and block operations have been implemented
directly in our solver. Within p4est, we define each “tree” as a unit cube domain,
which forms the root (level L = 0) of an octree data structure that can be refined, and
the leaves are uniform resolution blocks of size N, 5. Following p4est, the trees can be
tiled to create a “forest” of trees, which enables us to create rectangular domains of
arbitrary aspect ratios. We currently have implemented wavelets with N € {2, 4,6}
and N € {0,2}. Extension to higher N is straightforward if needed; higher N on the
other hand will potentially deteriorate the efficiency of the solver as we will have to sig-
nificantly increase the number of adjacent detail coefficients that need to be discarded
in accordance with our coarse-extension assumption. Throughout our implementa-
tion we apply the 2:1 constraint on levels of adjacent blocks, enforcing it during grid
adaptation and exploiting it during all multiresolution wavelet operations.

Ghost reconstruction procedure. The implementation of the ghost reconstruction
consists of two parts: the first recovers the value from coarser neighbors and same-
level neighbors (see Algorithm 1 in section SM2), and the second computes the values
from finer neighbors (see Algorithm 2 in section SM2). The interrank communica-
tion during both parts is handled using MPI-RMA with a post-start-complete-wait
(PSCW) synchronization strategy, chosen to target massively parallel infrastructures
[23]. In the first step, we copy (or use MPI_Get) the required scaling coefficients from
the coarse- and same-level neighbors to the current block, where the actual ghost
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points are computed locally once the required values are gathered. This choice re-
duces the size of the communications and the required memory for the buffers. For
similar reasons, to retrieve ghost values from a finer neighbor block, we first com-
pute the required ghost values from the perspective of the neighboring block, which
then copies (or uses MPI_Put) the coarsened values to our block. Throughout these
steps, we have implemented the ghost point computation for vector or tensor fields
in a “component-by-component” way, so that we can overlap communication and
computation by performing wavelet-based refinement/coarsening operations on one
component while the ghost exchange is performed for the next one.

Grid adaptation. The implementation of the grid adaptation follows an iterative
procedure. During each iteration we start by computing the maximum detail crite-
rion for each block as explained in section subsection 2.2.5, which in turn dictates the
block’s desired actions. Then we enforce global policies that include the 2:1 condition,
possible user-defined limits of minimum /maximum level (not used in this manuscript),
and the prohibition of coarsening blocks that have been refined at earlier iterations;
a detailed description is included in section SM2. This finalizes the adaptation deci-
sion on each block, after which we perform the refinement and/or coarsening on the
affected blocks and use the update step to adjust the scaling coefficients of blocks
whose neighbors have just been coarsened. Finally, we use the p4est grid partition-
ing algorithm to distribute the blocks among ranks and ensure load balancing of the
current grid. This ends the current iteration, after which we recompute the ghost
values. The iterative process ends when, under our policy, no blocks have changed
their resolution, which ensures that |v|- < €, on all blocks.

4. Validation. We present here the numerical validation of our framework on
three different aspects: the grid adaptation and the error control, the moment con-
servation for the lifted wavelets, and the convergence of finite difference operators on
multi-level grids. For all cases, we set the linear dimension of each block to N, = 24,
so that each block contains Ng = 13, 824 unknowns.

4.1. Grid adaptation and error control. The grid adaptation test, referred
to as the “epsilon test,” measures the error between a coarsened field and the original,
uncompressed information. According to the wavelet theory and (2.24) this error must
be bounded by Cie., where we observed in practice C; = O(1). For a fixed value of
€., the epsilon test proceeds as follows:

1. initialize an analytic field on a fine level L.y,

2. given €., coarsen the grid according to the block adaptation policy described
above,

3. refine the grid back to the L.« level and compare the error with the initial
condition.

We have chosen the analytical field to be a scalar Gaussian function centered
within a cubic computational domain of size 2:

7,2

(4.1) flx,y,2) =exp {— } , r? = (z — 1)2 +(y— 1)2 +(z— 1)2 ,

o2
where we set 0 = 2/15. The field is initialized at Lyax = 5. In Figure 4.1(a) we show

the evolution of the infinite norm of the error F, depending on the value of €., for a
range of different wavelets, where the error is defined as

(4.2) B = P [f] (x) = P""™[f],. (0] . -
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Fia. 4.1. Epsilon test: effect of the compression threshold e. on error (left) and number of
blocks (right) for a static grid adaptation using wavelet 2.0 (@ ), 2.2 (@ ), 4.0 ( —0— ), 4.2
(-0 ),6.0 (-0 ), 6.2 (-0 ).

The results validate that the €. is an accurate prediction of the compression error,
consistent with the 1D wavelet theory described above. For high values of €., the error
plateaus as the block granularity in the grid is too low to allow further coarsening.
Looking at the number of blocks as a function of the ., in Figure 4.1(b), we observe
that for a given error the number of blocks required to represent the compressed
field decreases significantly as the wavelet order N increases. Further, the lifting
wavelets characterized by N =2 consistently require a slightly smaller number of
blocks than their nonlifting counterpart characterized by N = 0, for the same error
and interpolation order V.

4.2. Moment conservation. The moment-preserving properties of lifting wave-
lets described above can be validated by comparing the moments on a given uniform
level Ly, ax, both before and after discarding the detail coefficients according to €.. Us-

HLmax
ing the same setup as for the epsilon test, we compare moments between P [f] (x)
HLmax e
and P~ [f], () and define their difference as

(43) Mg, = / 3?“““[1‘] (x) 2Py?=" dx — / f“mm% (x) 2Py?2" dx |
R R¢

where 0 < p,q,7 < N. Each moment can be evaluated from the scaling coefficients
using (2.21). The results of this test are shown for the different wavelets in Figures
4.2(a) and 4.2(b), respectively, for the zeroth moment p = ¢ = r = 0 and the norm
of the three first moments. This validates that the lifted interpolating wavelets con-
serve both the zeroth and the first moment of the scaling coefficients throughout the
adaptation process. When considering the nonlifted wavelet family, we notice that
the error in the moments is negligible for the higher €. values, then suddenly increases
at a certain €. and gradually decrease when ¢, is reduced. At the largest values for
€., the adaptation process coarsens the grid uniformly, and by virtue of the dual scal-
ing functions with N = 0 we retain the original function values on the remaining
grid points. Refinement does not affect the moments of the field for any interpolat-
ing wavelet (see (2.13)) and so in this case our test will compare moments between
function values on two uniform grids at different resolutions. On a uniform grid the
moment integration rule is equivalent to a spectrally accurate trapezoid quadrature
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F1G. 4.2. Moment test: effect of the compression threshold €. on the conservation of zero (left)
and first (right) moments before and after static grid adaptation, for the wavelet 2.0 ( —@— ), 2.2
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due to the compactness and smoothness of the Gaussian function, and it turns out
that even for the relatively high values of e, considered, the coarsening does not af-
fect the error of this approximation, leading to zero values in the moment error. For
each of the three wavelets with N = 0, there exists a “critical” value of €. for which
the coarse grid first contains multiple levels, thus breaking the favorable convergence
properties associated with a uniform grid quadrature and showing the real effect of
grid adaptation on the lack of moment conservation for these wavelets.

4.3. Wavelets and spatial discretization. As a third measure of a static
validation of our 3D wavelet-based multiresolution grid framework, we consider con-
vergence of various finite-difference operators across a resolution jump as a function
of the wavelet order and refinement level. We consider an advection term discretized
using conservative upwind finite difference schemes of third order (CONS-3) and fifth
order (CONS-5), as well as central laplacian operators of second order (DIFF-2) and
fourth order (DIFF-4). More details about the finite-difference schemes used can be
found in section SM4.

The analytical field is the same Gaussian blob as in the previous two subsections
and is initialized on a uniform fine level characterized by grid spacing hy. To simplify
the measure of convergence, we do not consider the automatic mesh adaptation in
this subsection and instead focus on a grid with two levels of resolution that are fixed
in space. Starting from the initial condition at level hf, we coarsen one eighth of
the grid by one level, making sure we cover all possible resolution jumps between
blocks (jumps across faces, edges, and corners). We then compute the ghost points
as described above and evaluate the finite-difference stencil on the entire grid. To
compute the error, we compare the discrete values to the analytic solution of applying
the continuous differential operators to the analytic field.

The convergence of the infinite norm (Fw) of the error is shown in Figure 4.3
as a function of hy, for different wavelet orders N and N. The results show that if
the wavelet order is sufficiently high, the expected convergence order is reached for
all finite-difference operators even in the infinity norm, indicating a correct treatment
of the resolution jump. For lower-order wavelets, the error instead is bound by the
polynomial order of the wavelet used to interpolate the fine-level ghost points. Specif-
ically, in this case the error is bound by N —n, where N is the wavelet order and n is
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Fi1c. 4.3. Convergence order of spatial derivatives for third- and fifth-order conservative ad-
vection (top row) and a second- and fourth-order laplacian (bottom row) on a two-level grid with
finest level hy, obtained using ghost points reconstructed with wavelet 2.0 ( —@— ), 2.2 (-~ ), 4.0
(—.—),4.2(—.—),6.0(—.—),6.2(—.—).

the order of the derivative operator, consistent with the accuracy order of numerically
differentiating an Nth degree polynomial n times. Across all cases, the convergence
of the error can thus be given as h? with p = min(k, N — n), where k is the order of
the finite-difference stencil.

In practice we should therefore only consider wavelets with NV > 4 to obtain a
scheme that is at least second-order accurate on first- and second-order PDEs.

5. Convergence analysis for a linear advection equation. Having vali-
dated the correct implementation of the grid adaptation for nonlifted and lifted wave-
lets, as well as the ghost point reconstruction and finite-difference operators, we focus
here on the behavior of grid adaptation during the evolution of a PDE. We consider
the transport of a scalar field in a divergence-free flow field V- u = 0 as a simple case
of a hyperbolic conservation law:

9¢
5.1 — . =0 .
(5.1) 9t + V- (ugp)
In this section, we compute the right-hand side using the third-order finite-
difference scheme CONS-3, perform time integration using a third-order RK3-TVD
scheme [21, 22] (detailed in section SM3), and fix the block size to 243.
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Fic. 5.1. 2D projection in the XZ-plane of the Gaussian blob for wavelet 4.2 and
e = 1076 with erfec = 100. The 2D projections are illustrated with isolevels at
[1075,1075,1074,1073,1072,1071].

We note that this problem poses a sufficiently challenging testcase to allow us
to analyze our methodology and differentiate between the wavelets. Nevertheless, as
shown above, the presented software framework in its current form is also able to
handle time-dependent problems involving diffusion and reaction terms, as well as
vector-based quantities.

5.1. Translation of a Gaussian blob. To assess the convergence behavior of
our algorithm and implementation, we consider a simple case of the advection of a
Gaussian blob in a uniform velocity field. The computational domain is chosen as a
rectangular box of size 3 X 3 X 6 with each unit cube represented by a separate tree,
leading to 54 trees in the domain. We set the velocity as [0; 0; 1], and advect a
Gaussian blob (o = 1/5) initially centered at (3/2,3/2,3/2) over a distance of 3, so
that we can evaluate the exact solution as a mirror of the initial condition. The time
step is controlled by setting the CFL = 1/4 (based on the finest-level grid spacing),
which is small enough so that the spatial discretization errors dominate the time
integration errors. We adapt the grid every 6 time steps, so that the information
travels at most 1/16th of the finest-level block between adaptation steps. Within this
setting we vary €, and €. to control the grid adaptation during the evolution of the
PDE, focusing on wavelet 4.0 and wavelet 4.2 only. For context of the discussion, in
Figure 5.1 we illustrate the obtained grid for the case of wavelet 4.2, with ¢, = 10~°
and e, = 1078, In this case the maximum level during the simulation is 4, leading to
an effective grid spacing of hy = 2.6 x 1072 or, if the grid was uniformly refined to this
level, a domain with about 3 trillion grid points. The 2D projections highlight the
front/back asymmetry in the grid refinement which is due to the difference between the
refinement and coarsening threshold in combination with the moving field: the mesh
coarsening will be triggered at larger distances behind the blob than the refinement
in front of the blob.

Effect of refinement threshold. We first consider the effect of varying the refine-
ment threshold €., keeping the ratio €,/e. = 100 fixed.

The time evolution of the error during the advection is presented in Figure 5.2(a)
for wavelet 4.0 (in blue) and wavelet 4.2 (in orange) across a range of e, values,
showing that the error decreases with €, without significant differences between the
two wavelets. The evolution of the maximum detail coefficient on the grid (|v]oo) is
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Fic. 5.2. Effect of e, (using er/ec = 100) on the time evolution of the mazimum error (left)
and maz detail coefficient (right) for a linear advection testcase with CONS-3, using wavelet 4.0
( @ ) and wavelet 4.2 ( 8= ).

shown in Figure 5.2(b), which confirms that the maximum detail is always bound by
€. Further, the time evolution shows that the maximum detail varies over time in a
nonsmooth manner, which is explained by noting that the location at which |y| is
computed can jump in space as individual blocks refine or coarsen.

Studying the convergence behavior of a simulation on a multilevel grid is not
trivial. On a uniform grid, one would show convergence evaluating the maximum error
E as a function of the grid spacing h. On adaptive grids, however, the grid spacing
h varies in space and time, we have no direct control on the minimum grid spacing
h, and there is no guarantee that the maximum error F., is measured at a single
physical location when adapting the grid. Alternatively, one can use a parameter like
the effective number of degrees of freedom in the simulation to measure convergence.
We show associated results briefly at the end of this subsection. However, we consider
this convergence metric less relevant to the point of this work, because the effective
number of degrees of freedom is an outcome of the simulation and will likely vary in
time. Instead, we control the error primarily by varying €., and so a more suitable
convergence analysis relates the maximum error at the end time of the simulation as
a function of the input parameter €, (Figure 5.3(a)). The result demonstrates that €,
is successful at controlling the error and moreover its value provides an estimate of
the error made in a simulation, albeit with a problem-specific prefactor of O(10) in
this case.

We can decompose this convergence behavior into different components. First,
through our adaptation policy we guarantee that €, bounds the maximum detail coeffi-
cient |v|oo- In Figure 5.3(b) we show the relation between the error and the maximum
detail coefficient, where we included a uniform resolution line (in gray) obtained by
varying the constant grid spacing h, and computing for each A the maximum error
E, as well as the maximum detail coefficient evaluated by a single-level wavelet 4.0
transform. Both uniform and multiresolution results show a clear 3/4 slope, where
the wavelet results vary as the locations of the maximum scaling coefficient and the
maximum error jump independently across different locations in the grid between in-
dividual simulations. The 3/4 slope can be explained by two observations. First, we
know that the order of the CONS-3 spatial discretization is third, so that E., o h3.
This is confirmed in Figure 5.3(b), showing the error as a function of the finest-level
grid spacing hy; both the uniform and the wavelet 4.2 lines follow a third-order slope
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(wavelet 4.0 will be discussed below). Second, according to (2.14), the detail coef-
ficients associated with a projection of a given smooth function onto a level with
spacing h scale as |V|s oc hY, where N = 4 is the polynomial interpolation order
of the wavelet. For our data this convergence is confirmed in Figure 5.3(c), where
we plot the maximum detail coefficient as a function of the finest grid spacing hy.

Combining these relations we find that E. o< ||7H§é4.

Looking more closely at Figures 5.3(b) and 5.3(c) indicates that though the overall
behavior in Figure 5.3(a) is consistent between wavelet 4.0 and wavelet 4.2, the asso-
ciated grid adaptation strategies are different. Figure 5.3(b) shows that wavelet 4.2
behaves similarly to the uniform resolution grid, which is impressive as the uniform
grid result represents the smallest possible error for any given hy; the wavelet 4.2 does
not compromise that error despite the continuous grid adaptation during the simula-
tion. The behavior of wavelet 4.0 instead demonstrates that this wavelet transform
generates detail coefficients that do not predict the error committed by the PDE and
therefore cause a spurious coarsening and belated refinement. This is emphasized by
the last two points on the left (associated with e, = 1076 and ¢, = 10~7) where
the error goes down even though the finest grid spacing stays the same. This means
that at €, = 1076 the error was associated with a coarser level than the maximum,
and refining that level without affecting the finest level successfully reduced the error.
Similarly, in Figure 5.3(c) the gaps between the uniform grid and the adapted grids
are associated with coarsening, which increases the maximum detail coefficients. We
see again that the behavior between wavelet 4.0 and wavelet 4.2 is different: the re-
duced aliasing of the lifted wavelet 4.2 leads to a better correlation of the maximum
detail coefficients, the finest grid spacing, and the maximum error, compared with
the nonlifted wavelet 4.0. We emphasize, however, that despite the different strate-
gies both wavelets successfully control the error during the evolution of this PDE as
a function of ¢,, as evidenced by the overlapping lines in Figure 5.3(a).

The different strategies of wavelet 4.0 and wavelet 4.2 are further reflected by
the number of blocks required throughout the simulation, as a function of €,.. The
evolution of the number of blocks over time is shown in Figure 5.4(a). For early
times, as the Gaussian blob translates through the grid the trailing side of the blob
gets coarsened since the small details there fall below €.. The leading side does not get
refined yet as the small details do not yet exceed ¢,., so the number of blocks decreases,
leading to the front/back asymmetric grid structure as shown in Figure 5.1. Once the
leading side of the blob gets picked up by €, the number of blocks increases again,
though the asymmetry persists.. At later times, the number of blocks plateaus for
wavelet 4.2 across all values of €,., indicating that the grid structure is largely constant.
For wavelet 4.0, on the other hand, the number of blocks increases throughout the
simulation. This is consistent with the convergence analysis above, where we observed
that wavelet 4.0 produces detail coefficients that do not accurately reflect the PDE
error and thus refines the grid in locations without strongly reducing the error.

Plotting the error made in the simulation as a function of the number of blocks
(Figure 5.4(b)) shows a slope of 1 with respect to the effective number of degrees of
freedom for both uniform and multiresolution simulations. Since the number of blocks
is inversely proportional to an “effective” linear grid spacing to the power of 3, this
thus recovers the third-order convergence of the discretization scheme. Comparing the
two wavelets, we find that wavelet 4.0 requires up to twice as many blocks compared to
wavelet 4.2 at the lowest error values. Both wavelets provide significant gains over the
uniform resolution simulation (fewer blocks by a factor of ~ 30 —40 for wavelet 4.0 and
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Fic. 5.3. Convergence characteristics for linear advection with CONS-3 for wavelet 4.0
( @ ), wavelet 4.2 ( 8= ), and a uniform grid ( ), as a function of €, (using €r/ec = 100),
with the error evaluated at end time t = 3. In each plot, the subsequent data points for multires-
olution simulations are obtained by systematically varying €., whereas the uniform resolution data
points are obtained by systematically varying the grid spacing hy. Each marker symbol is associated
with a unique value of hy to facilitate the comparison across subgraphs.

~ 70 for wavelet 4.2), though this metric is heavily dependent on the scale separation
of the simulation. A rough estimate implies that the ratio of the volume occupied by
a sphere of radius 30 and the volume of the rectangular domain is ~ 70, similar to
the compression rate of wavelet 4.2.

Effect of coarsening threshold. In the previous section we varied €, while keeping
the ratio €, /e, fixed. Repeating the analysis for a range of values for €, /¢, does not
significantly change the results, as shown in Figure 5.4(b). Here the dotted, dashed,
and solid lines correspond to €,/e. = 16, €,/e. = 100, and €, /e, = 104, respectively,
and each data point for each simulation is associated with a given value of €. For both
wavelets, the number of blocks associated with a given error decreases slightly when
€, /€. decreases, reflecting the more aggressive coarsening of the grid when ¢, increases.
At all points, except the finest €, for wavelet 4.0, increasing €. for a given €, decreases
the number of blocks without significantly changing the error. This emphasizes the
capability of wavelets to detect where to compress information without degrading the
overall accuracy of the solution and shows that generally a simulation should take
€r/€. close to the lower bound of 2V (explained in subsection 2.2.5), with N the
wavelet order.
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(a) evolution of the number of blocks over time for various values of e,  (b) wavelet-based convergence: Ey, vs the number of blocks (at ¢ =
forey/ec =100 3.0), withey/ec =16 (--++), €r/€. =100 (- =), and €, /e = 10% (—).

Fi1G. 5.4. Ewvolution of the number of blocks in the grid over time (left), and mazimum error
against number of blocks (right) for the linear advection testcase with CONS-3 using wavelet 4.0
( 8= ), wavelet 4.2 ( —@— ), and a uniform grid ( ), for various values of ,’s. In (b), we also
show the effect of varying e, /ec using different line styles.

Effect of adaptation frequency. For a fixed €, = 1075, ¢, /e, = 100, and wavelet 4.2
we vary the adaptation frequencies ranging from every 6 (as in the cases above) to
every 768 time steps. With constant value of CFL = 1/4 this corresponds to the signal
traveling from 1/16th of a block to 8 blocks at the finest scale between adaptations.
As mentioned in subsection 2.2.5, there are two expected effects that occur when
increasing the adaptation frequency: a delayed coarsening of blocks where the detail
coefficient falls below the coarsening threshold, and a delayed refinement of blocks
where the detail coefficient exceeds the refinement threshold. Compared to a more
frequently adapted grid, the former will reduce the compression rate of the adapted
grid whereas the latter will increase the error of the PDE solution.

The results of our numerical experiment are shown in Figure 5.5 with the error and
maximum detail evolution for all cases over time (left) and the evolution of the number
of blocks (right). Increasing the adaptation frequency up to and including every 192
time steps increases the number of blocks as grid compression is delayed, but does not
strongly affect the error. When the adaptation frequency is every 384 time steps or
lower, we observe that there are prolonged periods of time where the maximum detail
coefficient exceeds the refinement threshold 10°, and the error starts to increase
significantly compared to the other cases. For the lowest frequency (adaptation every
768 time steps), the maximum level in the grid drops to 2 compared to 3 for all
other cases, as details of the signal are progressively lost and the grid is compressed
accordingly. For this particular testcase, we thus find some robustness in the results
to the adaptation frequency between values of 6 and 192, partly due to the smooth
nature of the function and partly due to our 2:1 constraint in adaptation approach.
Both features ensure that the grid adapted at a single time is able to capture and
evolve the solution well when the signal travels up to 2 fine-level blocks afterward.

5.2. Deformation of a Gaussian blob. Here we present the results of our
framework on a more challenging scale separation problem and showcase the abil-
ity of the wavelet-based adaptation to track the need for computational resources.
Specifically, we use the advection equation to transport a Gaussian blob in a non-
linear periodic incompressible flow field defined as
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Fi1G. 5.5. Effect of adaptation frequency for the linear advection testcase with CONS-3 wusing
wavelet 4.2. The number of time steps between successive adaptations shown is 6 (—), 96 (—),
192 (—), 384 (—), and 768 (—). With CFL = 1/4, this corresponds to the information traveling
1/16th of a block, 1 block, 2 blocks, 4 blocks, and 8 blocks, respectively.

),
),
),
which was proposed originally in [27] and has been used extensively since in the level-
set community since [16]. Following the latter we multiply the velocity components
by cos(wt/3) and here evaluate only the “forward” evolution up to ¢t = 1.5. As initial
condition we choose a compact spherically symmetric Gaussian blob defined in terms
of the radial coordinate r as

u(x) = sin?(7 z) sin(27 y) sin(2
(5.2) v(x) = sin(27 2) sin?(7 y) sin(2(

Tz
Tz
w(x) = sin(27 x) sin(27 y) sin’(7 2

r?/o?

for r < B and with ¢ = 0.1 and 8 = 20, centered at [0.35, 0.35, 0.35] within a
unit cube. We apply grid adaptation tolerances of ¢, = 1072 and ¢, /e. = 100, use
CFL = 0.5, and adapt the grid every 12 time steps.

At t = 0, the grid contains only 92 blocks on levels 2 and 3, as the Gaussian is
smooth and can be captured by the fourth-order wavelets at relatively coarse resolu-
tion. As the blob deforms, it thins rapidly near the center of the domain, as shown
through visualization of an isosurface in Figure 5.6. This process triggers refinement
throughout the evolution leading eventually to approximately 11,500 blocks, and lev-
els from 2 all the way to 8. The refinement pattern at the final time is interesting, as
the grid reflects the subtleties in the wavelet analysis: the maximum levels are local-
ized concentrated exactly where we expect a fourth-order polynomial interpolation to
show the largest errors, near the center of the domain. The “tips” of the deformed
shape are still smooth and, despite relatively large gradients, still captured well on
much coarser resolutions. From a user perspective, we note that we do not need to
bound the maximum level; instead, the consistency of the refinement criterion with
the wavelet-based grid adaptation ensures that setting a suitable ¢, is sufficient to
keep the levels in the grid within reasonable bounds.

Finally, we study the ability of the €, criterion as an input to control the solu-
tion error in this nonlinear problem. As the equations have no analytical solutions,

(5.3) do(r) = exp [—
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Fic. 5.6. Advection of a compact Gaussian scalar field using a deformation velocity field: 3D
and perspective views of the grid together with an isosurface of the field at value ¢ = 0.25 fort = 1.5.
We have visualized the outlines of individual blocks to highlight the structure of the grid.

we perform a self-convergence study where the result of a uniform-grid simulation
at level 5 (or 7683 grid points) at time t = 0.5 is used as reference solution. For
the multiresolution cases, we use wavelet 4.2 and consider four different refinement
thresholds ¢, € {1 ;1071 1072 10’3}. We set the time step as At = 1/2 hy/U,
with hy the instantaneous finest spacing in the grid, and U fixed to be U =1 at
all times. None of these multiresolution simulations reaches level 5 within this time
window. Once the multiresolution simulations have reached t = 0.5, we refine their
multilevel grids uniformly to level 5 using the chosen wavelet, and then compute the
maximum error between the refined uniform grid and the reference uniform resolution
simulation result.

The evolution of the error with the refinement criterion is shown in Figure 5.7(a),
where we observe that the slope matches the theoretical convergence rate of 3/4 for
both the refinement criterion ¢, and the measured maximum detail in the domain
|7] oo reasonably well. In Figure 5.7(b) we show the error as a function of the number
of blocks at the final time. This metric is more sensitive as the number of blocks
varies in time; in this particular case, the second-last point at €, = 10~2 just refined
the grid prior to t = 0.5 which has moved the data point to the right compared to
the expected slope. Nevertheless, this convergence analysis demonstrates that the
main results of the linear transport problem described in subsection 5.1 can still be
reproduced for this more challenging, nonlinear transport problem as well.

6. Weak scalability and performance analysis. In this section we present
the results of the weak scalability campaign we have done on Cori, a Cray XC40
supercomputer whose CPU partition contains 2388 nodes of 32 cores each.! The
testcase is the execution of 50 times steps for the advection of a Gaussian tube aligned
with the z-direction in a rectangular domain. The size of the domain, and therefore
the size of the simulation S, is adapted to maintain the number of blocks per core
constant: S (N.) =[1 x 1 x N./32], with N, the number of cores. To get a significant
sample of each operation, we perform the adaptation every time step, although in
practice we would adapt less frequently. The domain is initialized with 75.5 blocks
per rank and one rank per core, which with a block size of 243 leads to about 1 million
unknowns per core. We used the wavelet 4.0 and CFL = 0.25.

!The MPI implementation used is OpenMPI/4.1.2.
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Fic. 5.7. Advection of a compact Gaussian scalar field using a deformation wvelocity field:
wavelet-based convergence analysis.

We study the performance of our framework from 1 nodes to 512 nodes, with the
latter corresponding to 16,384 cores and about 17 billion unknowns. In Figure 6.1(a)
we show the evolution of the time spent per time step for the grid adaptation (or-
ange) and the stencil computation (blue). We also show separately the time spent
in ghost computations (green), which is the communication-heavy part of the stencil
computation. Though highly problem-dependent, for this particular problem the grid
adaptation takes roughly half the time of the stencil computation within an RK3 time
step, which is very reasonable given that we typically would need to adapt the grid
only every 10 to 100 time steps. Further, the ghosting takes up about a third of the
time of a stencil computation, even on very large partitions.

Based on this timing data, we show in Figure 6.1(b) the weak efficiency n,, defined
as

T(Nrefa S(Nref))
T (Ne,S(Ne))

(61) nw(Nc) =

where T (N, S (N)) is the time taken by the simulation to run a problem of size S on
N cores and where we used N, = 64, i.e., 2 nodes.

Based on Figures 6.1(a) and 6.1(b), the PSCW strategy allows us to reach a per-
fect scalability in the case of the ghost and the stencil operation. This observation is
confirmed by analyzing the breakdown of the different operations illustrated in Fig-
ure SM5.1. This result is only possible because both operations are scalable and done
on group of ranks with the PSCW calls, instead of using the entire communicator. We
do pay a price to achieve this scalability in the ghost computation, because we have to
reinitialize the ghost meta-data structure every time we modify the grid. As observed
in Figure 6.1(b), this adaptation process has a lower parallel efficiency. Analyzing the
timing of different operations within the adaptation step (Figure SM5.3) shows that
the less scalable operations are the synchronization step, which contains a nonblock-
ing MPI_Allreduce and various RMA synchronizations, and the reset operation of the
meta-data for the ghosting, which involves the creation and deletion of the window
on MPI_COMM_WORLD. For the latter we currently use nondynamic windows as we do not
expect the adaptation to be called often compared to the use of the ghosting and the
stencils, and so its computation cost will not dominate in practice. However, in the
future we could still improve the implementation by considering a dynamic window
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Fic. 6.1. Weak scaling for the three main operations involved in adaptive grid simulations: the
grid adaptation ( , performed every time step here), the stencil operations ( ), and the
time spent in the ghost computations ( —®— ) during the stencil evaluation. The times are given
in seconds per time step, from 1 node to 512 nodes (32 cores to 16,384 cores).

allocation, which might be better suited for a policy that requires very frequent adap-
tations. Overall, the observed behavior of this weak scalability test is consistent with
the implementation choices, as all the global operations are less scalable by definition,
while the local operations demonstrate excellent scalability.

7. Conclusion. This work provides a detailed explanation of the mathematical
foundation and distributed computational implementation of a 3D block-structured
adaptive grid method based on a multiresolution analysis using wavelets, named
murphy. In our approach we apply significant emphasis on the handling of resolu-
tion jumps in block-structured grids to provide consistency with nonlifted and lifted
interpolating wavelets of second, fourth, and sixth polynomial order. We validate the
implementation through rigorous tests of error control and moment conservation on
static grids.

Compared with most existing adaptive mesh refinement approaches, the wavelet-
based approach provides explicit grid adaptation metrics that are intrinsically linked
to the pointwise error made in the field compared with a polynomial interpolation.
The wavelet framework provides a consistent multiresolution perspective for adapta-
tion metric, adaptation procedure, and ghost reconstruction across resolution jumps,
with a formal separation of scales in all operations. When combined with finite-
difference schemes we demonstrate the ability of our approach to reach pointwise
high-order convergence on multilevel grids. Further, the nature of the nonoverlap-
ping octree-based grids with constant-size blocks provides excellent opportunities for
scalability. We exploit this in our implementation using state-of-the-art one-sided
communication strategies that show excellent scalability of the grid adaptation, ghost
reconstruction, and stencil computation processes at least up to 16,384 cores.

We tested our multiresolution adaptive grid algorithm on the convergence of
simple linear hyperbolic conservation laws in the form of scalar advection using
divergence-free velocity fields. The results demonstrate that the refinement thresh-
old, which provides user control over the error permitted as detected by the wavelet
analysis, is an excellent indicator for the global field error even during the evolution
of this PDE. As such, reducing the refinement threshold leads to convergence of the
error, along a slope that can be captured by the ratio of the convergence order of the
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finite-difference scheme and the polynomial order of accuracy of the wavelet used. For
lifted wavelets we observe that the global maximum error on any multilevel grid is
very close to the error on a uniform resolution grid of the same maximum resolution.
Compared to nonlifted wavelets, the reduced aliasing properties of lifted wavelets en-
able them to detect the need for refinement and opportunity for compression more
efficiently, leading ultimately to a smaller number of blocks in the grid by about a
factor of two for the same maximum error.

The implementation and performance benefits of our octree-based block-structured
grid implementation does lead to constraints in terms of the adaptation patterns that
can be achieved, for instance, compared to patch-based adaptive mesh refinement
techniques. The use of “forest-of-trees” as offered by p4est enables us to create arbi-
trary aspect ratio rectangular domains, rather than remain restricted to cubic domains
as in previous codes [34]. However, our current implementation is still limited to cubic
blocks with isotropic grids. To gain more flexibility, one can build on domain map-
ping techniques [5] or consider extending work in computer graphics that generalizes
wavelets to work on arbitrary compact surfaces [28]. Closer to our approach, it should
also be relatively straightforward to use a larger set of blocks that enable separate
refinement or compression in each of the three cartesian directions. We reserve this
extension for future work.

With the fundamentals and implementation of our framework presented, future
work will focus on investigating the performance of the wavelet-based refinement
criterion to accurately capture refinement requirements for nonlinear PDEs. Previous
work on wavelet-adapted grids is promising in this regard (e.g., [34]) but systematic
investigations are lacking. At the same time, we note that this level of rigor is also
often absent from other adaptive mesh refinement methodologies, which typically rely
on heuristic or post hoc criteria for refinement and compression that make it difficult to
compare their ability to capture emerging scales, or discard information that does not
affect the overall error. In our case, however, the formal wavelet multiresolution theory
provides a useful perspective to frame this discussion and analyze convergence with
respect to the refinement threshold, compared with other possible policies. Further,
we wish to explore the benefits of moment conservation offered by lifted wavelets
as demonstrated in our solver, for the solution of conservative PDEs such as the
hyperbolic conservation law considered in this work. Finally, we intend to combine
our multiresolution framework with an elliptic solver to handle problems such as the
free-space incompressible Navier Stokes equations, as well as an immersed interface
method [20, 19] which will enable us to perform high-order simulations with embedded
interfaces for multiphysics problems.
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