
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

A high-order immersed finite-difference discretization for solving

linear and nonlinear elasticity problems

James Gabbard, Wim M. van Rees ∗

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Masschusetts Ave., Cambridge, 02139, MA, United States

a r t i c l e i n f o

Keywords:
Immersed method
High-order methods
Elasticity
Large strains
Mesh-free

 a b s t r a c t

This work presents a high order immersed finite difference method to discretize 2D linear and non-
linear elasticity problems on regular Cartesian grids. Our demonstrations show up to sixth order
convergence for the displacement field and boundary traction distribution in 2D discretizations of
linear and nonlinear elasticity, which incorporate displacement or traction boundary conditions,
material interfaces, and spatially-variable and discontinuous material properties. To demonstrate
geometric flexibility the convergence results are obtained with non-convex test geometries, and
both the linear and nonlinear elasticity discretizations are applied successfully to a complex lattice
structure. Lastly, we demonstrate the ability of our method to match, locally, the accuracy of a
finite element simulation on intricate single- and multi-material elasticity problems. The ability to
generate high-fidelity results without manual mesh generation opens opportunities in optimiza-
tion and data-driven machine learning, as well as physical applications such as elastodynamics
and fluid-structure interactions.

1. Introduction

The predominant approach to solving linear and nonlinear elastic problems in complex domains is to use body fitted meshes.
Body fitted meshes provide a simple treatment of domain boundary and material interface conditions, since these conditions can be
applied directly to element edges and discretization nodes. Though well established, the process of meshing complex geometries can
still provide challenges that require manual intervention. This is especially relevant for high order techniques applied to domains with
curved boundaries, and also applies to multiply connected complex domains and multiscale structures. Furthermore, with advances in
optimization and machine learning, simulation pipelines are increasingly required that robustly solve problems within parametrically
defined domains in a fully automated manner.

To avoid the need for generating body-fitted meshes, a wide range of immersed geometry methods have been proposed. In solid
mechanics, the vast majority of these fictitious or extended domain methods are based on the finite element techniques. Prominent
examples include the finite cell method (FCM), which introduces a fictitious stiffness in the non-physical part of the domain [1,2];
the Cut Finite Element Method (CutFEM), which employs a stabilized finite element formulation on elements intersected by an
immersed boundary, typically using ghost penalty terms to ensure stability and consistency [3,4]; and the extended and generalized
finite element methods (XFEM/GFEM), which enrich the approximation space to capture discontinuities or singularities without
conforming meshes [5–8]. Many other techniques exist, and we refer to reviews provided in [2,9] for a more exhaustive list. As
noted in [9], the main challenges in these methods are the numerical integration of discretized fields over cut/enriched elements; the

∗ Corresponding author.
 E-mail address: wvanrees@mit.edu (W.M. van Rees).

https://doi.org/10.1016/j.cma.2025.118269
Received 30 March 2025; Received in revised form 20 June 2025; Accepted 24 July 2025

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

0045-7825/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://orcid.org/0000-0001-6485-4804

$\Omega ^+$

\begin {align}\label {eq:poisson} \begin {aligned} \nabla \cdot (\beta \nabla u) &= f\,{\rm {in}}\, \Omega ^+, \\ u &= \bar {u} \,{\rm {on}}\, \Gamma _D, \\ \beta \partial _n u &= \bar {q} \,{\rm {on}}\, \Gamma _N, \end {aligned}\end {align}

$\Gamma = \Gamma _D \cup \Gamma _N$

$\Omega ^+$

$f(\xv)$

$\beta $

$\nabla ^2 = \sum _{i=1}^d \partial _i^2$

$\partial _i^2$

$\Gamma $

$\xv _c$

$\xv _c$

$\mathcal {X}_c^+ \subset \Omega ^+$

$p_c(\xv)$

k

$\{u(\xv _i) \mid \xv _i \in \mathcal {X}_c^+\}$

$\xv _c$

$u(\xv)$

\begin {equation}\label {ch2:eq:extended-function} u_c(\xv) = \begin {cases} u(\xv), & \mathbf {x} \in \Omega \ReviewerTwo {^+} \\ p_c(\xv), & \mathbf {x} \notin \Omega \ReviewerTwo {^+} \end {cases}\end {equation}

$\mathcal {X}_c^+$

$\Omega ^+$

x_c

$p_c(\xv)$

Δx

\begin {equation}\label {eq:curvature_condition} \left |\kappa \Delta x\right | < 1/4,\end {equation}

$\kappa $

$\xv _c$

w

$\{\xv _g\}$

$p_c(\xv)$

w

$\{s_c^g\} \cup \{s^g_\alpha \}_{\alpha = 1}^n$

\begin {equation}p_c(\xv _g) = s^g_c u(\xv _c) + \sum _{\alpha = 1}^n s^g_\alpha u(\xv _\alpha) \label {Xeqn4-4}\end {equation}

$\xv _g$

$u(\xv _c)$

$\bar {q}(\xv _c)$

$\{s_c\} \cup \{s_i\}_{i = 1}^n$

p_c

$\xv _c$

\begin {equation}\label {eq:normal-grad} \partial _n u(\xv _c) = s_c u(\xv _c) + \sum _{i = 1}^{n} s_i u(\xv _i) + \order {\Delta x^{k - 1}}.\end {equation}

\begin {equation}\label {ch2:eq:neumann} u(\xv _c) = \frac {1}{s_c} \left (\frac {\bar {q}(\xv _c)}{\beta } - \sum _{i = 1}^{N-1} s_i u(\xv _i)\right) + \order {\Delta x^{k}}.\end {equation}

$\partial _n p(\xv _c)$

$\Omega ^+$

$\Omega ^-$

$\beta ^+$

$\beta ^-$

\begin {equation}\label {eq:piecewise_beta} \beta (\xv) = \begin {cases} \beta ^+, & \xv \in \Omega ^+ \\ \beta ^-, & \xv \in \Omega ^- \end {cases}.\end {equation}

$\Gamma _M$

\begin {align}\label {eq:poisson_jumps} \nabla \cdot (\beta \nabla u) &= f \,{\mathrm {in}}\, \Omega , \nonumber \\ {[u]} &= j_0(\sv) \,{\rm {on}}\, \Gamma _M, \nonumber \\ {[\beta \partial _n u]} &= j_1(\sv) \,{\mathrm {on}}\, \Gamma _M.\end {align}

$[g] = g^+ - g^-$

g^+

$g(\xv)$

g^-

$g(\xv)$

$f(\xv)$

$\beta (\xv)$

$\nabla \cdot (\beta \nabla u)$

$\beta \nabla ^2 u$

$\Gamma _M$

$u^-(\xv _c)$

$u^+(\xv _c)$

$\{s^+_c, s^+_i\}$

$u^+(\xv _c)$

$\Omega ^+$

$\partial _n u^+(\xv _c)$

$\{s_c^-, \, s_i^-\}$

$\Omega ^-$

$\partial _n u^-(\xv _c)$

$u^\pm (\xv _c)$

$u^+(\xv _c) - u^-(\xv _c) = j_0(\xv _c)$

\begin {align}\label {ch2:eq:boundary-system-scalar} & \beta ^+\left (s^+_c u^+(\xv _c) + \sum _{i=1}^{n^+} s^+_i u(\xv _i^+)\right) - \beta ^-\left (s^-_c u^-(\xv _c) + \sum _{i=1}^{n^-} s^-_i u(\xv _i^-)\right) = j_1(\xv _c).\end {align}

$j_0(\xv _c) = j_1(\xv _c) = 0$

\begin {align}& u^-(\xv _c) = u^+(\xv _c) = \bar {u} \,{\rm {with}}\, \bar {u} = -\frac { \beta ^+ \sum _{i=1}^{n^+} s^+_i u(\xv _i^+) - \beta ^- \sum _{i=1}^{n-} s^-_i u(\xv _i^-) }{\beta ^+ s_c^+ - \beta ^- s_c^-}. \label {Xeqn10-10}\end {align}

\begin {align}\label {ch2:eq:explicit-material-interface} & u^+(\xv _c) = \bar {u} + \frac {j_1 - \beta ^- s_c^- j_0(\xv)}{\beta ^+ s_c^+ - \beta ^- s_c^-}, \quad u^-(\xv _c) = \bar {u} + \frac {j_1 - \beta ^+ s_c^+ j_0(\xv)}{\beta ^+ s_c^+ - \beta ^- s_c^-}.\end {align}

$u^\pm (\xv _c)$

$\beta ^- / \beta ^+$

$\beta ^-/\beta ^+$

$\beta (\xv)$

$\beta (\xv)$

$\nabla \beta = \mathbf {0}$

$\beta (\xv)$

$\beta $

$\beta (\xv)$

$u(\xv)$

$\nabla \cdot (\beta \nabla u) = \sum _{i = 1}^d \partial _i (\beta \partial _i u)$

$\partial _i (\beta \partial _i u)$

w

$2w$

$\beta \nabla ^2 u$

$\beta $

w

$\beta $

$x_i = i \Delta x$

u_i

$\beta _i$

i

$\partial _x (\beta \partial _x u)$

$x \rightarrow -x$

$u(x)$

$\beta (x)$

$\{u_i\}$

$\{\beta _i\}$

w

\begin {equation}\partial _x (\beta \partial _x u)_i = \sum _{j, k = -w}^w G_{jk} \beta (x_{i + j}) u(x_{i + k}) + \order {\Delta x^{2w}}, \label {Xeqn12-12}\end {equation}

G_{ij}

$G_{i,j} = G_{-i,-j}$

$2w$

$\beta (x) = \sum _{p = 0}^\infty \beta ^{(p)} \frac {x^p}{p!}$

$u(x) = \sum _{q = 0}^\infty u^{(q)} \frac {x^q}{q!}$

$x_0 = 0$

\begin {align}\partial _x (\beta \partial _x u) &= \sum _{p, q = 0}^\infty \frac {\beta ^{(p)}u^{(q)}}{p!q!} q(p + q - 1) x^{p + q - 2}, \label {ch3:bilinear-taylor-continuous} \\ \partial _x (\beta \partial _x u) &= \sum _{p, q = 0}^\infty \frac {\beta ^{(p)}u^{(q)}}{p!q!} \sum _{j,k = -w}^w G_{jk} x_j^p x_k^q. \label {ch3:bilinear-taylor-discrete}\end {align}

$n = 2w$

$p + q - 2 < n$

$\{x_i\}$

Δx

\begin {equation}\label {ch3:bilinear-exactness} \sum _{j,k = -w}^w G_{jk} j^p k^q = \begin {cases} q(p + q - 1), & p + q = 2, \\ 0, & \text {otherwise}, \end {cases}\end {equation}

$p + q - 2 < n$

$p, q \ge 0$

$\sum G_{jk} j^p k^q = (-1)^{p + q} \sum G_{jk} j^p k^q$

$p + q$

$p + q$

$(w + 1)^2$

G_{jk}

$(2w + 1)(w + 1)$

$w(w + 1)$

w

$2w$

$\partial _x^2$

w

$2w$

G_{jk}

$\beta (x) = 1$

$2w$

$2w$

$g_k = \sum _{j = -w}^w G_{jk}$

$\beta = 1$

$\partial _x^2 u_i = \sum _{k = -w}^w g_k u_k$

$p = 0$

g_k

\begin {equation}\sum _{k = -w}^w g_k k^q = \begin {cases} q(q - 1), & q = 2, \\ 0, & \text {otherwise}, \end {cases} \label {Xeqn14-16}\end {equation}

g_k

w

$2w$

w

$2w$

$w(w + 1)$

$\beta = 1$

w

$2w$

$2w$

$\partial _x f(x, u, \partial _x u)$

$\{D_{ij}\}_{j,k = -w}^w$

\begin {equation}\partial _x u_{j} = \sum _{k = -w}^w D_{jk} u_{k} + \order {\Delta x^{2w}} \,{\rm {for}}\, -w \le j \le w. \label {Xeqn15-17}\end {equation}

j

D_{jk}

$2w$

j

$\partial _x (\beta \partial _x u)$

$\{u_k\}_{k = -w}^w$

D_{jk}

$\{\partial _x u_j\}_{j = -w}^w$

$\{\beta _j\}_{j = -w}^w$

$\{D_{0j}\}_{j = -w}^w$

$x_0 = 0$

\begin {equation}\partial _x(\beta \partial _xu) = \sum _{j, k = -w}^w D_{0j} \beta _j (D_{jk} u_k) \quad \Rightarrow \quad G_{jk} = D_{0j} D_{jk}. \label {Xeqn16-18}\end {equation}

G_{jk}

$2w$

$\beta _j$

$f(x_j, u_j, \partial _x u_j)$

\begin {equation}\label {ch3:eq:nonlinear-variable-stencil} \partial _x f(x, u, \partial _x u) = \sum _{j = -w}^w D_{0j} f \left (x_j, u_j, \sum _{k = -w}^w D_{jk} u_k\right).\end {equation}

$2w$

q

$\partial _x (\beta \partial _x u)$

\begin {equation}\label {ch3:eq:conservative-bilinear-outline} \partial _x (\beta \partial _x u)_i = \frac { (\beta \partial _x u)_{i + 1/2} - (\beta \partial _x u)_{i - 1/2} }{\Delta x} + \order {\Delta x^{2w}}.\end {equation}

$2w$

$(\beta \partial _x u)_{i - 1/2}$

$2w$

$\{Q_{jk}\}_{j,k = -w}^{w - 1}$

\begin {equation}\partial _x u_j = \sum _{k = -w}^{w - 1} Q_{jk} u_k + \order {\Delta x^{2w - 1}}, \quad -w \le j \le w - 1, \label {Xeqn19-21}\end {equation}

Q_{jk}

$\{u_{i+j}\}_{j = -w}^{w-1}$

$\{\partial _x u_{i + j}\}_{j = -w}^{w - 1}$

$\beta $

$\{(\beta \partial _x u)_{i+j}\}_{j = -w}^{w - 1}$

$(\beta \partial _x u)_{i-1/2}$

$\{I_j\}_{j = -w}^{w - 1}$

\begin {equation}u_{i - 1/2} = \sum _{j = -w}^{w-1} I_j \bar {u}_{i + j} + \order {\Delta x^{2w}}, \,{\rm {with}}\, \bar {u}_i = \int _{x_{i - 1/2}}^{x_{i + 1/2}} u(x) {\rm {d}} {x}. \label {Xeqn20-22}\end {equation}

\begin {equation}(\beta \partial _x u)_{i - 1/2} = \sum _{j,k = -w}^{w - 1} I_{j} Q_{jk} \beta _{i + j} u_{i + k}. \label {Xeqn21-23}\end {equation}

Q_{jk}

$2w - 1$

$2w$

$\partial _x (\beta \partial _x u)$

\begin {equation}\partial _x f(x, u, \partial _x u)_i = \frac { f_{i + 1/2} - f_{i - 1/2} }{\Delta x}, \,{\rm {with}}\, f_{i - 1/2} = \sum _{j = -w}^{w - 1} I_{j} f \left (x_j, u_j, \sum _{k = -w}^{w - 1} Q_{jk} u_{i + k}\right). \label {Xeqn22-24}\end {equation}

$2w$

f

$u(\xv)$

$\beta (\xv)$

$\beta (\xv)$

n

n

$\bar {u}(\xv _c)$

$\xv _c$

$\beta (\xv _c)$

$\beta ^{\pm }(\xv _c)$

\begin {align}u(\xv) &= \sin (4\pi x_1) \sin (2\pi x_2),\\ \beta (\xv) &= \exp (\sin (2\pi x_1)\sin (4\pi x_2)).\end {align}

$\beta (\xv)$

$L_\infty $

n

k

(n, k)

$n = 4$

$n = 6$

$k = n+1$

$k=n+2$

$k = n+1$

k

$L_\infty $

$L_{\infty }$

u

$N_x = 64$

$\tilde {\lambda } = \Delta x^2 \lambda / \beta _{\mathrm {max}}$

$N_x = 64$

$\Delta x^2 / \beta _{\mathrm {max}}$

$\beta _{\mathrm {max}} = \max _{\xv \in \Omega } \beta (\xv)$

$\beta _{\mathrm {max}}$

$(4, 5)$

$(6, 7)$

$\Omega $

$u_i(\xv)$

$\bar {f}_i$

$C_{ijkl}(\xv)$

$\Gamma _M$

$\sigma _{ij} = C_{ijkl} \partial _l u_k$

$t_i = \sigma _{ij} n_j$

$\partial \Omega $

$\Gamma ^D$

$\Gamma ^N$

$\Gamma ^D$

$\bar {u}_i(\sv)$

$\Gamma ^N$

$\bar {t}_i(\sv)$

$\Gamma ^M$

$[\bar {u}_i]$

$[\bar {t}_i]$

\begin {equation}\begin {aligned} \partial _j (C_{ijkl} \partial _l u_k) &= \bar {f}_i \,{\rm {on}}\, \Omega , \\ u_i &= \bar {u}_i \,{\rm {on}}\, \Gamma _D \\ C_{ijkl} n_j \partial _k u_l &= \bar {t}_i \,{\rm {on}}\, \Gamma _N \\ \left [u_i\right] &= \left [\bar {u}_i\right] \,{\rm {on}}\, \Gamma _M \\ \left [C_{ijkl} n_j \partial _l u_k \right] &= [\bar {t}_i] \,{\rm {on}}\, \Gamma _M. \end {aligned} \label {Xeqn23-27}\end {equation}

$C_{ijkl}(\xv)$

$C_{ijkl} = C_{klij}$

$C_{ijkl} = C_{jikl}$

$C_{ijkl} \epsilon _{ij} \epsilon _{kl} > 0$

$\epsilon _{ij}$

\begin {equation}C_{ijkl} = \lambda (\xv) \delta _{ij} \delta _{kl} + \mu (\xv) \left (\delta _{ik} \delta _{jl} + \delta _{il} \delta _{kj}\right), \label {Xeqn24-28}\end {equation}

$\lambda (\xv)$

$\mu (\xv)$

$u_i(\xv)$

$C_{ijkl}(\xv)$

i

k

$\partial _j (C_{ijkl} \partial _l u_k)$

$j = l$

$\partial _j (C_{ijkl} \partial _l u_k)$

$j \neq l$

$\partial _j (\beta \partial _i u)$

$i \neq j$

$\partial _j (C_{ijkl} \partial _l u_k)$

$j \neq l$

$\partial _i u$

w

$n = 2w$

x_i

$\beta (\xv)$

$\beta \partial _i u$

x_j

$\partial _j (\beta \partial u_i)$

n

$n + 1$

$n + 1$

$n + 1$

x_{j}

$\partial _i u$

x_i

$u(\xv)$

$\bar {\mathcal {X}}_c$

$u(\xv _c)$

$\partial _i u$

$\beta \partial _i u$

$\beta \partial _i u$

x_j

x_j

$\beta \partial _i u$

$\partial _i u$

$p_c(\xv)$

w

$\{s^{i,g}_c\} \cup \{s^{i,g}_\alpha \}_{\alpha = 1}^n$

\begin {equation}\partial _i p_c(\xv _g) = s^{i,g}_c u(\xv _c) + \sum _{\alpha = 1}^n s^{i,g}_\alpha u(\xv _\alpha) \label {Xeqn25-29}\end {equation}

w

$\xv _g$

$\beta (\xv _c)$

$\{\beta (\xv _\alpha)\}_{\alpha = 1}^n$

$\beta \partial u_i$

$C_{ijkl} n_j \partial _l u_k = \bar {t}_i$

u_i

$u(\xv _c)$

$i = 1,2$

$\{s_c^i\} \cup \{s_{\alpha }^i\}_{\alpha = 1}^n$

$\partial _i u(\xv _c) = s_c^i u(\xv _c) + \sum _{\alpha = 1}^N s_{\alpha }^i u(\xv _\alpha) + \inlineorder {\Delta x^{k - 1}}$

\begin {equation}\label {ch3:eq:discrete-traction} C_{ijkl} n_j \left (s^l_c u_k(\xv _c) + \sum _{\alpha = 1}^n s^l_\alpha u_k(\xv _\alpha)\right) = \bar {t}_i.\end {equation}

$\mathbf {M}_l$

$(M_{l})_{ik} = C_{ijkl} n_j$

$l = 1,2$

\begin {equation}\label {ch3:eq:linear-traction-system} (s_c^l \mathbf {M}_l) \mathbf {u}(\xv _c) = \mathbf {t} - \sum _{\alpha = 1}^N (s_{\alpha }^l \mathbf {M}_l) \mathbf {u}(\xv _\alpha).\end {equation}

$\mathbf {N}_c = (s_c^l \mathbf {M}_l)^{-1}$

$l = 1,2$

$\mathbf {N}_l = -\mathbf {N}_c \mathbf {M}_l$

\begin {equation}\label {ch3:eq:linear-traction-solution} \mathbf {u}(\xv _c) = \mathbf {N}_c \mathbf {t} + \sum _{\alpha =1}^N (s_{\alpha }^l \mathbf {N}_l) \mathbf {u}(\xv _{\alpha }).\end {equation}

$\mathbf {M}_l$

\begin {equation}\mathbf {M}_l = \lambda \mathbf {n} \otimes \mathbf {e}_l + \mu \left (\mathbf {e}_l \otimes \mathbf {n} + n_l \mathbf {I}\right), \label {Xeqn29-33}\end {equation}

$\lambda $

$\mu $

$u_i^+(\xv _c)$

$u_i^-(\ReviewerOne {\xv _c})$

$[u_i] = [\bar {u}_i]$

$[C_{ijkl} n_j u_{k,l}] = [\bar {t}_i]$

$u^+_i(\xv _c) - u^-_i(\xv _c) = [\bar {u}_i]$

\begin {equation}C_{ijkl}^+ n_j \left (s_c^{l,+} u_k^+(\xv _c) + \sum _{\alpha = 1}^{n^+} s_{\alpha }^{l,+} u_k(\xv _{\alpha }^+)\right) - C_{ijkl}^- n_j \left (s_c^{l,-} u_k^-(\xv _c) + \sum _{\alpha = 1}^{n^-} s_{\alpha }^{l,-} u_k(\xv _{\alpha }^-)\right) = [\bar {t}_i]. \label {Xeqn30}\end {equation}

$\mathbf {M}_l^{\pm }$

\begin {align}\left [\begin {array}{@{}ll@{}}\mathbf {I} & -\mathbf {I} \\ (s^{l,+}_c \mathbf {M}_l^{+}) & -(s^{l,-}_c \mathbf {M}_l^{-})\end {array}\right] \left [\begin {array}{@{}l@{}}\mathbf {u}^+(\xv _c) \\ \mathbf {u}^-(\sv _c)\end {array}\right] = \left [\begin {array}{@{}l@{}}[\bar {\mathbf {u}}] \\ \tilde {\mathbf {t}}\end {array}\right], \label {Xeqn31}\end {align}

$\tilde {\mathbf {t}}$

\begin {equation}\tilde {\mathbf {t}} = [\bar {\mathbf {t}}] - \left [\sum _{\alpha =1}^{n^+} (s_{\alpha }^{l,+} \mathbf {M}_l^{+}) \mathbf {u}(\xv _{\alpha }^+) - \sum _{\alpha = 1}^{n^-} (s_{\alpha }^{l,-} \mathbf {M}_l^{-}) \mathbf {u}(\xv _{\alpha }^-)\right]. \label {Xeqn32}\end {equation}

$\mathbf {N}_c = (s_c^{l,+} \mathbf {M}_l^{+} - s_c^{l,-} \mathbf {M}_l^{-})^{-1}$

$l = 1,2$

$\mathbf {N}_l^{\pm } = -\mathbf {N}_{c} \mathbf {M}_l^{\pm }$

\begin {equation}\left [\begin {array}{@{}ll@{}}\mathbf {I} & -\mathbf {I} \\ \mathbf {M}_1 & -\mathbf {M}_2\end {array}\right] \left [\begin {array}{@{}ll@{}}(\mathbf {M}_1 - \mathbf {M}_2)^{-1} & \\ & (\mathbf {M}_1 - \mathbf {M}_2)^{-1}\end {array}\right] \left [\begin {array}{@{}ll@{}}-\mathbf {M}_1 & \mathbf {I} \\ -\mathbf {M}_2 & \mathbf {I}\end {array}\right] = \left [\begin {array}{@{}ll@{}}\mathbf {I} & \\ & \mathbf {I}\end {array}\right], \label {Xeqn33}\end {equation}

\begin {equation}\mathbf {u}^+(\xv _c) = \bar {\mathbf {u}} + \mathbf {N}_c [\bar {\mathbf {t}}] + (s_c^{l,-} \mathbf {N}_l^-) [\bar {\mathbf {u}}] \,{\rm {and}}\, \mathbf {u}^-(\xv _c) = \bar {\mathbf {u}} + \mathbf {N}_c [\bar {\mathbf {t}}] + (s_c^{l,+} \mathbf {N}_l^+) [\bar {\mathbf {u}}], \label {Xeqn34}\end {equation}

$\bar {\mathbf {u}}$

\begin {equation}\bar {\mathbf {u}} = \sum _{\alpha =1}^{n^+} (s_{\alpha }^{l,+} \mathbf {N}_l^{+}) \mathbf {u}(\xv _{\alpha }^+) - \sum _{\alpha = 1}^{n^-} (s_{\alpha }^{l,-} \mathbf {N}_l^{-}) \mathbf {u}(\xv _{\alpha }^-). \label {Xeqn35}\end {equation}

$[\bar {\mathbf {u}}]$

$[\bar {\mathbf {t}}]$

$\mathbf {u}^+(\xv _c) = \mathbf {u}^-(\xv _c) = \bar {\mathbf {u}}$

\begin {equation}\label {ch3:eq:linear-elastic-test-case} u_1(\xv) = 0.04 \sin (4\pi x_1) \cos (2\pi x_2), \quad u_2(\xv) = 0.04 \sin (4\pi x_1) \cos (6\pi x_2).\end {equation}

$\xv _0 = [0.501, 0.502]$

$r_0 = 0.379$

$\tilde {r} = 0.015$

$r_0 = 0.151$

$\tilde {r} = 0.035$

\begin {equation}\lambda (\xv) = 1.5 + 0.5 \cos ^2(2\pi x_1) \cos ^2(2\pi x_2), \quad \mu (\xv) = 0.8 + 0.3 \sin ^2(2\pi x_1) \sin ^2(2\pi x_2). \label {Xeqn37}\end {equation}

$N_x \times N_x$

$L_\infty $

$L_\infty $

$\partial _j (C_{ijkl} \partial _l u_k)$

Δx

$L_\infty $

$L_\infty $

$\Omega ^-$

$r_0 = 0.221$

$r_0 = 0.419$

\begin {equation}u_1^-(\xv) = 0.02 \sin (2\pi x_1)\sin (2\pi x_2), \quad u_2^-(\xv) = 0.028 \sin (2\pi x_1)\cos (4\pi x_2), \label {Xeqn38}\end {equation}

\begin {equation}\lambda ^-(\xv) = 1.1 + 0.3 \cos ^2(4 \pi x_1) \cos ^2(2\pi x_2), \quad \mu ^-(\xv) = 0.6 + 0.7 \sin ^2(2 \pi x_1) \cos ^2(4\pi x_2). \label {Xeqn39}\end {equation}

$y_i(\xv)$

$\xv $

$W(\mathbf {F})$

$F_{ij}(\xv) = \partial _j y_i(\xv)$

\begin {equation}S_{ij} = \frac {{\partial }W}{{\partial }F_{ij}}. \label {Xeqn40}\end {equation}

$y_i(\xv)$

\begin {equation}\label {ch3:nonlinear-elasticity} \begin {aligned} \partial _j S_{ij}(\mathbf {F}) &= \bar {f}_i \,{\rm {on}}\, \Omega , \\ y_i &= \bar {y}_i \,{\rm {on}}\, \Gamma _D, \\ S_{ij}(\mathbf {F}) n_j &= \bar {t}_i \,{\rm {on}}\, \Gamma _N. \\ \end {aligned}\end {equation}

\begin {equation}\left [S_{ij}(\mathbf {F}) n_j \right] = [\bar {t}_i] \,{\rm {on}}\, \Gamma _M. \label {Xeqn42}\end {equation}

$\bar {f}_i$

$\bar {t}_i$

u_i

$\mathbf {y}$

$\Omega $

$\Gamma _N \cup \Gamma _M$

$\mathbf {r}^f$

$\mathbf {r}^t$

$\mathbf {r}^{[t]}$

\begin {equation}\label {ch3:eq:nonlinear-residual-fields} \begin {aligned} r^f_i &= \bar {f}_i - \partial _j S_{ij}(\mathbf {F}) \,{\rm {on}}\, \Omega , \\ r^t_i &= \bar {t}_i - S_{ij}(\mathbf {F}) n_j \,{\rm {on}}\, \Gamma _N, \\ r^{[t]}_i &= \left [\bar {t}_i\right] - \left [S_{ij}(\mathbf {F}) n_j\right] \,{\rm {on}}\, \Gamma _M. \end {aligned}\end {equation}

\begin {equation}A_{ijkl}(\xv) \equiv \frac {{\partial }S_{ij}(\mathbf {F})}{{\partial }F_{kl}} \left |_{\mathbf {F}(\xv)} = \frac {{\partial }^{2}W(\mathbf {F})}{{\partial }F_{ij}}{F_{kl}} \right |_{\mathbf {F}(\xv)}. \label {Xeqn44}\end {equation}

$A_{ijkl} = A_{klij}$

A_{ijkl}

$\mathbf {S}(\partial _1 \mathbf {y}, \partial _2\mathbf {y})$

$\partial _1 \mathbf {y}$

$\partial _2 \mathbf {y}$

$\partial _1 \mathbf {y}$

$\partial _2 \mathbf {y}$

w

x_1

x_2

$\partial _1 S_{11}(\partial _1 \mathbf {y}, \partial _2 \mathbf {y})$

$\partial _2 \mathbf {y}$

$\partial _1 S_{11}(\partial _1 \mathbf {y}, \cdot)$

x_1

\begin {equation}\label {ch3:eq:nonlinear-stress-d1S1} \partial _1 S_{11}(\xv _{i,j}) = \sum _{k = -w}^w D_{0k} S_{11} \left (\sum _{l = -w}^w D_{k \ell } \mathbf {y}_{i+\ell ,j}, \partial _2 \mathbf {y}_{i + k, j}\right) + \order {\Delta x^{2w}}.\end {equation}

$\partial _2 S_{12}$

$\partial _1 \mathbf {y}$

$\partial _2 S_{12}(\cdot , \partial _2 \mathbf {y})$

x_2

\begin {equation}\label {ch3:eq:nonlinear_stress_d2S2} \partial _2 S_{12}(\xv _{i,j}) = \sum _{k = -w}^w D_{0k} S_{12} \left (\partial _1 \mathbf {y}_{i, j + k}, \sum _{l = -w}^w D_{k l} \mathbf {y}_{i,j + l}\right) + \order {\Delta x^{2w}}.\end {equation}

$\partial _1 S_{21}$

$\partial _2 S_{22}$

$\mathbf {r}^f_{i,j} = \bar {\mathbf {f}}_{i,j} - (\nabla \cdot \mathbf {S})_{i,j}$

$\partial _1 \mathbf {y}$

$\partial _2 \mathbf {y}$

n

$n + 1$

$n + 1$

$\mathbf {x}_{ij}$

$n + 1$

$W(\mathbf {F}, \bm {\theta })$

$\bm {\theta }(\xv)$

$\bm {\theta }_{i,j}$

$\bm {\theta }$

$\mathbf {r}^f$

$\mathbf {y}$

$\bar {\mathcal {X}}_c$

$\partial _1 \mathbf {y}$

$\partial _2 \mathbf {y}$

$\mathbf {y}$

$\partial _1 \mathbf {y}$

$\partial _2 \mathbf {y}$

$2w + 1$

$\partial _1 S_{11}$

k

$\{D_{kl}\}_{l = -w}^w$

$\mathbf {y}$

x_1

$\partial _2 \mathbf {y}$

k

$\{\delta _{kl}\}_{l = -w}^w$

$S_{11}(\cdot , \cdot)$

D_{0k}

$-w \le k \le w$

$(\partial _1 S_{11})_{i, j}$

$k = 0$

$D_{00} = 0$

w

$\mathbf {y}$

$\partial _2 \mathbf {y}$

$\Gamma _D$

$\bar {\mathbf {y}}(\xv _c)$

$\{s_c^j, s_\alpha ^j\}$

$\bar {\mathcal {X}}_c$

$\partial _j$

\begin {equation}\label {ch3:eq:gradient_stencil} F_{ij}(\xv _c) = \partial _j u_i(\xv _c) = s_c^j u_i(\xv _c) + \sum _{\alpha = 1}^n s^j_\alpha u_i(\xv _\alpha) + \order {\Delta x^{k}}.\end {equation}

$\mathbf {r}^t_c$

\begin {equation}\label {ch3:eq:nonlinear_traction} \mathbf {r}_c = \bar {\mathbf {t}}_c - \mathbf {S}(\mathbf {F}_c) \nv _c.\end {equation}

\begin {equation}\label {ch3:eq:nonlinear_interface} \mathbf {r}^{[t]}_c = \left [\bar {\mathbf {t}}_c\right] - \left [\mathbf {S}^+(\mathbf {F}^+_c) - \mathbf {S}^-(\mathbf {F}^-_c) \right] \nv _c,\end {equation}

$\mathbf {F}^+(\xv _c)$

$\mathbf {F}^-(\xv _c)$

$\mathbf {r}^t_c = 0$

$\mathbf {r}^{[t]}_c = 0$

$\Gamma _N$

$\Gamma _M$

$\mathbf {y}_c$

$y_{\Omega }$

$y_{\Gamma }^D$

$y_{\Gamma }^N$

$y_{\Gamma }^D$

$y_{\Omega }$

$y_{\Gamma }^N$

$(r_{\Omega }, r_{\Gamma }^N)$

\begin {equation}\label {ch3:eq:nonlinear_system} \begin {aligned} r_{\Omega }(y_{\Omega }, y_{\Gamma }^N; y_{\Gamma }^D) &= 0, \\ r_{\Gamma }^N(y_{\Omega }, y_{\Gamma }^N) &= 0. \end {aligned}\end {equation}

$y_{\Gamma }^{D,k-1}$

$k - 1$

$(y_{\Omega }^{k - 1}, y_{\Gamma }^{N,k-1})$

k

$\delta y_{\Gamma }^D = y_{\Gamma }^{D,k} - y_{\Gamma }^{D,k - 1}$

$\delta y_{\Gamma }^D$

k

$y_{\Omega }^k = \delta y_{\Omega } + y_{\Omega }^{k -1}$

$y_{\Gamma }^{N,k} = \delta y_{\Gamma }^N + y_{\Gamma }^{N,k-1}$

$(\delta y_{\Omega }, \delta y_{\Gamma }^N)$

\begin {equation}\label {ch3:eq:nonlinear-load-increment} \begin {aligned} \left (\frac {{\partial }r_{\Omega }}{{\partial }y_{\Omega }}\right) \delta y_{\Omega } + \left (\frac {{\partial }r_{\Omega }}{{\partial }y_{\Gamma }^N}\right) \delta y_{\Gamma }^N &= - \left (\frac {{\partial }r_{\Omega }}{{\partial }y_{\Gamma }^D}\right) \delta y_{\Gamma }^D, \\ \left (\frac {{\partial }r_{\Gamma }^N}{{\partial }y_{\Omega }}\right) \delta y_{\Omega } + \left (\frac {{\partial }r_{\Gamma }^N}{{\partial }y_{\Gamma }^N}\right) \delta y_{\Gamma }^N &= 0, \end {aligned}\end {equation}

$(y_{\Omega }^{k - 1}, y_{\Gamma }^{N,k-1})$

k

$\delta \mathbf {y}_{i,j}$

$\partial _1 S_{(\cdot)1}$

\begin {equation}\label {ch3:eq:linearized-stress-residual} \delta (\partial _1 S_{(\cdot)1})_{i,j} = \sum _{k = -w}^w D_{0k} \frac {{\partial }S_{(\cdot)1}}{{\partial }\mathbf {F}} \left (\widetilde {\partial _1 \mathbf {y}}_{i + k, j}, \partial _2 \mathbf {y}_{i + k, j}\right) : \left [\widetilde {\partial _1 \delta \mathbf {y}}_{i + k, j}, \, \partial _2 \mathbf {\delta y}_{i + k, j}\right],\end {equation}

$:$

$[\mathbf {a}, \, \mathbf {b}]$

$\delta (\partial _2 S_{(\cdot)2})_{i,j}$

$\delta \mathbf {y}$

$(\widetilde {\partial _1 \mathbf {y}}_{i + k, j}, \partial _2 \mathbf {y}_{i + k, j})$

$r_{\Gamma }^N$

$\Gamma ^N$

\begin {equation}\frac {{\partial }r^t_i}{{\partial }y^c_k} = A_{ijkl}(\mathbf {F}_c) n_j s^c_l, \quad \frac {{\partial }r^t_i}{{\partial }y^\alpha _k} = A_{ijkl}(\mathbf {F}_c) n_j s^\alpha _l. \label {Xeqn53}\end {equation}

$\frac {{\partial }r_{\Gamma }^N}{{\partial }y_{\Gamma }^N}$

$\frac {{\partial }r_{\Gamma }^N}{{\partial }y_{\Omega }}$

\begin {equation}\label {ch3:eq:nonlinear-test-case} u_1(\xv) = A_1 \cos (2\pi x_1) \sin (2\pi x_2), \quad u_2(\xv) = -A_2 \sin (2\pi x_1) \cos (2\pi x_2),\end {equation}

$A_1 = 0.08$

$A_2 = 0.06$

\begin {equation}\label {ch3:eq:neo_hookean} W(\mathbf {F}) = \frac {\mu }{2}\left (I_1 - 2 - 2 \log J\right) + \frac {\lambda }{2}(J - 1)^2,\end {equation}

$\lambda = 4/3$

$\mu = 1$

$I_1 = {\rm {tr}}(\mathbf {F}^T \mathbf {F})$

$J = \det \mathbf {F}$

$\mathbf {r}^f(\xv) = 0$

$\Omega $

$\mathbf {r}^t(\sv) = 0$

$\Gamma _N$

$\norm {\mathbf {u}(\xv)}_2$

$J = \det \mathbf {F}$

$L_\infty $

$L_\infty $

$(4, 5)$

$(6, 7)$

$\norm {\delta \mathbf {y}}_\infty < 10^{-12}$

$L_\infty $

$\lambda ^+ = 1.1$

$\mu ^+ = 0.6$

\begin {equation}\label {ch3:eq:st_venant_kirchhoff} W = \frac {\lambda }{2} ({\rm {tr}} \mathbf {E})^2 + \mu {\rm {tr}} (\mathbf {E}^2), \quad \mathbf {E} = \frac {1}{2}\left (\mathbf {F}^T \mathbf {F} - \mathbf {I}\right)\end {equation}

$\mu ^- = 0.8$

$\lambda ^- = 1.5$

$\Vert \hat {{\mathbf {f}}} \Vert _2 /J$

$L_\infty $

$\bar {\mathbf {f}} / J$

$\norm {\delta \mathbf {y}}_\infty < 10^{-12}$

\begin {equation}\begin {array}{r@{\,}c@{\,}l} \psi _{\text {top}}({\mathbf {x}}) &=& x_2 - 0.14 - 0.04 \cos (10\pi (x_1 + 0.02)), \\ \psi _{\text {bottom}}({\mathbf {x}}) &=& -x_2 + 0.66 + 0.04 \cos (10\pi (x_1 - 0.02)), \\ \psi _{\text {lattice}}({\mathbf {x}}) &=& 1 - \left [\sin (10\pi x_1) + \cos (10\pi x_2) + \sqrt {2} \cos (10\pi x_1)\sin (10\pi x_2)\right]^2, \end {array} \label {Xeqn57}\end {equation}

$\psi _{\text {lattice}}(\xv) > 0$

$\psi _{\text {lattice}}(\xv) < 0$

$\nu ^- = 0.3$

$E^- = 3$

$\nu ^+ = 0.35$

$E^+ = 1$

$\delta u_1 = 0.05$

x_1

$[\bar {\mathbf {u}}] = 0$

$[\bar {\mathbf {t}}] = 0$

$N_x = 176$

$\partial _j u_i$

$\sigma _{ij} = C_{ijkl} \partial _l u_k$

$\sigma _{VM} = \sqrt {\sigma _{11}^2 + \sigma _{22}^2 - \sigma _{11} \sigma _{22} + 3\sigma _{12}^2}$

$\sigma _{H} = (\sigma _{11} + \sigma _{22}) / 2$

$t_i = \sigma _{ij} n_j$

$E = 1$

$\nu = 0.35$

$\delta \mathbf {y} = [0.15, 0.45]$

$J = \det \mathbf {F}$

$\delta \mathbf {y} = [0.15, 0.45]$

$J = \det \mathbf {F}$

N

$\mathcal {L}= \{ \mathbf {p}^{(i)}_s, \mathbf {p}^{(i)}_e, w^{(i)} \ \vert \ 1 \le i \le N\}$

$\mathbf {p}^{(i)}_{s,e}$

$w^{(i)}$

i

$w^{(i)} = w$

$\mathcal {L}$

29×29

$w = \SI {0.01}{\milli \meter }$

$\nu = 0.3$

$E = \SI {70}{\mega \pascal }$

$\delta u_1 = \SI {0.01}{\milli \meter }$

$\mathrm {kPa}$

$E_2 = \SI {10}{\mega \pascal }$

$\nu _2 = 0.3$

$\mathrm {kPa}$

$y=\SI {0.5}{\milli \meter }$

y

$y = \SI {0.5}{\milli \meter }$

$\SI {0.2}{\milli \meter }$

$\mathcal {X}_c^{\pm }$

$p_c(\xv)$

$\mathcal {X}_c^{\pm }$

N

$\mathcal {L}= \{ \mathbf {p}^{(i)}_s, \mathbf {p}^{(i)}_e, w^{(i)} \ \vert \ 1 \le i \le N\}$

$\mathbf {p}^{(i)}_{s,e}$

$w^{(i)}$

i

$w=0.05$

$R = 0.0125$

$h=1/128$

$\mathcal {R} = \{ \mathbf {q}^{(i)}_s, \mathbf {q}^{(i)}_e \ \Vert \ 1 \le i \le N_q\ ; \mathcal {A}^{(j)} \ \vert \ 1 \le j \le N_a\}$

$\mathbf {q}^{(i)}_{s,e}$

N_q

$\mathcal {A}^{(j)}$

j

$\mathcal {R}$

mailto:wvanrees@mit.edu
https://doi.org/10.1016/j.cma.2025.118269
https://doi.org/10.1016/j.cma.2025.118269

James and Wim M.

deterioration in conditioning of the linear system associated with small cells; and the enforcement of essential boundary conditions
on immersed boundaries and interfaces. Though the focus of this work is on a finite difference based method, we briefly discuss below
these main challenges in the finite element community to motivate the proposition of an alternative approach.

For numerical integration, subdivision of cut-cells is typically employed to achieve effective but low-order quadrature in the
vicinity of discontinuities [2,4]. Local quad- or octree-based refinement approaches can then be used to reduce the integration error
through spatial refinement [1,2,10], whose efficiency can be improved through boundary-conforming subdivision [11]. In the FCM,
such refinement approaches to reducing quadrature errors is combined with a high order FEM discretization to yield high order
convergence of the scheme overall. However, as highlighted in [12], refinement techniques can result in a significant increase in the
number of sub-cells, especially in three dimensions. Alternatively, the immersed geometry can be integrated using subtriangulation [4]
or other interface reconstruction approaches, typically relying on a level-set representation. High-order versions of such quadrature
schemes have been proposed by [13,14] and [15,16], which account for the curvature of the boundary but require involved geometric
reconstruction efforts that can sacrifice robustness. Overall, constructing robust, high-order quadrature schemes remains a persisting
challenge in immersed finite element methods, motivating the development of alternative approaches [17].

A separate issue with immersed finite element methods is that the presence of small cells typically increases the condition number
of the system of equations associated with the discretized problem. This is no different from the cut-cell finite volume community,
where the ‘small-cell’ problem has received extensive attention in the past [18]. For the finite cell method, the fictitious stiffness
parameter can be scaled to improve stability; nevertheless, [2] notes that poor conditioning still prevents the use of iterative solvers.
In CutFEM, stabilization is typically achieved using a ghost penalty technique, which adds a user-defined penalty parameter that scales
a stabilization term acting on neighboring cut elements [4,19]. An extensive and recent review on further conditioning approaches
is provided in [9].

To impose Dirichlet (essential) boundary conditions, weak enforcement approaches are typically used. The original FCM relied on
a simple but robust penalization approach [1], approximating the Dirichlet condition using a penalization term that balanced stability
and accuracy. Nitsche’s method provides a more consistent manner to enforce Dirichlet boundary conditions [9,20], but introduces
a per-cell parameter that can, theoretically, become arbitrarily large on cut-cells [21]. To mitigate this, stabilization as in the ghost
penalty or non-symmetric approaches [22,23] can be used. The review in [9] provides a state-of-the-art review of stabilization and
conditioning issues in immersed finite element methods.

Overall, immersed finite element methods have seen tremendous development to maturation, and are now broadly applied in
scientific research across domains. However, issues pertaining to extension to high order, stability, and efficiency persist, motivating
continuing development and improvement. In particular, the development of formally high order approaches that combine robustness
and simplicity of implementation is still an area of active research.

Immersed finite difference/volume based methods offer an alternative to the finite element approach, and face their own set of
challenges. These methods discretize the strong form of the equations, allowing explicit treatment of boundary and jump conditions
on embedded geometries in the discrete differential operators. Notably, [24] demonstrated a finite difference/volume method to
tackle single material linear elasticity problems with Dirichlet (displacement) or Neumann (stress) boundary conditions imposed on
immersed boundaries. The method exhibits second order accuracy and treats bodies with homogeneous, isotropic material properties.
Results were demonstrated in both 2D and 3D domains, and the utility of the approach was proven using a shape optimization method.
In [25,26] the authors propose a second order accurate Immersed Interface Method to handle multimaterial elasticity problem with
imposed jump conditions on immersed interfaces. The approach was developed in 2D for isotropic materials with piecewise-constant
material parameters. In [27], a second order finite difference method was presented with largely the same characteristics as [25], but
extended to tackle inhomogeneous material properties – the method was extended to 3D in [28]. In [29], a second order generalized
finite difference method was developed for 2D linear elasticity problems with piecewise-constant material properties, separated by
an immersed interface on which displacement and traction jump conditions are enforced.

Compared to immersed finite element methods, finite difference approaches avoid the challenges related to numerical quadrature
and the imposition of essential boundary conditions, while conditioning challenges are typically easily avoided as well. However,
the above finite difference/volume works share some common limitations compared to the capabilities of prevalent immersed finite
element methods. First, these existing methods impose either domain boundary conditions (Dirichlet, Neumann [24]) or material
interface conditions [25–29] on the immersed geometry, but no method has demonstrated the ability to handle both. Second, the
elastic models considered have been constrained to isotropic materials, with only [27] treating nonhomogeneous material properties.
Third, all discretizations are second order accurate. Finally, all approaches are restricted to linear elastic problems, and hence small
deformations. In this work we address all four restrictions through a high order immersed interface discretization of linear and
nonlinear elasticity problems. Our method is based on a discretization of the Laplacian that relies on previous work on parabolic and
elliptic partial differential equations [30–32], but is extended here to cross-derivative terms with variable coefficients. Our approach
has no limitations on the constitutive law and thus allows for anistropic materials. We demonstrate up to sixth order convergence of the
solution and boundary tractions in the infinity norm, while representing our geometry fully locally and only through grid intersections
and associated normal vectors. Further, we extend our approach to finite deformation elasticity with hyperelastic materials while
retaining high order convergence. We show the ability of our solver to simulate challenging lattice structure elasticity problems, and
compare the accuracy of our approach with a commercial finite element solver.

The rest of this manuscript is structured as follows. In Section 2 we recall the constant coefficient discretization of the scalar
Poisson equation presented in [32]. The discretization is extended to variable coefficients in Section 3. These stencils form the basis
of our linear elasticity discretization as explained in Section 4. The extension to nonlinear elasticity is discussed in Section 5. Though
each of the sections above contain individual convergence and verification results, we show further applications of our methodology

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

2

James and Wim M.

in Section 6, including a comparison with a finite element solver. We discuss the relative merits of our method in Section 7, and
provide conclusions in Section 8.

2. Discretization of the constant-coefficient scalar Poisson equation

In this section, we briefly summarize the results of [32] presenting our high-order immersed discretization of the scalar Poisson
equation. We first consider the treatment of the constant coefficient Poisson equation with immersed domain boundaries on which
Dirichlet and/or Neumann boundary conditions are imposed. Then, we discuss the piecewise-constant coefficient Poisson equation
with immersed interfaces on which jump conditions are imposed.

2.1. Discretization of immersed boundaries

For immersed boundary problems, we consider the Poisson equation posed in domain Ω+ with Dirichlet or Neumann conditions
prescribed on the boundary, so that the PDE and boundary conditions are

∇ ⋅ (𝛽∇𝑢) = 𝑓 inΩ+,

𝑢 = 𝑢̄ on Γ𝐷,

𝛽𝜕𝑛𝑢 = 𝑞 on Γ𝑁 ,

(1)

where Γ = Γ𝐷 ∪ Γ𝑁 is the boundary of domain Ω+. Here the prescribed boundary conditions and the source term 𝑓 (𝐱) are assumed to
be smooth functions, and the coefficient 𝛽 is assumed constant. The discretization of the Laplace operator follows the methodology
outlined in [30,31], which is briefly summarized here.

For interior points, the Laplacian operator ∇2 =
∑𝑑
𝑖=1 𝜕

2
𝑖 is discretized at each grid point using dimension splitting, with the

standard central centered finite difference stencil used to discretize the second derivative 𝜕2𝑖 along each coordinate axis. Near immersed
boundaries an interpolation procedure incorporating boundary information is used to extend the solution, providing ghost values for
the finite difference scheme.

The boundary treatments used in this work are based on an evolution of the original immersed interface method [33,34], as
presented in [30,35] and outlined below. Following a convention from the immersed interface literature, we refer to the intersection
between a 1D finite difference stencil and the surface Γ as a control point, denoted 𝐱𝑐 . The evaluation point for this stencil is referred
to as an affected point, since the discretization is affected by the presence of the surface.

In our approach, each control point 𝐱𝑐 on the immersed domain boundary is associated with a set of interpolation points +
𝑐 ⊂ Ω+,

and with a polynomial 𝑝𝑐 (𝐱) of degree 𝑘 that approximately interpolates the domain values {𝑢(𝐱𝑖) ∣ 𝐱𝑖 ∈ +
𝑐 } in a least squares sense.

Each 1D finite difference stencil that intersects the boundary at 𝐱𝑐 is applied not directly to the function 𝑢(𝐱), but to the extended
function

𝑢𝑐 (𝐱) =
{

𝑢(𝐱), 𝐱 ∈ Ω+

𝑝𝑐 (𝐱), 𝐱 ∉ Ω+
(2)

As defined in [31], the set of interpolation points in the least squares domain +
𝑐 includes the control point, excludes the closest

grid point, and includes all other grid points that are (1) part of the domain Ω+, and (2) fall within a half-elliptical region centered on
the boundary whose semi-major axis is aligned with the local normal vector to the surface (Fig. 1(a)). These interpolants are suitable
for all boundary conditions and any smooth geometry satisfying a well-defined curvature constraint [31]. In this work, for any given
polynomial order we choose the major and minor axes of the region so that we can guarantee the existence of 𝑝𝑐 (𝐱) on a grid with
spacing Δ𝑥 as long as the immersed surface satisfies

|𝜅Δ𝑥| < 1∕4, (3)

where 𝜅 is the maximum scalar curvature of the surface.
Each of the 1D finite difference stencils which intersect the boundary at 𝐱𝑐 can require up to 𝑤 ghost values at grid points {𝐱𝑔} that

fall outside of the domain. These ghost values are obtained by evaluating 𝑝𝑐 (𝐱) through 𝑤 separate stencil operations with coefficients
{𝑠𝑔𝑐 } ∪ {𝑠𝑔𝛼}𝑛𝛼=1 [31], so that

𝑝𝑐 (𝐱𝑔) = 𝑠𝑔𝑐 𝑢(𝐱𝑐) +
𝑛
∑

𝛼=1
𝑠𝑔𝛼𝑢(𝐱𝛼) (4)

at each point 𝐱𝑔 requiring a ghost value. For points with Neumann boundary conditions 𝑢(𝐱𝑐) is not directly available, but it can
be approximated based on the boundary condition 𝑞(𝐱𝑐) and nearby solution values. To clarify, let {𝑠𝑐} ∪ {𝑠𝑖}𝑛𝑖=1 be a set of stencil
coefficients that approximate the normal derivative of 𝑝𝑐 at 𝐱𝑐 , so that

𝜕𝑛𝑢(𝐱𝑐) = 𝑠𝑐𝑢(𝐱𝑐) +
𝑛
∑

𝑖=1
𝑠𝑖𝑢(𝐱𝑖) + (Δ𝑥𝑘−1). (5)

When a Neumann condition is prescribed at a control point, Eq. (5) can be inverted to give

𝑢(𝐱𝑐) =
1
𝑠𝑐

(

𝑞(𝐱𝑐)
𝛽

−
𝑁−1
∑

𝑖=1
𝑠𝑖𝑢(𝐱𝑖)

)

+ (Δ𝑥𝑘). (6)

This requires one additional set of stencil coefficients which evaluate the normal derivative 𝜕𝑛𝑝(𝐱𝑐) on the boundary.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

3

James and Wim M.

2.2. Discretization of immersed interfaces

For problems with immersed interfaces, we consider the Poisson equation defined over two subdomains Ω+ and Ω− with piecewise
constant coefficients 𝛽+ and 𝛽−:

𝛽(𝐱) =
{

𝛽+, 𝐱 ∈ Ω+

𝛽−, 𝐱 ∈ Ω−
. (7)

Jump conditions on the solution and its flux are prescribed on the interface between the subdomains, Γ𝑀 , so that the full problem
becomes

∇ ⋅ (𝛽∇𝑢) = 𝑓 inΩ,

[𝑢] = 𝑗0(𝐬) on Γ𝑀 ,
[𝛽𝜕𝑛𝑢] = 𝑗1(𝐬) on Γ𝑀 . (8)

Here [𝑔] = 𝑔+ − 𝑔− denotes the jump of function g across the interface, defined as the difference between 𝑔+, the limit of 𝑔(𝐱) ap-
proaching the interface from the positive side, and 𝑔−, the limit of 𝑔(𝐱) approaching the interface from the negative side. Positive and
negative sides are here associated with the sign of the level-set field so that surface normals point into the positive side. In classical
elasticity, these jumps are typically zero to enforce continuity of displacement and tractions; examples of non-zero jumps can arise
when considering electromechanics, slip, or active interfaces. The source term 𝑓 (𝐱) is also allowed to be discontinuous across the
material interface, though this has minimal effect on the solution procedure.

For piecewise constant 𝛽(𝐱), the operator ∇ ⋅ (𝛽∇𝑢) reduces to 𝛽∇2𝑢 away from Γ𝑀 , so that the standard dimension-split discretiza-
tion of interior points remains valid. To discretize the jump boundary conditions, the boundary values 𝑢−(𝐱𝑐) and 𝑢+(𝐱𝑐) from either
side of the interface are computed with the aid of two sets of stencils coefficients [30,31], associated with half-elliptical regions
as shown in Fig. 1(b). The first set {𝑠+𝑐 , 𝑠+𝑖 } maps the boundary value 𝑢+(𝐱𝑐) and solution values from Ω+ to the normal derivative
𝜕𝑛𝑢+(𝐱𝑐), while the second set {𝑠−𝑐 , 𝑠−𝑖 } is designed analogously to map solution values from Ω− to the normal derivative 𝜕𝑛𝑢−(𝐱𝑐). The
boundary values 𝑢±(𝐱𝑐) can then be determined from the discretized jump conditions 𝑢+(𝐱𝑐) − 𝑢−(𝐱𝑐) = 𝑗0(𝐱𝑐) and

𝛽+
⎛

⎜

⎜

⎝

𝑠+𝑐 𝑢
+(𝐱𝑐) +

𝑛+
∑

𝑖=1
𝑠+𝑖 𝑢(𝐱

+
𝑖)
⎞

⎟

⎟

⎠

− 𝛽−
(

𝑠−𝑐 𝑢
−(𝐱𝑐) +

𝑛−
∑

𝑖=1
𝑠−𝑖 𝑢(𝐱

−
𝑖)

)

= 𝑗1(𝐱𝑐). (9)

Fig. 1. Each crossing between a grid line and the boundary (𝑥𝑐) is used to construct ghosts points for an affected grid point (light grey) using a
multidimensional interpolant constructed from a half-elliptical region of grid points. For immersed boundaries (a), the interpolant is constructed
by incorporating imposed boundary conditions (Dirichlet, Neumann). For immersed interfaces (b), interpolants on both sides are constructed by
incorporating imposed jump conditions.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

4

James and Wim M.

For 𝑗0(𝐱𝑐) = 𝑗1(𝐱𝑐) = 0, the closed-form solution to Eq. (9) is

𝑢−(𝐱𝑐) = 𝑢+(𝐱𝑐) = 𝑢̄with 𝑢̄ = −
𝛽+

∑𝑛+
𝑖=1 𝑠

+
𝑖 𝑢(𝐱

+
𝑖) − 𝛽

− ∑𝑛−
𝑖=1 𝑠

−
𝑖 𝑢(𝐱

−
𝑖)

𝛽+𝑠+𝑐 − 𝛽−𝑠−𝑐
. (10)

When jumps are present, the boundary values instead are given separately by

𝑢+(𝐱𝑐) = 𝑢̄ +
𝑗1 − 𝛽−𝑠−𝑐 𝑗0(𝐱)
𝛽+𝑠+𝑐 − 𝛽−𝑠−𝑐

, 𝑢−(𝐱𝑐) = 𝑢̄ +
𝑗1 − 𝛽+𝑠+𝑐 𝑗0(𝐱)
𝛽+𝑠+𝑐 − 𝛽−𝑠−𝑐

. (11)

Once determined, the boundary values 𝑢±(𝐱𝑐) can be used in stencil operations on either side of the interface. We note that Eq. (9)
treats both sides of the interface on an even footing. Further, as the ratio 𝛽−∕𝛽+ tends to zero, Eq. (11) approaches to the well-
behaved Neumann boundary treatment given the previous section. This indicates that the boundary treatment is robust to large
jumps in coefficients and does not exhibit singular behavior when 𝛽−∕𝛽+ tends to zero or infinity.

3. Discretization of variable coefficient scalar Poisson equation

In our previous work and as discussed above, the coefficient 𝛽(𝐱) in the Poisson equation was restricted to be either constant or
piecewise constant. When 𝛽(𝐱) is spatially variable, both the interior and boundary discretizations must be altered to maintain high
order accuracy. This section introduces a novel variable-coefficient immersed interface discretization which reduces to the constant
coefficient discretization when ∇𝛽 = 𝟎. We restrict our focus on the scalar Poisson equation, with extensions to a vector equation
discussed in the next section.

For generality, the discretization assumes that 𝛽(𝐱) is defined only by its value at each grid point and at the control points. This
allows the method to generalize easily to systems of nonlinear elliptic PDEs, in which 𝛽 may depend on the solution and several other
auxiliary fields. Collocating 𝛽(𝐱) with the solution 𝑢(𝐱) at each grid point also reduces the amount of geometry processing needed
compared a staggered arrangement, and allows any boundary stencils to be applied to both solution values and coefficient values.
This will be essential for the discretization introduced below.

3.1. Bilinear stencils for the variable coefficient operator

For interior points, the operator ∇ ⋅ (𝛽∇𝑢) =
∑𝑑
𝑖=1 𝜕𝑖(𝛽𝜕𝑖𝑢) is discretized via dimension splitting. It is possible to discretize the 1D

operators 𝜕𝑖(𝛽𝜕𝑖𝑢) by replacing each first derivative with a centered difference stencil of width 𝑤. However, the resulting discrete
operator has an unnecessarily large stencil width of 2𝑤, and does not reduce to the standard centered discretization of 𝛽∇2𝑢 for
constant 𝛽. Here we derive an alternative that maintains a total stencil width of 𝑤 and reduces to the standard discretization for
constant 𝛽. The derivation is similar to the variable-coefficient finite-volume discretization developed in [36] and applied to ice sheet
modeling in [37].

Consider a 1D Cartesian grid with grid points 𝑥𝑖 = 𝑖Δ𝑥, and let 𝑢𝑖 and 𝛽𝑖 indicate the value of the solution and coefficient at the
𝑖-th grid point. The operator 𝜕𝑥(𝛽𝜕𝑥𝑢) is invariant under the transformation 𝑥 → −𝑥 and linear in both 𝑢(𝑥) and 𝛽(𝑥). Thus it is natural
to require that a finite difference discretization of this operator is symmetric and bilinear in the solution {𝑢𝑖} and coefficient {𝛽𝑖}.
Fixing a stencil width 𝑤, we seek a discretization of the form

𝜕𝑥(𝛽𝜕𝑥𝑢)𝑖 =
𝑤
∑

𝑗,𝑘=−𝑤
𝐺𝑗𝑘𝛽(𝑥𝑖+𝑗)𝑢(𝑥𝑖+𝑘) + (Δ𝑥2𝑤), (12)

where the bilinear stencil coefficients 𝐺𝑖𝑗 obey the symmetry condition 𝐺𝑖,𝑗 = 𝐺−𝑖,−𝑗 , and the order 2𝑤 error term is chosen to match
accuracy of the centered second derivative stencil of the same width.

To determine the accuracy of the bilinear stencil, the solution and coefficient can be replaced by their Taylor expansions 𝛽(𝑥) =
∑∞
𝑝=0 𝛽

(𝑝) 𝑥𝑝
𝑝! and 𝑢(𝑥) =

∑∞
𝑞=0 𝑢

(𝑞) 𝑥𝑞
𝑞! . Choosing 𝑥0 = 0 as the evaluation point, the resulting expressions for both the continuous and

discrete operators are

𝜕𝑥(𝛽𝜕𝑥𝑢) =
∞
∑

𝑝,𝑞=0

𝛽(𝑝)𝑢(𝑞)

𝑝!𝑞!
𝑞(𝑝 + 𝑞 − 1)𝑥𝑝+𝑞−2, (13)

𝜕𝑥(𝛽𝜕𝑥𝑢) =
∞
∑

𝑝,𝑞=0

𝛽(𝑝)𝑢(𝑞)

𝑝!𝑞!

𝑤
∑

𝑗,𝑘=−𝑤
𝐺𝑗𝑘𝑥

𝑝
𝑗𝑥
𝑞
𝑘. (14)

To achieve the maximal order of accuracy 𝑛 = 2𝑤, Eqs. (13) and (14) must agree for all terms with 𝑝 + 𝑞 − 2 < 𝑛. After rescaling the
{𝑥𝑖} to eliminate factors of Δ𝑥, this leads to the exactness conditions

𝑤
∑

𝑗,𝑘=−𝑤
𝐺𝑗𝑘𝑗

𝑝𝑘𝑞 =

{

𝑞(𝑝 + 𝑞 − 1), 𝑝 + 𝑞 = 2,
0, otherwise,

(15)

which must hold for 𝑝 + 𝑞 − 2 < 𝑛 and 𝑝, 𝑞 ≥ 0. The symmetry condition implies that ∑𝐺𝑗𝑘𝑗𝑝𝑘𝑞 = (−1)𝑝+𝑞
∑

𝐺𝑗𝑘𝑗𝑝𝑘𝑞 , so that Eq. (15)
is automatically satisfied when 𝑝 + 𝑞 is odd. The remaining exactness conditions occur for 𝑝 + 𝑞 even and form a system of (𝑤 + 1)2

independent linear constraints on the coefficients 𝐺𝑗𝑘. A quick accounting shows that there are (2𝑤 + 1)(𝑤 + 1) unique coefficients in

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

5

James and Wim M.

the symmetric bilinear stencil, leading to a 𝑤(𝑤 + 1) dimensional space of stencils with width 𝑤 and order 2𝑤. This is in contrast to
the standard difference centered stencil for 𝜕2𝑥 of width 𝑤 and order 2𝑤, which is uniquely determined.

Before constructing any stencils 𝐺𝑗𝑘 which satisfy the order constraints, there are two points worth noting. First, when 𝛽(𝑥) = 1,
any symmetric bilinear stencil of order 2𝑤 reduces to the standard centered difference stencil of order 2𝑤 for the second derivative.
To show this, define the sums 𝑔𝑘 =

∑𝑤
𝑗=−𝑤 𝐺𝑗𝑘, so that the application of the bilinear stencil with 𝛽 = 1 reduces to 𝜕2𝑥𝑢𝑖 =

∑𝑤
𝑘=−𝑤 𝑔𝑘𝑢𝑘.

The exactness conditions from Eq. (15) with 𝑝 = 0 reduce to constraints on 𝑔𝑘,
𝑤
∑

𝑘=−𝑤
𝑔𝑘𝑘

𝑞 =

{

𝑞(𝑞 − 1), 𝑞 = 2,
0, otherwise,

(16)

which are only satisfied when 𝑔𝑘 is the unique second derivative stencil of width 𝑤 and order 2𝑤. This immediately implies the second
point, which is that no bilinear stencil of width 𝑤 can have an order of accuracy greater than 2𝑤, despite the 𝑤(𝑤 + 1) free parameters
available. If one were to exist, it would reduce for 𝛽 = 1 to a finite difference stencil of width 𝑤 and accuracy greater than 2𝑤, which
does not exist.

3.2. Two constructions for high order bilinear stencils

For immersed interface discretizations, we make use of two constructions for symmetric bilinear stencils of arbitrary even order
2𝑤. Both constructions are chosen because they generalize immediately to nonlinear operators of the form 𝜕𝑥𝑓 (𝑥, 𝑢, 𝜕𝑥𝑢), which will
be useful in later discretizations of nonlinear elasticity presented in Section 5.

For the first construction, let {𝐷𝑖𝑗}𝑤𝑗,𝑘=−𝑤 be the unique differentiation matrix that satisfies

𝜕𝑥𝑢𝑗 =
𝑤
∑

𝑘=−𝑤
𝐷𝑗𝑘𝑢𝑘 + (Δ𝑥2𝑤) for −𝑤 ≤ 𝑗 ≤ 𝑤. (17)

The 𝑗-th row of 𝐷𝑗𝑘 is a first derivative stencil of order 2𝑤 with an evaluation point offset by 𝑗 grid points from the stencil center.
To approximate 𝜕𝑥(𝛽𝜕𝑥𝑢), the solution values {𝑢𝑘}𝑤𝑘=−𝑤 are multiplied by 𝐷𝑗𝑘 to approximate the derivatives {𝜕𝑥𝑢𝑗}𝑤𝑗=−𝑤 at each
stencil point. These derivatives are then multiplied point-wise by the coefficient values {𝛽𝑗}𝑤𝑗=−𝑤, and the centered difference stencil
{𝐷0𝑗}𝑤𝑗=−𝑤 is applied to the result. Choosing 𝑥0 = 0 as the evalution point, the full approximation reads

𝜕𝑥(𝛽𝜕𝑥𝑢) =
𝑤
∑

𝑗,𝑘=−𝑤
𝐷0𝑗𝛽𝑗 (𝐷𝑗𝑘𝑢𝑘) ⇒ 𝐺𝑗𝑘 = 𝐷0𝑗𝐷𝑗𝑘. (18)

One can verify that this construction leads to a symmetric stencil 𝐺𝑗𝑘 satisfying the conditions for accuracy of order 2𝑤. For the
nonlinear extension, pointwise multiplication by 𝛽𝑗 is replaced by pointwise evaluation of the nonlinear function 𝑓 (𝑥𝑗 , 𝑢𝑗 , 𝜕𝑥𝑢𝑗). The
resulting discretization is

𝜕𝑥𝑓 (𝑥, 𝑢, 𝜕𝑥𝑢) =
𝑤
∑

𝑗=−𝑤
𝐷0𝑗𝑓

(

𝑥𝑗 , 𝑢𝑗 ,
𝑤
∑

𝑘=−𝑤
𝐷𝑗𝑘𝑢𝑘

)

. (19)

A Taylor series analysis confirms that the nonlinear discretization also has accuracy of order 2𝑤 when 𝑞 is smooth in all of its
arguments.

The second construction is slightly more complex, but leads to a conservative finite difference scheme. Instead of discretizing
𝜕𝑥(𝛽𝜕𝑥𝑢) directly, the discrete operator is written as a difference of fluxes defined at the half grid points, so that

𝜕𝑥(𝛽𝜕𝑥𝑢)𝑖 =
(𝛽𝜕𝑥𝑢)𝑖+1∕2 − (𝛽𝜕𝑥𝑢)𝑖−1∕2

Δ𝑥
+ (Δ𝑥2𝑤). (20)

To achieve accuracy of order 2𝑤, each flux (𝛽𝜕𝑥𝑢)𝑖−1∕2 is constructed as a bilinear combination of the solution and coefficient values
at the nearest 2𝑤 grid points. Let {𝑄𝑗𝑘}𝑤−1𝑗,𝑘=−𝑤 be the unique differentiation matrix that satisfies

𝜕𝑥𝑢𝑗 =
𝑤−1
∑

𝑘=−𝑤
𝑄𝑗𝑘𝑢𝑘 + (Δ𝑥2𝑤−1), −𝑤 ≤ 𝑗 ≤ 𝑤 − 1, (21)

so that multiplication by 𝑄𝑗𝑘 transforms a vector of solution values {𝑢𝑖+𝑗}𝑤−1𝑗=−𝑤 into a vector of approximate derivatives {𝜕𝑥𝑢𝑖+𝑗}𝑤−1𝑗=−𝑤.
After obtaining the derivatives and multiplying pointwise by the coefficient 𝛽, the values {(𝛽𝜕𝑥𝑢)𝑖+𝑗}𝑤−1𝑗=−𝑤 are interpolated to construct
the flux value (𝛽𝜕𝑥𝑢)𝑖−1∕2. For a conservative finite difference scheme, the standard interpolation coefficients {𝐼𝑗}𝑤−1𝑗=−𝑤 are constructed
to satisfy

𝑢𝑖−1∕2 =
𝑤−1
∑

𝑗=−𝑤
𝐼𝑗 𝑢̄𝑖+𝑗 + (Δ𝑥2𝑤), with 𝑢̄𝑖 = ∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2
𝑢(𝑥)d𝑥. (22)

This construction is introduced and justified in [38], with further analysis provided in [39]. The full bilinear flux for the conservative
discretization can then be written

(𝛽𝜕𝑥𝑢)𝑖−1∕2 =
𝑤−1
∑

𝑗,𝑘=−𝑤
𝐼𝑗𝑄𝑗𝑘𝛽𝑖+𝑗𝑢𝑖+𝑘. (23)

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

6

James and Wim M.

Although the derivative matrix 𝑄𝑗𝑘 yields derivatives with order 2𝑤 − 1 accuracy at each interpolation point, the symmetry of the full
bilinear flux stencil leads to order 2𝑤 accuracy for the operator 𝜕𝑥(𝛽𝜕𝑥𝑢). For a nonlinear operator the corresponding discretization is

𝜕𝑥𝑓 (𝑥, 𝑢, 𝜕𝑥𝑢)𝑖 =
𝑓𝑖+1∕2 − 𝑓𝑖−1∕2

Δ𝑥
, with 𝑓𝑖−1∕2 =

𝑤−1
∑

𝑗=−𝑤
𝐼𝑗𝑓

(

𝑥𝑗 , 𝑢𝑗 ,
𝑤−1
∑

𝑘=−𝑤
𝑄𝑗𝑘𝑢𝑖+𝑘

)

. (24)

As above, this discretization has accuracy of order 2𝑤 for smooth 𝑓 . The conservative scheme is used to generate all results in this
work, unless otherwise specified.

3.3. Immersed interface discretization with variable coefficients

Compared to the interior discretization, the modifications to the immersed interface boundary treatment with variable coefficients
are minor. Each bilinear stencil which crosses a domain boundary or material interface requires ghost values for both 𝑢(𝐱) and
𝛽(𝐱). The ghost solution values are approximated via the usual boundary stencil operation. Because 𝛽(𝐱) is also defined at the grid
points and the control points, the ghost coefficient values can be obtained using the same interpolation stencils. The bilinear stencil
of order 𝑛 has the same stencil width and order of accuracy as the standard centered difference stencil of order 𝑛, so that the
variable coefficient discretization requires the same set of boundary stencil coefficients as its constant coefficient counterpart. Dirichlet
boundary conditions are handled without modification, by incorporating known boundary data ̄𝑢(𝐱𝑐) into the stencil operation at each
control point 𝐱𝑐 . Neumann conditions and jump conditions on the material interface are also handled in the usual way, using the
local coefficient values 𝛽(𝐱𝑐) or 𝛽±(𝐱𝑐) in Eqs. (6) and (11).

3.4. Verification for the variable-coefficient Poisson equation

To verify the convergence of the variable-coefficient Poisson test case, we use the five-lobed star-shaped geometry used previously
in [32]. We employ the following functional form of the manufactured solution and variable coefficient

𝑢(𝐱) = sin(4𝜋𝑥1) sin(2𝜋𝑥2), (25)

𝛽(𝐱) = exp(sin(2𝜋𝑥1) sin(4𝜋𝑥2)). (26)

The geometry and the field 𝛽(𝐱) are illustrated in Fig. 2(a).
For brevity, we refer to a discretization with an 𝑛-th order interior stencil and 𝑘-th order boundary interpolants as an (𝑛, 𝑘)

discretization, and focus on high order interior discretizations with 𝑛 = 4 or 𝑛 = 6. Throughout this work we set 𝑘 = 𝑛 + 1 rather than
𝑘 = 𝑛 + 2, motivated by elliptical regularity effects. In [40] it was shown using potential theory that reduced truncation errors near
cut cells with imposed boundary conditions do not deteriorate the overall solution error. For our method, we confirmed that the
choice 𝑘 = 𝑛 + 1 is indeed sufficient to achieve 𝑘th order convergence in the 𝐿∞ norm for all boundary conditions considered here
[30–32], both for parabolic and elliptic equations with constant coefficients. Fig. 2(b) plots the 𝐿∞ error in the discrete solution for
both (4, 5) and (6, 7) discretizations with Dirichlet or Neumann boundary conditions and a variable coefficient The results confirm
that also with variable coefficients, the proposed discretizations converge with the expected order of accuracy, regardless of the type
of boundary condition imposed.

Fig. 2. Results for the scalar Poisson equation with a variable coefficient. (a) the geometry and variable coefficient for this test case. (b) 𝐿∞ error
in the discrete solution for (4, 5) and (6, 7) discretizations with Dirichlet or Neumann boundary conditions. The discretizations converge at the
expected fourth or sixth order for either boundary condition.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

7

James and Wim M.

Fig. 3. Spectra of the (4, 5) and (6, 7) variable-coefficient discretizations at 𝑁𝑥 = 64. Each plot shows the scaled eigenvalues 𝜆̃ = Δ𝑥2𝜆∕𝛽max. For
both discretizations the real part of the scaled eigenvalues remains within the range predicted by the constant-coefficient interior discretization of
the same order.

Since all our immersed geometry corrections are linear in the field values, the discretized form of the variable-coefficient Poisson
equation together with the boundary conditions can be written as a linear system of equations for the unknown solution 𝑢 at the grid
points. Fig. 3 plots the spectra of the matrix associated with this linear system for each of the considered boundary conditions and
discretization orders at resolution 𝑁𝑥 = 64, with the eigenvalues scaled by a factor Δ𝑥2∕𝛽max where 𝛽max = max𝐱∈Ω 𝛽(𝐱). Also shown
is a dashed line indicating the most negative eigenvalue of interior discretization with a constant coefficient 𝛽max, determined using a
standard von Neumann analysis. The eigenvalues of both the (4, 5) and (6, 7) discretizations have real parts of smaller magnitude, indi-
cating that the boundary treatment does not suffer from a “small-cell" issue. Overall, the results indicate that the variable coefficient
discretization achieves the same high order accuracy and well-behaved spectrum as the constant-coefficient case.

4. Linear elasticity

This section applies the variable coefficient Poisson discretization from Section 3 to the equations of linear elasticity, which involve
a vector-valued unknown, cross-derivative terms, and more complex boundary and interface conditions.

4.1. Continuous formulation

For convenience, we adopt the Einstein summation convention for the remainder of this work, unless explicitly stated otherwise.
Consider a domain Ω occupied by an elastic body, and let 𝑢𝑖(𝐱) represent the two components of the displacement field. Throughout
the domain, a prescribed body force 𝑓𝑖 acts on the elastic material. The linear elastic properties of the material are characterized by
the spatially-variable rank-four stiffness tensor 𝐶𝑖𝑗𝑘𝑙(𝐱), which may be discontinuous across a material interface Γ𝑀 . Let 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘
represent the Cauchy stress tensor in the material, and let 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 represent the traction vector on either the domain boundary or a
material interface. To specify boundary conditions on the material, the domain boundary 𝜕Ω is partitioned into two sets Γ𝐷 and Γ𝑁 .
On Γ𝐷 a fixed displacement field 𝑢̄𝑖(𝐬) is prescribed, while on Γ𝑁 the traction 𝑡𝑖(𝐬) is prescribed. Finally, on the material interfaces
Γ𝑀 both the jump in displacement [𝑢̄𝑖] and jump in traction [𝑡𝑖] are prescribed. Taken all together, the equilibrium equation for the
body and the prescribed boundary conditions form the elliptic PDE system

𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) = 𝑓𝑖 onΩ,

𝑢𝑖 = 𝑢̄𝑖 on Γ𝐷
𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝜕𝑘𝑢𝑙 = 𝑡𝑖 on Γ𝑁

[

𝑢𝑖
]

=
[

𝑢̄𝑖
]

on Γ𝑀
[

𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝜕𝑙𝑢𝑘
]

= [𝑡𝑖] on Γ𝑀 .

(27)

The stiffness tensor 𝐶𝑖𝑗𝑘𝑙(𝐱) is assumed to obey the major symmetry 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 , the minor symmetry 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙, and the positive
definiteness property 𝐶𝑖𝑗𝑘𝑙𝜖𝑖𝑗𝜖𝑘𝑙 > 0 for all nonzero symmetric tensors 𝜖𝑖𝑗 . The discretizations presented below are valid with no further
assumptions on the stiffness tensor, to allow for anisotropic materials. However, for convergence tests we assume an isotropic but
spatially variable stiffness tensor of the form

𝐶𝑖𝑗𝑘𝑙 = 𝜆(𝐱)𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝐱)
(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑘𝑗
)

, (28)

where 𝜆(𝐱) and 𝜇(𝐱) are spatially-variable Lamé parameters.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

8

James and Wim M.

4.2. Immersed interface discretization

On the whole, the discretization of the linear elastic system is a straightforward extension of the variable-coefficient Poisson
discretization with a vector unknown 𝑢𝑖(𝐱) and tensor coefficient 𝐶𝑖𝑗𝑘𝑙(𝐱). For fixed 𝑖 and 𝑘, terms of the form 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) with 𝑗 = 𝑙
involve derivatives taken along the same axis, and are treated using the dimension-split variable coefficient discretization outlined in
Section 3. The main numerical novelties are the treatment of cross derivative terms 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) with 𝑗 ≠ 𝑙, the elimination of traction
boundary conditions, and the elimination of material interface conditions, each of which is discussed separately below.

4.2.1. Cross derivative terms with variable coefficients
For notational simplicity, this section treats a scalar cross derivative term notated 𝜕𝑗 (𝛽𝜕𝑖𝑢) with 𝑖 ≠ 𝑗. For linear elasticity, the

resulting procedure is applied separately to discretize each term 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) with 𝑗 ≠ 𝑙.
On the interior of the domain, cross derivative terms are discretized in a dimension-split manner. The inner derivative 𝜕𝑖𝑢 is

approximated using a centered difference stencil of width 𝑤 and order 𝑛 = 2𝑤 applied along the 𝑥𝑖 axis, and the result is multiplied
by the coefficient 𝛽(𝐱) to form the field 𝛽𝜕𝑖𝑢. Finally, a centered difference stencil is applied to this field along the 𝑥𝑗 axis to complete
the discretization of 𝜕𝑗 (𝛽𝜕𝑢𝑖). The result has order 𝑛 accuracy, and requires an 𝑛 + 1 by 𝑛 + 1 block of solution values centered on the
grid point along with 𝑛 + 1 coefficient values offset from the grid point along the 𝑥𝑗 axis.

Near domain boundaries, the centered difference stencils for 𝜕𝑖𝑢 intersect the domain boundary at control points located on 𝑥𝑖-
direction grid lines. At these control points, ghost values of the solution 𝑢(𝐱) are constructed using values from the interpolation points
in ̄𝑐 , including the boundary value 𝑢(𝐱𝑐). Incorporating ghost values into each centered difference results in a high order accurate
gradient 𝜕𝑖𝑢 at the affected points, which can be multiplied point-wise by the coefficient to yield 𝛽𝜕𝑖𝑢 at each affected point. To
differentiate 𝛽𝜕𝑖𝑢 at the affected points, a second centered difference stencil is applied along the 𝑥𝑗 axis. These stencils intersect the
domain boundary at control points aligned with the 𝑥𝑗 axis, and require ghost values for the field 𝛽𝜕𝑖𝑢. At each control point, ghost
values for the gradient 𝜕𝑖𝑢 are obtained evaluating by the derivative of the interpolating polynomial 𝑝𝑐 (𝐱), using 𝑤 sets of coefficients
{𝑠𝑖,𝑔𝑐 } ∪ {𝑠𝑖,𝑔𝛼 }𝑛𝛼=1 satisfying

𝜕𝑖𝑝𝑐 (𝐱𝑔) = 𝑠𝑖,𝑔𝑐 𝑢(𝐱𝑐) +
𝑛
∑

𝛼=1
𝑠𝑖,𝑔𝛼 𝑢(𝐱𝛼) (29)

for each of the 𝑤 required ghost points 𝐱𝑔 . Ghost values of the coefficient are obtained with the usual stencil operation, using the
boundary values 𝛽(𝐱𝑐) as well and interior values {𝛽(𝐱𝛼)}𝑛𝛼=1. The results are multiplied point-wise to yield ghost values for the field
𝛽𝜕𝑢𝑖.

Eliminating traction boundary conditions
While similar in form to a Neumann boundary condition, the traction boundary condition 𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝜕𝑙𝑢𝑘 = 𝑡𝑖 involves a vector un-

known 𝑢𝑖. Consequently, obtaining the wall displacement value 𝑢(𝐱𝑐) from the traction boundary condition (analogous to Eq. (6) for
the Poisson equation) involves forming and inverting a small linear system at each control point. For 𝑖 = 1, 2 let {𝑠𝑖𝑐} ∪ {𝑠𝑖𝛼}

𝑛
𝛼=1 be a

set of stencil coefficients defined so that 𝜕𝑖𝑢(𝐱𝑐) = 𝑠𝑖𝑐𝑢(𝐱𝑐) +
∑𝑁
𝛼=1 𝑠

𝑖
𝛼𝑢(𝐱𝛼) + (Δ𝑥𝑘−1). In terms of these stencil coefficients, the traction

boundary condition at each control point can be discretized as

𝐶𝑖𝑗𝑘𝑙𝑛𝑗

(

𝑠𝑙𝑐𝑢𝑘(𝐱𝑐) +
𝑛
∑

𝛼=1
𝑠𝑙𝛼𝑢𝑘(𝐱𝛼)

)

= 𝑡𝑖. (30)

To simplify, define a pair of matrices 𝐌𝑙 so that (𝑀𝑙)𝑖𝑘 = 𝐶𝑖𝑗𝑘𝑙𝑛𝑗 for 𝑙 = 1, 2. Rearranging Eq. (30) leads to the two by two linear
system

(𝑠𝑙𝑐𝐌𝑙)𝐮(𝐱𝑐) = 𝐭 −
𝑁
∑

𝛼=1
(𝑠𝑙𝛼𝐌𝑙)𝐮(𝐱𝛼). (31)

To express the boundary displacement explicitly as a function of the prescribed traction and interior displacement values, let 𝐍𝑐 =
(𝑠𝑙𝑐𝐌𝑙)−1 and for 𝑙 = 1, 2 let 𝐍𝑙 = −𝐍𝑐𝐌𝑙. Inverting Eq. (31) then gives

𝐮(𝐱𝑐) = 𝐍𝑐 𝐭 +
𝑁
∑

𝛼=1
(𝑠𝑙𝛼𝐍𝑙)𝐮(𝐱𝛼). (32)

For the case of linear isotropic elasticity, the matrices 𝐌𝑙 can be written explicitly as
𝐌𝑙 = 𝜆𝐧⊗ 𝐞𝑙 + 𝜇

(

𝐞𝑙 ⊗ 𝐧 + 𝑛𝑙𝐈
)

, (33)

where 𝜆 and 𝜇 are the Lamé parameters evaluated at the control point.

Eliminating material interface conditions
The techniques of the previous section can also be used to obtain wall displacement values 𝑢+𝑖 (𝐱𝑐) and 𝑢−𝑖 (𝐱𝑐) from the material

interface conditions [𝑢𝑖] = [𝑢̄𝑖] and [𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝑢𝑘,𝑙] = [𝑡𝑖], analogous to Eq. (11) for the Poisson equation. The displacement jump is written

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

9

James and Wim M.

explicitly as 𝑢+𝑖 (𝐱𝑐) − 𝑢−𝑖 (𝐱𝑐) = [𝑢̄𝑖]. The traction jump is discretized as

𝐶+
𝑖𝑗𝑘𝑙𝑛𝑗

⎛

⎜

⎜

⎝

𝑠𝑙,+𝑐 𝑢+𝑘 (𝐱𝑐) +
𝑛+
∑

𝛼=1
𝑠𝑙,+𝛼 𝑢𝑘(𝐱+𝛼)

⎞

⎟

⎟

⎠

− 𝐶−
𝑖𝑗𝑘𝑙𝑛𝑗

(

𝑠𝑙,−𝑐 𝑢−𝑘 (𝐱𝑐) +
𝑛−
∑

𝛼=1
𝑠𝑙,−𝛼 𝑢𝑘(𝐱−𝛼)

)

= [𝑡𝑖]. (34)

Define the matrices 𝐌±
𝑙 as above, now a superscript to indicate the appropriate side of the interface. The jump conditions form a four

by four system
[

𝐈 −𝐈
(𝑠𝑙,+𝑐 𝐌+

𝑙) −(𝑠𝑙,−𝑐 𝐌−
𝑙)

][

𝐮+(𝐱𝑐)
𝐮−(𝐬𝑐)

]

=
[

[𝐮̄]
𝐭

]

, (35)

where the right hand side vector ̃𝐭 is defined by

𝐭 = [𝐭̄] −
⎡

⎢

⎢

⎣

𝑛+
∑

𝛼=1
(𝑠𝑙,+𝛼 𝐌+

𝑙)𝐮(𝐱
+
𝛼) −

𝑛−
∑

𝛼=1
(𝑠𝑙,−𝛼 𝐌−

𝑙)𝐮(𝐱
−
𝛼)
⎤

⎥

⎥

⎦

. (36)

To proceed, let 𝐍𝑐 = (𝑠𝑙,+𝑐 𝐌+
𝑙 − 𝑠𝑙,−𝑐 𝐌−

𝑙)
−1 and for 𝑙 = 1, 2 let 𝐍±

𝑙 = −𝐍𝑐𝐌±
𝑙 . Using the matrix identity

[

𝐈 −𝐈
𝐌1 −𝐌2

][

(𝐌1 −𝐌2)−1

(𝐌1 −𝐌2)−1

][

−𝐌1 𝐈
−𝐌2 𝐈

]

=
[

𝐈
𝐈

]

, (37)

the above system can be inverted to yield
𝐮+(𝐱𝑐) = 𝐮̄ + 𝐍𝑐 [𝐭̄] + (𝑠𝑙,−𝑐 𝐍−

𝑙)[𝐮̄] and 𝐮
−(𝐱𝑐) = 𝐮̄ + 𝐍𝑐 [𝐭̄] + (𝑠𝑙,+𝑐 𝐍+

𝑙)[𝐮̄], (38)

where 𝐮̄ is a linear combination of the interior solution values given by

𝐮̄ =
𝑛+
∑

𝛼=1
(𝑠𝑙,+𝛼 𝐍+

𝑙)𝐮(𝐱
+
𝛼) −

𝑛−
∑

𝛼=1
(𝑠𝑙,−𝛼 𝐍−

𝑙)𝐮(𝐱
−
𝛼). (39)

When the jumps [𝐮̄] and [𝐭̄] vanish, the solution reduces to 𝐮+(𝐱𝑐) = 𝐮−(𝐱𝑐) = 𝐮̄.

4.3. Verification for linear elasticity

As a test case for the linear elastic discretization, an elastic body is subjected to a prescribed deformation of the form
𝑢1(𝐱) = 0.04 sin(4𝜋𝑥1) cos(2𝜋𝑥2), 𝑢2(𝐱) = 0.04 sin(4𝜋𝑥1) cos(6𝜋𝑥2). (40)

The body occupies the region between two immersed boundaries, both of which are star-shaped and defined by the same star-
shaped level set as above. Both are centered on the point 𝐱0 = [0.501, 0.502]; the inner boundary has average radius 𝑟0 = 0.379 and
perturbation radius ̃𝑟 = 0.015, while for the outer boundary 𝑟0 = 0.151 and ̃𝑟 = 0.035. The elastic body is isotropic with spatially varying
Lamé parameters

𝜆(𝐱) = 1.5 + 0.5 cos2(2𝜋𝑥1) cos2(2𝜋𝑥2), 𝜇(𝐱) = 0.8 + 0.3 sin2(2𝜋𝑥1) sin
2(2𝜋𝑥2). (41)

The body is immersed in a unit square domain of uniform resolution 𝑁𝑥 ×𝑁𝑥. The geometry and prescribed deformation for this test
case are illustrated in Fig. 4.

Fig. 5(a) plots the 𝐿∞ norm of the truncation error in the linear elastic operator 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) as a function of the grid spacing Δ𝑥
for both a (4, 5) and (6, 7) discretization. Results are shown for two separate test cases, one with displacement boundary conditions
and one with traction boundary conditions. As for the Poisson test cases, these discretizations exhibit third and fifth order truncation
error respectively for either set of boundary conditions. Fig. 5(b) plots the 𝐿∞ error in the displacement field obtained by solving the
discrete system, this time with a displacement boundary condition on the outer boundary and a traction boundary condition on the
inner boundary. The plot also includes the 𝐿∞ norm of the traction on the outer boundary, which is not prescribed but calculated
from the discrete solution. The (4, 5) and (6, 7) discretizations achieve fourth and sixth order convergence respectively for both the
displacement field and the boundary traction.

To test the discretization with material interfaces, a second region Ω− is added inside the inner star-shaped boundary, and the
average radii are adjusted to 𝑟0 = 0.221 on the inner boundary and 𝑟0 = 0.419 on the outer boundary. On the newly added inner region,
the manufactured displacement field is

𝑢−1 (𝐱) = 0.02 sin(2𝜋𝑥1) sin(2𝜋𝑥2), 𝑢−2 (𝐱) = 0.028 sin(2𝜋𝑥1) cos(4𝜋𝑥2), (42)

and the elastic body has an isotropic stiffness tensor with Lamé parameters
𝜆−(𝐱) = 1.1 + 0.3 cos2(4𝜋𝑥1) cos2(2𝜋𝑥2), 𝜇−(𝐱) = 0.6 + 0.7 sin2(2𝜋𝑥1) cos2(4𝜋𝑥2). (43)

For all tests a displacement boundary condition is prescribed on the outer boundary, while jumps in the displacement and traction
are prescribed on the material interface. The geometry and prescribed displacement field for this test case are illustrated in Fig. 6.
Fig. 7(a) plots the truncation error in the linear elastic operator with material interfaces, which is third order and fifth order for the
(4, 5) and (6, 7) discretizations respectively. Fig. 7(b) plots the error in the displacement field obtained by solving the discrete system,
as well as the traction distribution on the inner surface of the material interface. Both quantities converge with the expected fourth
or sixth order accuracy.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

10

James and Wim M.

Fig. 4. Manufactured solution used to test the linear elastic discretization.

Fig. 5. Convergence of (a) the truncation error and (b) the solution error for a linear elastic test case. The (4, 5) and (6, 7) discretizations achieve
fourth and sixth order convergence in the 𝐿∞ norm for both the displacement field and boundary traction. The truncation error for each discretization
converges at third and fifth order, respectively.

Fig. 6. Manufactured solution used to test the linear elastic discretization with a material interface.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

11

James and Wim M.

Fig. 7. Convergence of (a) the truncation error and (b) the solution error for a linear elastic test case with material interfaces. The addition of the
material interface does not affect the convergence rates, which match those observed in Fig. 5.

5. Nonlinear elasticity

This final section presents a high order method for finite-deformation elasticity with hyperelastic materials. The discretization
requires a nonlinear extension of the variable-coefficient and cross-derivative techniques presented in Sections 3 and 4, and an
alternative approach to discretizing traction boundary conditions that is suitable for nonlinear problems.

5.1. Continuous formulation

For 2D nonlinear elastic problems, we consider a Lagrangian formulation. Let 𝑦𝑖(𝐱) be the location in the deformed configuration of
the material point located at 𝐱 in the reference configuration. The constitutive relation for a nonlinear hyperelastic material is defined
by a nonlinear strain energy density function 𝑊 (𝐅), where 𝐹𝑖𝑗 (𝐱) = 𝜕𝑗𝑦𝑖(𝐱) is the deformation gradient. The stress in the interior of
the reference configuration is defined by the first Piola-Kirchhoff stress tensor

𝑆𝑖𝑗 =
𝜕𝑊
𝜕𝐹𝑖𝑗

. (44)

In terms of these quantities, the nonlinear system of PDEs governing the deformation field 𝑦𝑖(𝐱) is
𝜕𝑗𝑆𝑖𝑗 (𝐅) = 𝑓𝑖 onΩ,

𝑦𝑖 = 𝑦̄𝑖 on Γ𝐷,

𝑆𝑖𝑗 (𝐅)𝑛𝑗 = 𝑡𝑖 on Γ𝑁 .

(45)

At material interfaces, the displacement is assumed to be continuous, so that there is no tearing or cracking of the material. However,
a traction jump is permitted, and the corresponding interface condition is

[

𝑆𝑖𝑗 (𝐅)𝑛𝑗
]

= [𝑡𝑖] on Γ𝑀 . (46)

This section considers only dead loading conditions, in which the prescribed body force 𝑓𝑖 and the first Piola-Kirchhoff traction vector
𝑡𝑖 prescribed on the boundary do not depend on the solution 𝑢𝑖.

As a nonlinear system of PDEs, Eq. (45) must be solved iteratively for the unknown displacements field 𝐲 defined on the domain
Ω and on the non-displacement boundaries Γ𝑁 ∪ Γ𝑀 . To measure the convergence of the solution, define the domain residual field
𝐫𝑓 , boundary residual field 𝐫𝑡, and material interface residual field 𝐫[𝑡] by

𝑟𝑓𝑖 = 𝑓𝑖 − 𝜕𝑗𝑆𝑖𝑗 (𝐅) onΩ,
𝑟𝑡𝑖 = 𝑡𝑖 − 𝑆𝑖𝑗 (𝐅)𝑛𝑗 on Γ𝑁 ,

𝑟[𝑡]𝑖 =
[

𝑡𝑖
]

−
[

𝑆𝑖𝑗 (𝐅)𝑛𝑗
]

on Γ𝑀 .

(47)

At each iteration of the nonlinear solve, Eq. (47) is linearized about the current solution, leading to terms that involve the elasticity
tensor

𝐴𝑖𝑗𝑘𝑙(𝐱) ≡
𝜕𝑆𝑖𝑗 (𝐅)
𝜕𝐹𝑘𝑙

|

|

|

|

|

𝐅(𝐱) =
𝜕2𝑊 (𝐅)
𝜕𝐹𝑖𝑗

𝐹𝑘𝑙
|

|

|

|

|𝐅(𝐱)
. (48)

This tensor has the major symmetry 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑘𝑙𝑖𝑗 , but in general there is no minor symmetry, so that 𝐴𝑖𝑗𝑘𝑙 has ten independent
components in 2D.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

12

James and Wim M.

5.2. Interior discretization

Let 𝐒(𝜕1𝐲, 𝜕2𝐲) indicate the Piola-Kirchhoff stress calculated as a function of the two displacement derivatives 𝜕1𝐲 and 𝜕2𝐲. The fields
𝜕1𝐲 and 𝜕2𝐲 are calculated at the grid points using centered difference stencils of width 𝑤 applied along the 𝑥1 and 𝑥2 axes respectively.
To discretize 𝜕1𝑆11(𝜕1𝐲, 𝜕2𝐲), the derivative 𝜕2𝐲 is treated as a known quantity, while 𝜕1𝑆11(𝜕1𝐲, ⋅) is treated as a nonlinear second
derivative operator applied along the 𝑥1 axis. Making use of the nonlinear variable-coefficient discretization proposed in Section 3.2
leads to the discretization

𝜕1𝑆11(𝐱𝑖,𝑗) =
𝑤
∑

𝑘=−𝑤
𝐷0𝑘𝑆11

(𝑤
∑

𝑙=−𝑤
𝐷𝑘𝓁𝐲𝑖+𝓁,𝑗 , 𝜕2𝐲𝑖+𝑘,𝑗

)

+ (Δ𝑥2𝑤). (49)

The term 𝜕2𝑆12 is obtained by permuting the axes, so that 𝜕1𝐲 is treated as a known quantity while 𝜕2𝑆12(⋅, 𝜕2𝐲) is treated as a nonlinear
second derivative operator applied along the 𝑥2 axis. The result is

𝜕2𝑆12(𝐱𝑖,𝑗) =
𝑤
∑

𝑘=−𝑤
𝐷0𝑘𝑆12

(

𝜕1𝐲𝑖,𝑗+𝑘,
𝑤
∑

𝑙=−𝑤
𝐷𝑘𝑙𝐲𝑖,𝑗+𝑙

)

+ (Δ𝑥2𝑤). (50)

The terms 𝜕1𝑆21 and 𝜕2𝑆22 are obtained from Eqs. (49) and (50) by changing the first index on the stress function, and the residual
vector at each point is taken to be 𝐫𝑓𝑖,𝑗 = 𝐟𝑖,𝑗 − (∇ ⋅ 𝐒)𝑖,𝑗 . Including the precomputation of 𝜕1𝐲 and 𝜕2𝐲, an order 𝑛 discretization of the
residual depends on an 𝑛 + 1 by 𝑛 + 1 block of displacements centered on point 𝐱𝑖𝑗 , and requires 𝑛 + 1 evaluations of each component
of the stress tensor.

Note that while the analysis so far has treated materials with a fixed constitutive relation, the extension to spatially-dependent
material parameters is straightforward. In this case the constitutive relation is defined by a strain energy density function 𝑊 (𝐅,θ),
where θ(𝐱) is a vector of spatially variable material properties defined at the grid points and the control points. For the interior
discretization the values θ𝑖,𝑗 are incorporated into computations of the stress and elasticity tensors as needed. For the boundary
treatment proposed in the next section, ghost values of θ can be calculated with the usual boundary stencil operations.

5.3. Immersed interface boundary treatment

The boundary treatment for the residual 𝐫𝑓 follows the boundary treatment for cross derivatives defined in Section 4.2. At each
control point, the displacement field 𝐲 is interpolated using points from the set ̄𝑐 . The derivatives 𝜕1𝐲 and 𝜕2𝐲 are precomputed at the
affected points using centered difference stencils, evaluating the interpolant at each control point as needed to provide ghost values
of 𝐲. To evaluate Eqs. (49) and (50) at the affected points, ghost values of 𝜕1𝐲 and 𝜕2𝐲 are obtained as needed by differentiating the
same set of interpolants.

To reduce implementation complexity, Eqs. (49) and (50) are most easily viewed as a sum over 2𝑤 + 1 computation stages, each
comprised of two stencil operations and a nonlinear function evaluation. For illustration, consider the computation of 𝜕1𝑆11. During
stage 𝑘, the 1D difference stencil {𝐷𝑘𝑙}𝑤𝑙=−𝑤 is applied to 𝐲 along the 𝑥1 axis. The field 𝜕2𝐲 is then shifted by 𝑘 points along the same
axis, which can be accomplished by applying the stencil with coefficients {𝛿𝑘𝑙}𝑤𝑙=−𝑤. Finally, the function 𝑆11(⋅, ⋅) is applied pointwise
to the results of both stencil operations, and the output is weighted by the constant 𝐷0𝑘. This is repeated for −𝑤 ≤ 𝑘 ≤ 𝑤, and the
results of all stages are summed to form the field (𝜕1𝑆11)𝑖,𝑗 . For efficiency, the 𝑘 = 0 stage can be omitted by noting that 𝐷00 = 0 for
any stencil width 𝑤. At each stage both stencil operations are subject to the boundary treatment outlined above, which provides ghost
points for the fields 𝐲 and 𝜕2𝐲.

For control points on Γ𝐷, displacement boundary conditions are enforced by incorporating the known displacement 𝐲̄(𝐱𝑐) into
each polynomial interpolant. To discretize traction boundary conditions, let {𝑠𝑗𝑐 , 𝑠𝑗𝛼} be a set of vector stencil coefficients defined over
the points in ̄𝑐 which approximate the gradient operator 𝜕𝑗 on the boundary, so that

𝐹𝑖𝑗 (𝐱𝑐) = 𝜕𝑗𝑢𝑖(𝐱𝑐) = 𝑠𝑗𝑐𝑢𝑖(𝐱𝑐) +
𝑛
∑

𝛼=1
𝑠𝑗𝛼𝑢𝑖(𝐱𝛼) + (Δ𝑥𝑘). (51)

The residual 𝐫𝑡𝑐 for each control point is computed from the discretized deformation gradient,
𝐫𝑐 = 𝐭̄𝑐 − 𝐒(𝐅𝑐)𝐧𝑐 . (52)

Similarly, the residual vector for each control point on the material interface is defined by
𝐫[𝑡]𝑐 =

[

𝐭̄𝑐
]

−
[

𝐒+(𝐅+
𝑐) − 𝐒−(𝐅−

𝑐)
]

𝐧𝑐 , (53)

with the displacement gradients 𝐅+(𝐱𝑐) and 𝐅−(𝐱𝑐) defined as in Eq. (51) for each side of the interface. In contrast to the linear elastic
case, we do not solve the equations 𝐫𝑡𝑐 = 0 or 𝐫[𝑡]𝑐 = 0 individually at each control point. Instead, each control point on Γ𝑁 or Γ𝑀 adds
two unknown displacement components 𝐲𝑐 and two nonlinear equations (one for each residual component) to the global nonlinear
system, which is solved simultaneously for the displacement in the domain and on the boundaries.

5.4. Nonlinear solution procedure

The spatial discretization provides a system of nonlinear equations which must be solved for the unknown displacements. As is
typically the case for nonlinear elastic problems, a robust way to obtain solutions is to begin in the reference configuration with

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

13

James and Wim M.

homogeneous boundary conditions, then incrementally approach the final solution by a series of load steps. During each load step
the applied displacements, loads, and body forces are increased by a small increment, and Newton’s method is used to solve for the
equilibrium configuration. This strategy takes advantage of the fact that Newton’s method converges quickly when the initial guess
is close to the final solution, and avoids the slow and unpredictable convergence behavior that results from a poor initial guess. For
the examples shown below load stepping is only required to increment a prescribed displacement, and the corresponding algorithm
is described below.

For the load stepping procedure, the displacements are partitioned into three groups (𝑦Ω, 𝑦𝐷Γ , 𝑦𝑁Γ), which include the displacements
at grid points, at control points with displacement boundary conditions, and at control points with traction boundary conditions,
respectively. The displacements 𝑦𝐷Γ are prescribed and serve as known parameters, while 𝑦Ω and 𝑦𝑁Γ are the system unknowns. The
residual vector can be partitioned into vectors (𝑟Ω, 𝑟𝑁Γ), defined analogously, so that the full nonlinear system takes the form

𝑟Ω(𝑦Ω, 𝑦𝑁Γ ; 𝑦𝐷Γ) = 0,

𝑟𝑁Γ (𝑦Ω, 𝑦𝑁Γ) = 0.
(54)

Let 𝑦𝐷,𝑘−1Γ be the prescribed boundary condition at step 𝑘 − 1, and (𝑦𝑘−1Ω , 𝑦𝑁,𝑘−1Γ) be the corresponding solution. At step 𝑘, the displace-
ments are incremented by 𝛿𝑦𝐷Γ = 𝑦𝐷,𝑘Γ − 𝑦𝐷,𝑘−1Γ . For all results below the load path is linear, so that 𝛿𝑦𝐷Γ is identical at each step. The
initial guesses for the unknowns at step 𝑘 can be written as 𝑦𝑘Ω = 𝛿𝑦Ω + 𝑦𝑘−1Ω and 𝑦𝑁,𝑘Γ = 𝛿𝑦𝑁Γ + 𝑦𝑁,𝑘−1Γ , where the increments (𝛿𝑦Ω, 𝛿𝑦𝑁Γ)
must be determined to satisfy Eq. (54) as closely as possible. Linearizing the system about the previous solution leads to a linear
system for the increments,

(

𝜕𝑟Ω
𝜕𝑦Ω

)

𝛿𝑦Ω +

(

𝜕𝑟Ω
𝜕𝑦𝑁Γ

)

𝛿𝑦𝑁Γ = −

(

𝜕𝑟Ω
𝜕𝑦𝐷Γ

)

𝛿𝑦𝐷Γ ,

(

𝜕𝑟𝑁Γ
𝜕𝑦Ω

)

𝛿𝑦Ω +

(

𝜕𝑟𝑁Γ
𝜕𝑦𝑁Γ

)

𝛿𝑦𝑁Γ = 0,

(55)

where the Jacobian matrices are evaluated at (𝑦𝑘−1Ω , 𝑦𝑁,𝑘−1Γ). After solving Eq. (55) to calculate the resulting initial guess, the solution
at step 𝑘 is obtained with Newton’s method.

Both the load stepping procedure and Newton’s method require the derivative of the residual vector with respect to each unknown.
Returning to Eq. (49), an infinitesimal perturbation 𝛿𝐲𝑖,𝑗 to the discrete displacement field results in a perturbation to the stress
divergence 𝜕1𝑆(⋅)1 given by

𝛿(𝜕1𝑆(⋅)1)𝑖,𝑗 =
𝑤
∑

𝑘=−𝑤
𝐷0𝑘

𝜕𝑆(⋅)1

𝜕𝐅

(

𝜕1𝐲𝑖+𝑘,𝑗 , 𝜕2𝐲𝑖+𝑘,𝑗
)

∶
[

𝜕1𝛿𝐲𝑖+𝑘,𝑗 , 𝜕2𝛅𝐲𝑖+𝑘,𝑗
]

, (56)

where ∶ denotes tensor contraction and [𝐚, 𝐛] denotes the horizontal concatenation of two vectors to form a two by two tensor. The
expression for 𝛿(𝜕2𝑆(⋅)2)𝑖,𝑗 is obtained by swapping axes. Eq. (56) is linear in the perturbation 𝛿𝐲, and can be used to assemble the
Jacobian matrices required by the load stepping procedure. In practice, the derivatives (𝜕1𝐲𝑖+𝑘,𝑗 , 𝜕2𝐲𝑖+𝑘,𝑗) are evaluated only once at
each grid point, and used to evaluate both the residual and the components of the elasticity tensor that enter the Jacobian matrices.
The derivatives of the boundary residual 𝑟𝑁Γ are comparatively straightforward: for each control point on Γ𝑁 , differentiating Eq. (52)
yields

𝜕𝑟𝑡𝑖
𝜕𝑦𝑐𝑘

= 𝐴𝑖𝑗𝑘𝑙(𝐅𝑐)𝑛𝑗𝑠𝑐𝑙 ,
𝜕𝑟𝑡𝑖
𝜕𝑦𝛼𝑘

= 𝐴𝑖𝑗𝑘𝑙(𝐅𝑐)𝑛𝑗𝑠𝛼𝑙 . (57)

These derivatives are assembled to form the matrices 𝜕𝑟
𝑁
Γ

𝜕𝑦𝑁Γ
 and 𝜕𝑟

𝑁
Γ

𝜕𝑦Ω
, respectively.

5.5. Verification for nonlinear elasticity

As a test case for the nonlinear discretization, an elastic body is subjected to a prescribed deformation of the form
𝑢1(𝐱) = 𝐴1 cos(2𝜋𝑥1) sin(2𝜋𝑥2), 𝑢2(𝐱) = −𝐴2 sin(2𝜋𝑥1) cos(2𝜋𝑥2), (58)

with 𝐴1 = 0.08 and 𝐴2 = 0.06. The geometry and solution domain are identical to the linear elastic test case shown in Fig. 4. A
traction boundary condition is prescribed on the inner boundary, while a displacement boundary condition is prescribed on the outer
boundary. The constitutive relation is a compressible Neo-Hookean model with strain energy density

𝑊 (𝐅) = 𝜇
2
(

𝐼1 − 2 − 2 log 𝐽
)

+ 𝜆
2
(𝐽 − 1)2, (59)

with Lamé parameters 𝜆 = 4∕3 and 𝜇 = 1. Here 𝐼1 = tr(𝐅𝑇𝐅) is the first invariant of the right Cauchy-Green deformation tensor and
𝐽 = det 𝐅. The prescribed traction and body force are calculated so that Eq. (58) is an equilibrium configuration, leading to residual
fields 𝐫𝑓 (𝐱) = 0 on Ω and 𝐫𝑡(𝐬) = 0 on Γ𝑁 . Fig. 8 illustrates both the deformed and undeformed configurations for this test case, as
well as the magnitude of the deformation ‖𝐮(𝐱)‖2 and the Jacobian determinant 𝐽 = det 𝐅.

Fig. 9(a) plots the 𝐿∞ norm of the residual vector that results when the discretization from the previous section is applied to the
equilibrium configuration. This residual reflects the truncation error in the discretization of both the equilibrium equation and the

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

14

James and Wim M.

Fig. 8. Manufactured solution used to test the convergence of the nonlinear elastic discretization. While all results are obtained using a uniform
Cartesian grid, a post-processed body-fitted triangle mesh is overlaid here to illustrate the deformation of the material.

Fig. 9. Convergence of (a) the truncation error and (b) the solution error for a nonlinear elastic test case. Both the (4, 5) and (6, 7) discretizations
achieve fourth and sixth order convergence in the 𝐿∞ norm for the displacement field.

traction boundary condition. For (4, 5) and (6, 7) discretizations, the residual exhibits clean third or fifth order spatial convergence,
matching the convergence rates observed for linear elasticity. To evaluate the solution error, the displacement field is initialized using
the analytical solution from Eq. (58), and Newton iterations are performed until the update at each iteration satisfies ‖𝛿𝐲‖∞ < 10−12.
The convergence of the 𝐿∞ error in the displacement field is shown in Fig. 9(b), demonstrating that both the fourth and sixth order
discretizations achieve their nominal order of accuracy.

To test the nonlinear discretization with material interfaces, the same deformation is applied to the geometry from the linear
elastic test case illustrated in Fig. 6. The outer material is Neo-Hookean with parameters 𝜆+ = 1.1 and 𝜇+ = 0.6, while the inner
material has a Saint Venant-Kirchhoff strain energy density function

𝑊 = 𝜆
2
(tr𝐄)2 + 𝜇tr(𝐄2), 𝐄 = 1

2
(

𝐅𝑇𝐅 − 𝐈
)

(60)

with parameters 𝜇− = 0.8 and 𝜆− = 1.5. Fig. 10(a) illustrates the body in the deformed configuration, colored by the magnitude of the
body force in the deformed configuration ̄𝐟∕𝐽 . While the deformation is continuous, both the traction and body force are discontinuous
across the material interface. Fig. 10(b) plots the convergence of the displacement field and the first Piola-Kirchhoff traction on the
inner surface of the material interface, after solving the nonlinear system to a tolerance of ‖𝛿𝐲‖∞ < 10−12. Both quantities converge
at fourth or sixth order for the (4, 5) and (6, 7) discretizations.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

15

James and Wim M.

Fig. 10. Nonlinear elasticity with material interfaces. (a) The deformed configuration of the elastic body, colored by the body force per deformed
volume ‖𝐟‖2∕𝐽 . A post-processed body-fitted triangle mesh is overlayed here to illustrate the deformation of the material, while all computations
are performed on a uniform Cartesian grid. (b) The 𝐿∞ error in both the deformation field and the first Piola-Kirchhoff traction vector on the inner
sided of the material interface. The (4, 5) and (6, 7) discretizations achieve fourth and sixth order convergence for both quantities.

6. Examples

In this section we show several examples of the ability of our code to solve challenging problems across single and multiple
materials, and linear and nonlinear responses.

6.1. Linear periodic lattice

This linear elastic test case showcases the ability of high order immersed methods to capture complex geometry without mesh
generation. The (4, 5) discretization is applied to a gyroid lattice structure with material interfaces, represented implicitly by the
level sets

𝜓top(𝐱) = 𝑥2 − 0.14 − 0.04 cos(10𝜋(𝑥1 + 0.02)),
𝜓bottom(𝐱) =−𝑥2 + 0.66 + 0.04 cos(10𝜋(𝑥1 − 0.02)),

𝜓lattice(𝐱) = 1 −
[

sin(10𝜋𝑥1) + cos(10𝜋𝑥2) +
√

2 cos(10𝜋𝑥1) sin(10𝜋𝑥2)
]2
,

(61)

which form the top surface, bottom surface, and lattice structure illustrated in Fig. 11. The lattice consists of two isotropic elastic
materials which occupy the regions 𝜓lattice(𝐱) > 0 and 𝜓lattice(𝐱) < 0, with material properties defined by the Poisson ratios and Young’s
moduli 𝜈− = 0.3, 𝐸− = 3, 𝜈+ = 0.35, 𝐸+ = 1. Displacement boundary conditions are prescribed on both the top and bottom surfaces,
with the top surface displaced by a distance 𝛿𝑢1 = 0.05 along the 𝑥1 axis and the bottom surface fixed in place. On material interfaces
there are no jumps in the displacement or traction, so that [𝐮̄] = 0 and [𝐭̄] = 0. The unit square solution domain is discretized with
𝑁𝑥 = 176 grid points along each axis, and the resulting linear system is inverted with a sparse direct solver.

For post-processing purposes, the displacement gradient 𝜕𝑗𝑢𝑖 can be calculated at each grid point using a centered difference stencil
with an immersed interface boundary treatment. At the control points, the displacement gradient is calculated via boundary stencil
operations. This allows the stress tensor 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘 to be computed at each grid point and each control point. Fig. 11 plots the
stress distribution inside the lattice structure, in particular the Von Mises stress 𝜎𝑉𝑀 =

√

𝜎211 + 𝜎
2
22 − 𝜎11𝜎22 + 3𝜎212 and a hydrostatic

stress measure 𝜎𝐻 = (𝜎11 + 𝜎22)∕2. While there is no jump in the traction 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 across the material interfaces, discontinuities in
other stress measures are present and sharply resolved by the high order immersed interface discretization.

6.2. Nonlinear periodic lattice

In this section, the fourth order nonlinear discretization is applied to the lattice structure introduced in previous section. The ge-
ometry and spatial resolution are kept identical, and the inner material is removed to yield a single material problem. The hyperelastic
material is Neo-Hookean with parameters that correspond to a linear elastic response with 𝐸 = 1 and 𝜈 = 0.35, and the upper surface
of the lattice is subject to a deformation 𝛿𝐲 = [0.15, 0.45] applied over five load steps. The deformed and undeformed configuration
are shown in Fig. 12, colored by the Jacobian determinant 𝐽 = det 𝐅, which illustrates the extreme stretching of the material.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

16

James and Wim M.

Fig. 11. Stress distribution inside of a multi-material gyroid lattice. The structure has a fixed lower surface and upper surface which displaced
horizontally. The (a) von Mises stress (b) hydrostatic stress are both discontinuous across material interfaces, and both are sharply resolved by the
fourth order immersed interface discretization.

Fig. 12. The undeformed (left) and deformed (right) configurations of a hyperelastic gyroid lattice, colored by the Jacobian determinant 𝐽 = det 𝐅.
The deformation is based on a displacement of the top boundary 𝛿𝐲 = [0.15, 0.45].

6.3. Honeycomb lattice

To demonstrate the flexibility and accuracy of our approach, we apply it to an architectured structure consisting of interconnected
finite-width rods. The structure is defined as a list of 𝑁 line segments  = {𝐩(𝑖)𝑠 ,𝐩

(𝑖)
𝑒 , 𝑤(𝑖)

| 1 ≤ 𝑖 ≤ 𝑁}, with 𝐩(𝑖)𝑠,𝑒 the start and end position
and 𝑤(𝑖) the width of the 𝑖th line segment in the list. Different line segments may share the same starting or ending position, though
they may not intersect. In this example, for simplicity, we set 𝑤(𝑖) = 𝑤 as a constant throughout the lattice.

To create our discretization, we define a signed-distance function based on . Since our discretization requires a minimum radius
of curvature of the interface (Eq. (3)), we apply a small rounding by replacing every rod-rod intersection with a circular arc of a
specified radius of curvature. This procedure leads to a pre-processing step that is further detailed in Appendix A. After the signed-
distance function is evaluated on the grid, the intersections between the interface and the grid lines are evaluated by a level-set based
interpolation strategy [30,35, appendices].

We compare our results to those obtained by the commercial finite element solver Abaqus. The Abaqus results are obtained from
a traditional triangular body-fitted mesh on the original rod-based geometry. The finite elements used are 6-node quadratic plain
stress elements (CPS6), and a standard linear solve is performed. For simulations where the interior of the structure is filled with a
second material, the embedded element approach is used.

We choose a geometry based on a honeycomb lattice with 29 × 29 cells, each with an edge length of 22.7 µm, and some edges
randomly removed. The width of the rods is set to 𝑤 = 0.01mm. The lattice is made of an isotropic linearly elastic model with Poisson’s
ratio 𝜈 = 0.3 and Young’s modulus 𝐸 = 70MPa. Displacement boundary conditions are prescribed on the top and bottom of the lattice,
with the top surface displaced horizontally by 𝛿𝑢1 = 0.01mm and the bottom surface fixed in place.

6.3.1. Single material
For the single material case, all edges except those on the top and bottom of the material are traction free. The IIM results are run

with a grid size of, effectively, 1.085 µm, using a fourth-order discretization described as above. The total number of active grid points

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

17

James and Wim M.

Fig. 13. The Von-Mises stress (left) and pressure (right) in the sheared honeycomb-like lattice structure, compared between the IIM results (left
panel in each) and the FEM results (right panel in each). Insets provide successive close-ups, highlighted with dashed squares. Values are provided
in units of kPa.

in the IIM grid, and hence the system size, is 416 204, whereas the FEM results are run with 37 645 elements for a total of 91 312
nodes. We note the geometry is especially unfavorable for the IIM approach, since it has to resolve the small radius of curvature at
the corners. In this light, we will focus on an accuracy comparison, demonstrating the ability of IIM to produce accurate results even
in this extreme case, without accounting for performance. Future work would be needed to investigate further the efficient handling
of geometries with sharp corners in a more explicit way, and/or using adaptive grids to locally refine the grid near the corners.

Fig. 13 shows the Von Mises stress (left) and the pressure (right) compared between the IIM and the FEM results on the undeformed
lattice. For the IIM results, a contour plot is created from a triangulated grid containing both the grid points and the control points
similar to Figs. 8 and 10(a) above. The FEM results are visualized directly from Abaqus. The figures are rendered with the same
colormap so that a one-to-one comparison is possible. The comparison shows that the IIM results match very well with the reference
FEM results, both for the stress distribution within the individual rods, and the macroscopic stress field of the entire structure.

6.3.2. Composite structure
Extending the previous example, we now fill in all closed cavities in the honeycomb structure with a softer material of Young’s

modulus 𝐸2 = 10MPa and Poisson’s ratio 𝜈2 = 0.3. In the IIM, we apply jump boundary conditions on all material interfaces, and in
Abaqus embedded elements are used. All exterior boundaries are traction free, and as above, displacement boundary conditions are
applied at the top and bottom boundaries. The IIM results are run with an effective grid spacing of 0.72 µm, again using a fourth-order
discretization. The total number of active grid points in the IIM grid, including both material regions, is 2 132 986. The FEM results
are run using 541 364 elements for a total of 1 428 947 nodes.

Fig. 14 shows the same visual comparison as for a single material, demonstrating the ability of the IIM to recover micro- and
macro-scale stress distributions also in multi-material composite structures. To perform a more quantitative comparison, we plot the
stresses and vertical displacements evaluated across a line at 𝑦 = 0.5mm throughout the composite structure. For the IIM, this line
corresponds to a gridline so that the stress jumps at the control points can be included in the plot wherever the grid line intersects a
material boundary (or interface). The FEM results are obtained using the built-in ‘X-Y data along a path’ routine in Abaqus. Fig. 15
shows the stress and displacement distributions along this line, across the entire structure (left) and for the center 0.2mm (right).
Again, the IIM results match well with the embedded element results, both inside the soft matrix and inside the stiffer lattice structure.
Further, even more noticeable here is the embedded element method’s treatment of material interfaces, leading to some oscillations
in the visualized stresses near interface boundaries , though this could also be partially attributed to the interpolation routine. On
the other hand, the IIM results remain smooth up to the material interfaces.

7. Discussion

The analysis and results above demonstrate that the proposed immersed method is able to achieve high fidelity results with high
convergence orders for a variety of single and multi-material, linear and nonlinear elasticity problems.

As mentioned in the introduction, prevalent immersed methods in solid mechanics are typically based on immersed finite element
methods. The main benefit of our approach is the simplicity of the required geometric information of the problem. Specifically, the
proposed algorithm requires only local information: a list of intersection locations between the geometry and the Cartesian grid, with
each intersection tagged by a position, surface normal vector, a type of boundary/interface condition, and an associated displacement,
stress, or jump value. Notably, the algorithm itself does not require curvature information of the geometry, nor does it require any
information about the topology of the intersections, as the corrections are handled locally for each finite difference stencil. Thus,

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

18

James and Wim M.

Fig. 14. The Von-Mises stress (left) and pressure (right) in the sheared honeycomb-like lattice structure with a soft matrix material, compared
between the IIM results (left panel in each) and the FEM results (right panel in each). Insets provide successive close-ups, highlighted with dashed
squares. Values are provided in units of kPa.

Fig. 15. Comparison of the Von Mises stress (top) and 𝑦-displacement (bottom) along a line crossing through the composite honeycomb structure at
𝑦 = 0.5mm. The IIM results are shown in black, including thin lines connecting the jump in stress values across material interfaces. The FEM results,
obtained with an embedded element method, are shown in red. The right plots show zoom-ins of the left plots, with vertical dashed lines marking
material transitions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the approach avoids all numerical integration challenges common to immersed finite element methods, while retaining high order
accuracy in the interior and boundary solutions.

Throughout this work, we use the algorithm proposed in [30] to extract the geometric intersection information from a level
set function. Functional geometry descriptions like signed distance functions are increasingly used natively in various modeling
packages, driven by organic shapes unlocked in additive manufacturing [41]. Further, signed distance function based geometries are
extensively used in generative modeling, e.g. [42]. For geometries that are defined traditionally using e.g. spline or constructive solid
geometry representations (CSG), one could develop specialized geometric tools to find intersections directly. More readily, algorithms
to compute signed distance functions or level-set fields from 2D or 3D explicit surface representations are prevalent in the computer

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

19

James and Wim M.

graphics community, e.g. based on the software EBGeometry [43,44], after which the required intersections can be found directly
from the level-set field.

As with most other immersed approaches, our algorithm requires that geometries with high curvatures or thin features are dis-
cretized with sufficient resolution. In our case, the resolution requirement Eq. (3) ensures that the regions sketched in Fig. 1 contain
enough points to form a polynomial of the desired order. In addition, our algorithm detects whether the least-squares system based
on ±

𝑐 is ill-posed, thus identifying the need to refine in thin regions. Alternatively, one could also reduce the order of accuracy of
the polynomial 𝑝𝑐 (𝐱) locally to the available points in the regions ±

𝑐 .
At a corner, i.e. in the limit of infinite curvature, the resolution requirement Eq. (3) is always violated, and moreover a unique

normal vector can not be defined. Corner features can thus not directly be discretized with the same order of accuracy as smooth
geometries in our method, and in practice we therefore explicitly disallow such geometries. Similar concerns about non-smooth
geometric features are common across immersed methods, e.g. as imposed by [13] for high order integration of implicit surfaces,
recognized in [45] for level-set reinitialization, and discussed in [46] for cut-cell finite volume methods. To treat robustly corners
in practice, as noted in [46], a mollification strategy is an effective approach. In Section 6.3 we use an ad-hoc specialized algorithm
for lattice-type structures of constant thickness by introducing a single length scale for replacing the corners with circular arcs. More
generally, smooth minimum approaches can be used on signed distance functions, which are common in geometric analyses and
cut-cell methods. For instance, [46] introduces smooth minimum function that restores the high order convergence rate on their
Poisson’s equation solution. Similarly, [47] and more recently [48] provide strategies to systematically obtain differentiable smooth
level-set or distance-based geometries in two and three dimensions.

Finally, we note that even with the sharp corner constraint in place the resulting subset of possible geometries contains many
cases of practical interest: these include shell-based metamaterials [49,50], biological shapes [51], and organically designed shapes
for additive manufacturing [52]

8. Conclusion

This work poses several contributions to the field of solving elasticity problems using immersed finite difference/volume dis-
cretization methods. First, we show high order accuracy of the solution in the domain, as well as solution quantities on the immersed
interface. Second, we demonstrate robust treatment of boundary conditions (prescribed displacement or traction) and interface con-
ditions (jump conditions in displacement and traction) on complex geometries. Third, our method can handle non-homogeneous
isotropic and anisotropic material properties in each solution domain. Lastly, the method extends to nonlinear large strain problems.
This makes the proposed approach a robust platform for use in, for instance, level-set based pipelines for topology optimization or
data-driven machine learning models.

This work also creates a promising starting point for further developments. The extension to three-dimensional static elastic
problems is largely an implementation problem, as all important discretizations extend naturally to 3D. In fact, we have already
shown 3D results of high order immersed discretizations of scalar elliptic problems in [32], and similarly for hyperbolic and parabolic
PDEs in [30,35]; these are all based on the same approach as presented here. Moreover, the approach integrates well with high order
grid refinement techniques, such as our wavelet-based grid adaptation method developed in [53] and used in [32].

The approach also provides a viable starting ground for fluid-structure interaction problems. For this, an Eulerian method such as
the reference map technique [54,55] can be used. Our immersed discretizations could offer a sharp, high order interface approach for
handling continuity of displacement and stress across the fluid-solid boundary. The treatment of moving boundary problems while
maintaining high order was discussed in [31].

Open challenges in our method pertain to the explicit treatment of sharp corners (in 2D and 3D) and edges (in 3D). The immersed
interface method as discussed here relies both on a finite curvature and a well-defined normal vector to exist along the embedded
boundary. In principle, different interpolation schemes could be used to alleviate the first constraint, and local regularization methods
can be developed for cases where control points do not have well-defined normal vectors. These approaches are left for future work.

CRediT authorship contribution statement

James Gabbard: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investi-
gation, Formal analysis, Conceptualization; Wim M. van Rees: Writing – review & editing, Writing – original draft, Visualization,
Validation, Supervision, Software, Resources, Methodology, Funding acquisition, Formal analysis, Conceptualization.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Wim M. van Rees reports financial support was provided by US Department of Energy. James Gabbard reports financial
support was provided by US Department of Energy. If there are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

20

James and Wim M.

Acknowledgements

We thank Andrew Chen and Dr. Carlos Portela for setting up, running, and postprocessing the finite element simulations used in
the comparison for the honeycomb lattice structure of section 6.3. We wish to acknowledge financial support from an Early Career
Award from the Department of Energy, Program Manager Dr. Steven Lee, award number DE-SC0020998.

Appendix A. Appendix

To create a honeycomb lattice signed distance function with rounded corners, we perform a geometric pre-processing approach.
We start from a rod-based structure defined as a list of 𝑁 centerline segments  = {𝐩(𝑖)𝑠 ,𝐩

(𝑖)
𝑒 , 𝑤(𝑖)

| 1 ≤ 𝑖 ≤ 𝑁}, with 𝐩(𝑖)𝑠,𝑒 the start and
end position and 𝑤(𝑖) the width of the 𝑖th centerline segment in the list. As an example, Fig. A.16 shows a simple constant-thickness
three-rod lattice whose centerline segments are drawn using black dashed lines. Our pre-processing approach starts by extruding
all line segments in their normal direction, creating a ‘top’ and ‘bottom’ line segment for each rod as shown in Fig. A.16a. In the
next step, we identify all interior corners and open edges, and determine which of the extruded line segments need to be connected.
Finally, we use the tangent vectors of the extruded line segments to compute the center and opening angle of the arc connecting
the tangent vectors. The curvature of the arc is provided as an input argument, so that the solution is unique. Lastly, we shorten the
original extruded line segments to ensure they smoothly connect to the arcs. This leads to Fig. A.16 (right), where the shortened line
segments are highlighted in red, and the arcs in blue.

Fig. A.16. Geometric processing approach for rod-based lattice, shown for a three-rod structure with centerline segments drawn using black dashed
lines. (a) naive extrusion of the centerlines to create a thickened geometry. (b) Final structure after connecting edge segments (in red) by rounding
arcs (in blue). Here the thickness 𝑤 = 0.05 and the radius of curvature 𝑅 = 0.0125, using the same units as the plot. (c) After constructing the signed
distance function (colors) the intersections (black circles) and normal vectors (lines) are constructed, here shown on a grid with uniform spacing
ℎ = 1∕128 and zoomed-in to the bottom-left part of the geometry. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

After this processing step, the thickened geometry is represented in a list  = {𝐪(𝑖)𝑠 ,𝐪
(𝑖)
𝑒 ‖ 1 ≤ 𝑖 ≤ 𝑁𝑞 ;(𝑗)

| 1 ≤ 𝑗 ≤ 𝑁𝑎}. Here 𝐪(𝑖)𝑠,𝑒
denotes the start/end position of the 𝑁𝑞 straight line segments (the red lines in Fig. A.16b). Further, (𝑗) defines the 𝑗th arc connecting
the straight line segments at each intersection (the blue arcs in Fig. A.16b). Each arc is defined by its center, radius of curvature, and
starting/ending angle.

We compute the signed distance function at any point on our Cartesian grid through a search for the closest element in ,
Fig. A.16c. This search is accelerated using a cell-list approach. Finally, once we have the signed distance function evaluated on the
grid, we compute the location of the intersections and the normal vectors through high order interpolation, as detailed in [30]. The
resulting intersections and normal vectors for part of the geometry discussed here are shown in Fig. A.16c as the black circles and
black lines, respectively.

References

[1] A. Duster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Eng. 197
(2008) 3768–3782. https://doi.org/10.1016/j.cma.2008.02.036

[2] D. Schillinger, M. Ruess, The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch.
Comput. Methods Eng. 22 (2014) 391–455. https://doi.org/10.1007/s11831-014-9115-y

[3] P. Hansbo, M.G. Larson, S. Zahedi, A cut finite element method for a stokes interface problem, Appl. Numer. Math. 85 (2014) 90–114. https://doi.org/10.1016/
j.apnum.2014.06.009

[4] E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng. 104
(2014) 472–501. https://doi.org/10.1002/nme.4823

[5] I. Babuska, J.M. Melenk, The partition of unity method, Int. J. Numer. Methods Eng. 40 (1997) 727–758.
[6] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131–150.
[7] K.W. Cheng, T. Fries, Higher-order XFEM for curved strong and weak discontinuities, Int. J. Numer. Methods Eng. 82 (2009) 564–590. https://doi.org/10.1002/

nme.2768

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

21

https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1007/s11831-014-9115-y
https://doi.org/10.1007/s11831-014-9115-y
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1002/nme.4823
https://doi.org/10.1002/nme.4823
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0005
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0006
https://doi.org/10.1002/nme.2768
https://doi.org/10.1002/nme.2768
https://doi.org/10.1002/nme.2768
https://doi.org/10.1002/nme.2768

James and Wim M.

[8] T. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng. 84 (2010)
253–304. https://doi.org/10.1002/nme.2914

[9] F. de Prenter, C.V. Verhoosel, E.H. van Brummelen, M.G. Larson, S. Badia, Stability and conditioning of immersed finite element methods: analysis and remedies,
Arch. Comput. Methods Eng. 30 (2023) 3617–3656. https://doi.org/10.1007/s11831-023-09913-0

[10] A. Abedian, J. Parvizian, A. Duster, H. Khademyzadeh, E. Rank, Performance of different integration schemes in facing discontinuities in the finite cell method,
Int. J. Comput. Methods 10 (2013) 1350002. https://doi.org/10.1142/s0219876213500023

[11] L. Kudela, N. Zander, S. Kollmannsberger, E. Rank, Smart octrees: accurately integrating discontinuous functions in 3D, Comput. Methods Appl. Mech. Eng. 306
(2016) 406–426. https://doi.org/10.1016/j.cma.2016.04.006

[12] S.C. Divi, C.V. Verhoosel, F. Auricchio, A. Reali, E.H. van Brummelen, Error-estimate-based adaptive integration for immersed isogeometric analysis, Comput.
Math. Appl. 80 (2020) 2481–2516. https://doi.org/10.1016/j.camwa.2020.03.026

[13] T. Fries, S. Omerovic, Higher-order accurate integration of implicit geometries, Int. J. Numer. Methods Eng. 106 (2015) 323–371. https://doi.org/10.1002/nme.
5121

[14] T. Fries, S. Omerovic, D. Schöllhammer, J. Steidl, Higher-order meshing of implicit geometries-Part I: integration and interpolation in cut elements, Comput.
Methods Appl. Mech. Eng. 313 (2017) 759–784. https://doi.org/10.1016/j.cma.2016.10.019

[15] R.I. Saye, High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput. 37 (2015) A993–A1019. https:
//doi.org/10.1137/140966290

[16] R.I. Saye, High-order quadrature on multi-component domains implicitly defined by multivariate polynomials, J. Comput. Phys. 448 (2022) 110720. https:
//doi.org/10.1016/j.jcp.2021.110720

[17] J.E. Fromm, N. Wunsch, R. Xiang, H. Zhao, K. Maute, J.A. Evans, D. Kamensky, Interpolation-based immersed finite element and isogeometric analysis, Comput.
Methods Appl. Mech. Eng. 405 (2023) 115890. https://doi.org/10.1016/j.cma.2023.115890

[18] M. Berger, Cut Cells: Meshes and Solvers, Elsevier, 2017. https://doi.org/10.1016/bs.hna.2016.10.008
[19] E. Burman, Ghost penalty, C.R. Math. 348 (2010) 1217–1220. https://doi.org/10.1016/j.crma.2010.10.006
[20] S. Fernández-Méndez, A. Huerta, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004) 1257–1275.

https://doi.org/10.1016/j.cma.2003.12.019
[21] F. de Prenter, C. Lehrenfeld, A. Massing, A note on the stability parameter in Nitsche’s method for unfitted boundary value problems, Comput. Math. Appl. 75

(2018) 4322–4336. https://doi.org/10.1016/j.camwa.2018.03.032
[22] E. Burman, A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions, SIAM J. Numer. Anal. 50 (2012) 1959–1981.

https://doi.org/10.1137/10081784x
[23] D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S.K. Stoter, Y. Yu, Y. Zhao, The non-symmetric nitsche method for the parameter-free imposition of weak

boundary and coupling conditions in immersed finite elements, Comput. Methods Appl. Mech. Eng. 309 (2016) 625–652. https://doi.org/10.1016/j.cma.2016.
06.026

[24] M. Theillard, L.F. Djodom, J.-L. Vié, F. Gibou, A second-order sharp numerical method for solving the linear elasticity equations on irregular domains and
adaptive grids - application to shape optimization, J. Comput. Phys. 233 (2013) 430–448. https://doi.org/10.1016/j.jcp.2012.09.002

[25] X. Yang, Immersed interface method for elasticity problems with interfaces, Ph.D. thesis, 2004. https://www.proquest.com/dissertations-theses/immersed-
interface-method-elasticity-problems/docview/305165073/se-2

[26] X. Yang, B. Li, Z. Li, The immersed interface method for elasticity problems with interfaces, Dyn. Contin. Discrete Impulsive Syst., Series A – Math. Anal. 10
(2003) 783–808. Conference on Partial Differential Equations (PDE), Washington State University, Pullman, Washington, May 2002.

[27] B. Wang, K. Xia, G.W. Wei, Matched interface and boundary method for elasticity interface problems, J. Comput. Appl. Math. 285 (2015) 203–225. https:
//doi.org/10.1016/j.cam.2015.02.005

[28] B. Wang, K. Xia, G.W. Wei, Second order method for solving 3D elasticity equations with complex interfaces, J. Comput. Phys. 294 (2015) 405–438. https:
//doi.org/10.1016/j.jcp.2015.03.053

[29] Y. Xing, L. Song, C.M. Fan, A generalized finite difference method for solving elasticity interface problems, Eng. Anal. Bound. Elem. 128 (2021) 105–117.
https://doi.org/10.1016/j.enganabound.2021.03.026

[30] J. Gabbard, W.M. van Rees, A high-order 3D immersed interface finite difference method for the advection-diffusion equation, in: AIAA SCITECH 2023 Forum,
2023, p. 2480. https://doi.org/10.2514/6.2023-2480

[31] J. Gabbard, W.M. van Rees, A high-order finite difference method for moving immersed domain boundaries and material interfaces, J. Comput. Phys. 507 (2024)
112979. https://doi.org/10.1016/j.jcp.2024.112979

[32] J. Gabbard, A. Paris, W.M. van Rees, A high order multigrid-preconditioned immersed interface solver for the Poisson equation with boundary and interface
conditions, 2025, arXiv:2503.22455

[33] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994)
1019–1044. https://doi.org/10.1137/0731054

[34] Z. Li, K. Ito, The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, SIAM, 2006.
[35] J. Gabbard, T. Gillis, P. Chatelain, W.M. van Rees, An immersed interface method for the 2D vorticity-velocity Navier–Stokes equations with multiple bodies, J.

Comput. Phys. 464 (2022) 111339. https://doi.org/10.1016/j.jcp.2022.111339
[36] W. Thacher, H. Johansen, D. Martin, A high order cartesian grid, finite volume method for elliptic interface problems, J. Comput. Phys. 491 (2023) 112351.
[37] W. Thacher, H. Johansen, D. Martin, A high order cut-cell method for solving the shallow-shelf equations, J. Comput. Sci. 80 (2024) 102319.
[38] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys. 83 (1989) 32–78.
[39] B. Merriman, Understanding the shu–osher conservative finite difference form, J. Sci. Comput. 19 (2003) 309–322.
[40] H. Johansen, P. Colella, A cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys. 147 (1998) 60–85. https:

//doi.org/10.1006/jcph.1998.5965
[41] F. Veloso, J. Gomes-Fonseca, P. Morais, J. Correia-Pinto, A.C. Pinho, J.L. Vilaca, Overview of methods and software for the design of functionally graded lattice

structures, Adv. Eng. Mater. 24 (2022) 2200483. https://doi.org/10.1002/adem.202200483
[42] G. Chou, Y. Bahat, F. Heide, Diffusion-SDF: conditional generative modeling of signed distance functions, 2023,
[43] R. Marskar, EBGeometry repository, 2023, https://rmrsk.github.io/EBGeometry/
[44] R. Marskar, An adaptive cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in

complex geometries, J. Comput. Phys. 388 (2019) 624–654. https://doi.org/10.1016/j.jcp.2019.03.036
[45] R. Saye, High-order methods for computing distances to implicitly defined surfaces, Commun. Appl. Math. Comput. Sci. 9 (2014) 107–141. https://doi.org/10.

2140/camcos.2014.9.107
[46] D. Devendran, D. Graves, H. Johansen, T. Ligocki, A fourth-order Cartesian grid embedded boundary method for Poisson’s equation, Commun. Appl. Math.

Comput. Sci. 12 (2017) 51–79. https://doi.org/10.2140/camcos.2017.12.51
[47] Q. Li, Smooth piecewise polynomial blending operations for implicit shapes, Comput. Graphics Forum 26 (2007) 157–171. https://doi.org/10.1111/j.1467-8659.

2007.01011.x
[48] J.E. Hicken, S. Kaur, An explicit level-set formula to approximate geometries, 2022, https://doi.org/10.2514/6.2022-1862
[49] C. Bonatti, D. Mohr, Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments, J.

Mech. Phys. Solids 122 (2019) 1–26. https://doi.org/10.1016/j.jmps.2018.08.022
[50] S. Dhulipala, C.M. Portela, Curvature-guided mechanics and design of spinodal and shell-based architected materials, 2025, arXiv:2505.21509
[51] G. Domokos, A. Goriely, A.G. Horvath, K. Regos, Soft cells and the geometry of seashells, PNAS Nexus 3 (2024) pgae311. https://doi.org/10.1093/pnasnexus/

pgae311

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

22

https://doi.org/10.1002/nme.2914
https://doi.org/10.1002/nme.2914
https://doi.org/10.1007/s11831-023-09913-0
https://doi.org/10.1007/s11831-023-09913-0
https://doi.org/10.1142/s0219876213500023
https://doi.org/10.1142/s0219876213500023
https://doi.org/10.1016/j.cma.2016.04.006
https://doi.org/10.1016/j.cma.2016.04.006
https://doi.org/10.1016/j.camwa.2020.03.026
https://doi.org/10.1016/j.camwa.2020.03.026
https://doi.org/10.1002/nme.5121
https://doi.org/10.1002/nme.5121
https://doi.org/10.1002/nme.5121
https://doi.org/10.1002/nme.5121
https://doi.org/10.1016/j.cma.2016.10.019
https://doi.org/10.1016/j.cma.2016.10.019
https://doi.org/10.1137/140966290
https://doi.org/10.1137/140966290
https://doi.org/10.1137/140966290
https://doi.org/10.1137/140966290
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.cma.2023.115890
https://doi.org/10.1016/j.cma.2023.115890
https://doi.org/10.1016/bs.hna.2016.10.008
https://doi.org/10.1016/bs.hna.2016.10.008
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.cma.2003.12.019
https://doi.org/10.1016/j.cma.2003.12.019
https://doi.org/10.1016/j.camwa.2018.03.032
https://doi.org/10.1016/j.camwa.2018.03.032
https://doi.org/10.1137/10081784x
https://doi.org/10.1137/10081784x
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.jcp.2012.09.002
https://doi.org/10.1016/j.jcp.2012.09.002
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0025
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0025
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0026
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0026
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.enganabound.2021.03.026
https://doi.org/10.1016/j.enganabound.2021.03.026
https://doi.org/10.2514/6.2023-2480
https://doi.org/10.2514/6.2023-2480
https://doi.org/10.1016/j.jcp.2024.112979
https://doi.org/10.1016/j.jcp.2024.112979
http://arXiv.org/abs/2503.22455
https://doi.org/10.1137/0731054
https://doi.org/10.1137/0731054
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0033
https://doi.org/10.1016/j.jcp.2022.111339
https://doi.org/10.1016/j.jcp.2022.111339
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0035
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0036
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0037
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0038
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1002/adem.202200483
https://doi.org/10.1002/adem.202200483
https://doi.org/10.1016/j.jcp.2019.03.036
https://doi.org/10.1016/j.jcp.2019.03.036
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2017.12.51
https://doi.org/10.2140/camcos.2017.12.51
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.2514/6.2022-1862
https://doi.org/10.2514/6.2022-1862
https://doi.org/10.1016/j.jmps.2018.08.022
https://doi.org/10.1016/j.jmps.2018.08.022
http://arXiv.org/abs/2505.21509
https://doi.org/10.1093/pnasnexus/pgae311
https://doi.org/10.1093/pnasnexus/pgae311
https://doi.org/10.1093/pnasnexus/pgae311
https://doi.org/10.1093/pnasnexus/pgae311

James and Wim M.

[52] O. Al-Ketan, D.-W. Lee, R.K. Abu Al-Rub, Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials, Addit. Manuf. 48
(2021) 102418. https://doi.org/10.1016/j.addma.2021.102418

[53] T. Gillis, G. Winckelmans, P. Chatelain, Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries, J. Comput. Phys. 354
(2018) 403–416. https://doi.org/10.1016/j.jcp.2017.10.042

[54] K. Kamrin, J.C. Nave, An Eulerian approach to the simulation of deformable solids: application to finite-strain elasticity, 2009, https://doi.org/10.48550/ARXIV.
0901.3799

[55] K. Kamrin, C.H. Rycroft, J.C. Nave, Reference map technique for finite-strain elasticity and fluid-solid interaction, J. Mech. Phys. Solids 60 (2012) 1952–1969.
https://doi.org/10.1016/j.jmps.2012.06.003

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269

23

https://doi.org/10.1016/j.addma.2021.102418
https://doi.org/10.1016/j.addma.2021.102418
https://doi.org/10.1016/j.jcp.2017.10.042
https://doi.org/10.1016/j.jcp.2017.10.042
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.1016/j.jmps.2012.06.003
https://doi.org/10.1016/j.jmps.2012.06.003

	A high-order immersed finite-difference discretization for solving linear and nonlinear elasticity problems
	1 Introduction
	2 Discretization of the constant-coefficient scalar Poisson equation
	2.1 Discretization of immersed boundaries
	2.2 Discretization of immersed interfaces

	3 Discretization of variable coefficient scalar Poisson equation
	3.1 Bilinear stencils for the variable coefficient operator
	3.2 Two constructions for high order bilinear stencils
	3.3 Immersed interface discretization with variable coefficients
	3.4 Verification for the variable-coefficient Poisson equation

	4 Linear elasticity
	4.1 Continuous formulation
	4.2 Immersed interface discretization
	4.2.1 Cross derivative terms with variable coefficients

	4.3 Verification for linear elasticity

	5 Nonlinear elasticity
	5.1 Continuous formulation
	5.2 Interior discretization
	5.3 Immersed interface boundary treatment
	5.4 Nonlinear solution procedure
	5.5 Verification for nonlinear elasticity

	6 Examples
	6.1 Linear periodic lattice
	6.2 Nonlinear periodic lattice
	6.3 Honeycomb lattice
	6.3.1 Single material
	6.3.2 Composite structure

	7 Discussion
	8 Conclusion
	A Appendix

