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 a b s t r a c t

This work presents a high order immersed finite difference method to discretize 2D linear and non-
linear elasticity problems on regular Cartesian grids. Our demonstrations show up to sixth order 
convergence for the displacement field and boundary traction distribution in 2D discretizations of 
linear and nonlinear elasticity, which incorporate displacement or traction boundary conditions, 
material interfaces, and spatially-variable and discontinuous material properties. To demonstrate 
geometric flexibility the convergence results are obtained with non-convex test geometries, and 
both the linear and nonlinear elasticity discretizations are applied successfully to a complex lattice 
structure. Lastly, we demonstrate the ability of our method to match, locally, the accuracy of a 
finite element simulation on intricate single- and multi-material elasticity problems. The ability to 
generate high-fidelity results without manual mesh generation opens opportunities in optimiza-
tion and data-driven machine learning, as well as physical applications such as elastodynamics 
and fluid-structure interactions.

1.  Introduction

The predominant approach to solving linear and nonlinear elastic problems in complex domains is to use body fitted meshes. 
Body fitted meshes provide a simple treatment of domain boundary and material interface conditions, since these conditions can be 
applied directly to element edges and discretization nodes. Though well established, the process of meshing complex geometries can 
still provide challenges that require manual intervention. This is especially relevant for high order techniques applied to domains with 
curved boundaries, and also applies to multiply connected complex domains and multiscale structures. Furthermore, with advances in 
optimization and machine learning, simulation pipelines are increasingly required that robustly solve problems within parametrically 
defined domains in a fully automated manner.

To avoid the need for generating body-fitted meshes, a wide range of immersed geometry methods have been proposed. In solid 
mechanics, the vast majority of these fictitious or extended domain methods are based on the finite element techniques. Prominent 
examples include the finite cell method (FCM), which introduces a fictitious stiffness in the non-physical part of the domain [1,2]; 
the Cut Finite Element Method (CutFEM), which employs a stabilized finite element formulation on elements intersected by an 
immersed boundary, typically using ghost penalty terms to ensure stability and consistency [3,4]; and the extended and generalized 
finite element methods (XFEM/GFEM), which enrich the approximation space to capture discontinuities or singularities without 
conforming meshes [5–8]. Many other techniques exist, and we refer to reviews provided in [2,9] for a more exhaustive list. As 
noted in [9], the main challenges in these methods are the numerical integration of discretized fields over cut/enriched elements; the 

∗ Corresponding author.
 E-mail address: wvanrees@mit.edu (W.M. van Rees).

https://doi.org/10.1016/j.cma.2025.118269
Received 30 March 2025; Received in revised form 20 June 2025; Accepted 24 July 2025

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269 

0045-7825/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://orcid.org/0000-0001-6485-4804

$\Omega ^+$


\begin {align}\label {eq:poisson} \begin {aligned} \nabla \cdot (\beta \nabla u) &= f\,{\rm {in}}\, \Omega ^+, \\ u &= \bar {u} \,{\rm {on}}\, \Gamma _D, \\ \beta \partial _n u &= \bar {q} \,{\rm {on}}\, \Gamma _N, \end {aligned}\end {align}


$\Gamma = \Gamma _D \cup \Gamma _N$


$\Omega ^+$


$f(\xv )$


$\beta $


$\nabla ^2 = \sum _{i=1}^d \partial _i^2$


$\partial _i^2$


$\Gamma $


$\xv _c$


$\xv _c$


$\mathcal {X}_c^+ \subset \Omega ^+$


$p_c(\xv )$


$k$


$\{u(\xv _i) \mid \xv _i \in \mathcal {X}_c^+\}$


$\xv _c$


$u(\xv )$


\begin {equation}\label {ch2:eq:extended-function} u_c(\xv ) = \begin {cases} u(\xv ), & \mathbf {x} \in \Omega \ReviewerTwo {^+} \\ p_c(\xv ), & \mathbf {x} \notin \Omega \ReviewerTwo {^+} \end {cases}\end {equation}


$\mathcal {X}_c^+$


$\Omega ^+$


$x_c$


$p_c(\xv )$


$\Delta x$


\begin {equation}\label {eq:curvature_condition} \left |\kappa \Delta x\right | < 1/4,\end {equation}


$\kappa $


$\xv _c$


$w$


$\{\xv _g\}$


$p_c(\xv )$


$w$


$\{s_c^g\} \cup \{s^g_\alpha \}_{\alpha = 1}^n$


\begin {equation}p_c(\xv _g) = s^g_c u(\xv _c) + \sum _{\alpha = 1}^n s^g_\alpha u(\xv _\alpha ) \label {Xeqn4-4}\end {equation}


$\xv _g$


$u(\xv _c)$


$\bar {q}(\xv _c)$


$\{s_c\} \cup \{s_i\}_{i = 1}^n$


$p_c$


$\xv _c$


\begin {equation}\label {eq:normal-grad} \partial _n u(\xv _c) = s_c u(\xv _c) + \sum _{i = 1}^{n} s_i u(\xv _i) + \order {\Delta x^{k - 1}}.\end {equation}


\begin {equation}\label {ch2:eq:neumann} u(\xv _c) = \frac {1}{s_c} \left (\frac {\bar {q}(\xv _c)}{\beta } - \sum _{i = 1}^{N-1} s_i u(\xv _i)\right ) + \order {\Delta x^{k}}.\end {equation}


$\partial _n p(\xv _c)$


$\Omega ^+$


$\Omega ^-$


$\beta ^+$


$\beta ^-$


\begin {equation}\label {eq:piecewise_beta} \beta (\xv ) = \begin {cases} \beta ^+, & \xv \in \Omega ^+ \\ \beta ^-, & \xv \in \Omega ^- \end {cases}.\end {equation}


$\Gamma _M$


\begin {align}\label {eq:poisson_jumps} \nabla \cdot (\beta \nabla u) &= f \,{\mathrm {in}}\, \Omega , \nonumber \\ {[u]} &= j_0(\sv ) \,{\rm {on}}\, \Gamma _M, \nonumber \\ {[\beta \partial _n u]} &= j_1(\sv ) \,{\mathrm {on}}\, \Gamma _M.\end {align}


$[g] = g^+ - g^-$


$g^+$


$g(\xv )$


$g^-$


$g(\xv )$


$f(\xv )$


$\beta (\xv )$


$\nabla \cdot (\beta \nabla u)$


$\beta \nabla ^2 u$


$\Gamma _M$


$u^-(\xv _c)$


$u^+(\xv _c)$


$\{s^+_c, s^+_i\}$


$u^+(\xv _c)$


$\Omega ^+$


$\partial _n u^+(\xv _c)$


$\{s_c^-, \, s_i^-\}$


$\Omega ^-$


$\partial _n u^-(\xv _c)$


$u^\pm (\xv _c)$


$u^+(\xv _c) - u^-(\xv _c) = j_0(\xv _c)$


\begin {align}\label {ch2:eq:boundary-system-scalar} & \beta ^+\left (s^+_c u^+(\xv _c) + \sum _{i=1}^{n^+} s^+_i u(\xv _i^+)\right ) - \beta ^-\left (s^-_c u^-(\xv _c) + \sum _{i=1}^{n^-} s^-_i u(\xv _i^-)\right ) = j_1(\xv _c).\end {align}


$j_0(\xv _c) = j_1(\xv _c) = 0$


\begin {align}& u^-(\xv _c) = u^+(\xv _c) = \bar {u} \,{\rm {with}}\, \bar {u} = -\frac { \beta ^+ \sum _{i=1}^{n^+} s^+_i u(\xv _i^+) - \beta ^- \sum _{i=1}^{n-} s^-_i u(\xv _i^-) }{\beta ^+ s_c^+ - \beta ^- s_c^-}. \label {Xeqn10-10}\end {align}


\begin {align}\label {ch2:eq:explicit-material-interface} & u^+(\xv _c) = \bar {u} + \frac {j_1 - \beta ^- s_c^- j_0(\xv )}{\beta ^+ s_c^+ - \beta ^- s_c^-}, \quad u^-(\xv _c) = \bar {u} + \frac {j_1 - \beta ^+ s_c^+ j_0(\xv )}{\beta ^+ s_c^+ - \beta ^- s_c^-}.\end {align}


$u^\pm (\xv _c)$


$\beta ^- / \beta ^+$


$\beta ^-/\beta ^+$


$\beta (\xv )$


$\beta (\xv )$


$\nabla \beta = \mathbf {0}$


$\beta (\xv )$


$\beta $


$\beta (\xv )$


$u(\xv )$


$\nabla \cdot (\beta \nabla u) = \sum _{i = 1}^d \partial _i (\beta \partial _i u)$


$\partial _i (\beta \partial _i u)$


$w$


$2w$


$\beta \nabla ^2 u$


$\beta $


$w$


$\beta $


$x_i = i \Delta x$


$u_i$


$\beta _i$


$i$


$\partial _x (\beta \partial _x u)$


$x \rightarrow -x$


$u(x)$


$\beta (x)$


$\{u_i\}$


$\{\beta _i\}$


$w$


\begin {equation}\partial _x (\beta \partial _x u)_i = \sum _{j, k = -w}^w G_{jk} \beta (x_{i + j}) u(x_{i + k}) + \order {\Delta x^{2w}}, \label {Xeqn12-12}\end {equation}


$G_{ij}$


$G_{i,j} = G_{-i,-j}$


$2w$


$\beta (x) = \sum _{p = 0}^\infty \beta ^{(p)} \frac {x^p}{p!}$


$u(x) = \sum _{q = 0}^\infty u^{(q)} \frac {x^q}{q!}$


$x_0 = 0$


\begin {align}\partial _x (\beta \partial _x u) &= \sum _{p, q = 0}^\infty \frac {\beta ^{(p)}u^{(q)}}{p!q!} q(p + q - 1) x^{p + q - 2}, \label {ch3:bilinear-taylor-continuous} \\ \partial _x (\beta \partial _x u) &= \sum _{p, q = 0}^\infty \frac {\beta ^{(p)}u^{(q)}}{p!q!} \sum _{j,k = -w}^w G_{jk} x_j^p x_k^q. \label {ch3:bilinear-taylor-discrete}\end {align}


$n = 2w$


$p + q - 2 < n$


$\{x_i\}$


$\Delta x$


\begin {equation}\label {ch3:bilinear-exactness} \sum _{j,k = -w}^w G_{jk} j^p k^q = \begin {cases} q(p + q - 1), & p + q = 2, \\ 0, & \text {otherwise}, \end {cases}\end {equation}


$p + q - 2 < n$


$p, q \ge 0$


$\sum G_{jk} j^p k^q = (-1)^{p + q} \sum G_{jk} j^p k^q$


$p + q$


$p + q$


$(w + 1)^2$


$G_{jk}$


$(2w + 1)(w + 1)$


$w(w + 1)$


$w$


$2w$


$\partial _x^2$


$w$


$2w$


$G_{jk}$


$\beta (x) = 1$


$2w$


$2w$


$g_k = \sum _{j = -w}^w G_{jk}$


$\beta = 1$


$\partial _x^2 u_i = \sum _{k = -w}^w g_k u_k$


$p = 0$


$g_k$


\begin {equation}\sum _{k = -w}^w g_k k^q = \begin {cases} q(q - 1), & q = 2, \\ 0, & \text {otherwise}, \end {cases} \label {Xeqn14-16}\end {equation}


$g_k$


$w$


$2w$


$w$


$2w$


$w(w + 1)$


$\beta = 1$


$w$


$2w$


$2w$


$\partial _x f(x, u, \partial _x u)$


$\{D_{ij}\}_{j,k = -w}^w$


\begin {equation}\partial _x u_{j} = \sum _{k = -w}^w D_{jk} u_{k} + \order {\Delta x^{2w}} \,{\rm {for}}\, -w \le j \le w. \label {Xeqn15-17}\end {equation}


$j$


$D_{jk}$


$2w$


$j$


$\partial _x (\beta \partial _x u)$


$\{u_k\}_{k = -w}^w$


$D_{jk}$


$\{\partial _x u_j\}_{j = -w}^w$


$\{\beta _j\}_{j = -w}^w$


$\{D_{0j}\}_{j = -w}^w$


$x_0 = 0$


\begin {equation}\partial _x(\beta \partial _xu) = \sum _{j, k = -w}^w D_{0j} \beta _j (D_{jk} u_k) \quad \Rightarrow \quad G_{jk} = D_{0j} D_{jk}. \label {Xeqn16-18}\end {equation}


$G_{jk}$


$2w$


$\beta _j$


$f(x_j, u_j, \partial _x u_j)$


\begin {equation}\label {ch3:eq:nonlinear-variable-stencil} \partial _x f(x, u, \partial _x u) = \sum _{j = -w}^w D_{0j} f \left (x_j, u_j, \sum _{k = -w}^w D_{jk} u_k\right ).\end {equation}


$2w$


$q$


$\partial _x (\beta \partial _x u)$


\begin {equation}\label {ch3:eq:conservative-bilinear-outline} \partial _x (\beta \partial _x u)_i = \frac { (\beta \partial _x u)_{i + 1/2} - (\beta \partial _x u)_{i - 1/2} }{\Delta x} + \order {\Delta x^{2w}}.\end {equation}


$2w$


$(\beta \partial _x u)_{i - 1/2}$


$2w$


$\{Q_{jk}\}_{j,k = -w}^{w - 1}$


\begin {equation}\partial _x u_j = \sum _{k = -w}^{w - 1} Q_{jk} u_k + \order {\Delta x^{2w - 1}}, \quad -w \le j \le w - 1, \label {Xeqn19-21}\end {equation}


$Q_{jk}$


$\{u_{i+j}\}_{j = -w}^{w-1}$


$\{\partial _x u_{i + j}\}_{j = -w}^{w - 1}$


$\beta $


$\{(\beta \partial _x u)_{i+j}\}_{j = -w}^{w - 1}$


$(\beta \partial _x u)_{i-1/2}$


$\{I_j\}_{j = -w}^{w - 1}$


\begin {equation}u_{i - 1/2} = \sum _{j = -w}^{w-1} I_j \bar {u}_{i + j} + \order {\Delta x^{2w}}, \,{\rm {with}}\, \bar {u}_i = \int _{x_{i - 1/2}}^{x_{i + 1/2}} u(x) {\rm {d}} {x}. \label {Xeqn20-22}\end {equation}


\begin {equation}(\beta \partial _x u)_{i - 1/2} = \sum _{j,k = -w}^{w - 1} I_{j} Q_{jk} \beta _{i + j} u_{i + k}. \label {Xeqn21-23}\end {equation}


$Q_{jk}$


$2w - 1$


$2w$


$\partial _x (\beta \partial _x u)$


\begin {equation}\partial _x f(x, u, \partial _x u)_i = \frac { f_{i + 1/2} - f_{i - 1/2} }{\Delta x}, \,{\rm {with}}\, f_{i - 1/2} = \sum _{j = -w}^{w - 1} I_{j} f \left (x_j, u_j, \sum _{k = -w}^{w - 1} Q_{jk} u_{i + k}\right ). \label {Xeqn22-24}\end {equation}


$2w$


$f$


$u(\xv )$


$\beta (\xv )$


$\beta (\xv )$


$n$


$n$


$\bar {u}(\xv _c)$


$\xv _c$


$\beta (\xv _c)$


$\beta ^{\pm }(\xv _c)$


\begin {align}u(\xv ) &= \sin (4\pi x_1) \sin (2\pi x_2),\\ \beta (\xv ) &= \exp (\sin (2\pi x_1)\sin (4\pi x_2)).\end {align}


$\beta (\xv )$


$L_\infty $


$n$


$k$


$(n, k)$


$n = 4$


$n = 6$


$k = n+1$


$k=n+2$


$k = n+1$


$k$


$L_\infty $


$L_{\infty }$


$u$


$N_x = 64$


$\tilde {\lambda } = \Delta x^2 \lambda / \beta _{\mathrm {max}}$


$N_x = 64$


$\Delta x^2 / \beta _{\mathrm {max}}$


$\beta _{\mathrm {max}} = \max _{\xv \in \Omega } \beta (\xv )$


$\beta _{\mathrm {max}}$


$(4, 5)$


$(6, 7)$


$\Omega $


$u_i(\xv )$


$\bar {f}_i$


$C_{ijkl}(\xv )$


$\Gamma _M$


$\sigma _{ij} = C_{ijkl} \partial _l u_k$


$t_i = \sigma _{ij} n_j$


$\partial \Omega $


$\Gamma ^D$


$\Gamma ^N$


$\Gamma ^D$


$\bar {u}_i(\sv )$


$\Gamma ^N$


$\bar {t}_i(\sv )$


$\Gamma ^M$


$[\bar {u}_i]$


$[\bar {t}_i]$


\begin {equation}\begin {aligned} \partial _j (C_{ijkl} \partial _l u_k) &= \bar {f}_i \,{\rm {on}}\, \Omega , \\ u_i &= \bar {u}_i \,{\rm {on}}\, \Gamma _D \\ C_{ijkl} n_j \partial _k u_l &= \bar {t}_i \,{\rm {on}}\, \Gamma _N \\ \left [u_i\right ] &= \left [\bar {u}_i\right ] \,{\rm {on}}\, \Gamma _M \\ \left [C_{ijkl} n_j \partial _l u_k \right ] &= [\bar {t}_i] \,{\rm {on}}\, \Gamma _M. \end {aligned} \label {Xeqn23-27}\end {equation}


$C_{ijkl}(\xv )$


$C_{ijkl} = C_{klij}$


$C_{ijkl} = C_{jikl}$


$C_{ijkl} \epsilon _{ij} \epsilon _{kl} > 0$


$\epsilon _{ij}$


\begin {equation}C_{ijkl} = \lambda (\xv ) \delta _{ij} \delta _{kl} + \mu (\xv ) \left (\delta _{ik} \delta _{jl} + \delta _{il} \delta _{kj}\right ), \label {Xeqn24-28}\end {equation}


$\lambda (\xv )$


$\mu (\xv )$


$u_i(\xv )$


$C_{ijkl}(\xv )$


$i$


$k$


$\partial _j (C_{ijkl} \partial _l u_k)$


$j = l$


$\partial _j (C_{ijkl} \partial _l u_k)$


$j \neq l$


$\partial _j (\beta \partial _i u)$


$i \neq j$


$\partial _j (C_{ijkl} \partial _l u_k)$


$j \neq l$


$\partial _i u$


$w$


$n = 2w$


$x_i$


$\beta (\xv )$


$\beta \partial _i u$


$x_j$


$\partial _j (\beta \partial u_i)$


$n$


$n + 1$


$n + 1$


$n + 1$


$x_{j}$


$\partial _i u$


$x_i$


$u(\xv )$


$\bar {\mathcal {X}}_c$


$u(\xv _c)$


$\partial _i u$


$\beta \partial _i u$


$\beta \partial _i u$


$x_j$


$x_j$


$\beta \partial _i u$


$\partial _i u$


$p_c(\xv )$


$w$


$\{s^{i,g}_c\} \cup \{s^{i,g}_\alpha \}_{\alpha = 1}^n$


\begin {equation}\partial _i p_c(\xv _g) = s^{i,g}_c u(\xv _c) + \sum _{\alpha = 1}^n s^{i,g}_\alpha u(\xv _\alpha ) \label {Xeqn25-29}\end {equation}


$w$


$\xv _g$


$\beta (\xv _c)$


$\{\beta (\xv _\alpha )\}_{\alpha = 1}^n$


$\beta \partial u_i$


$C_{ijkl} n_j \partial _l u_k = \bar {t}_i$


$u_i$


$u(\xv _c)$


$i = 1,2$


$\{s_c^i\} \cup \{s_{\alpha }^i\}_{\alpha = 1}^n$


$\partial _i u(\xv _c) = s_c^i u(\xv _c) + \sum _{\alpha = 1}^N s_{\alpha }^i u(\xv _\alpha ) + \inlineorder {\Delta x^{k - 1}}$


\begin {equation}\label {ch3:eq:discrete-traction} C_{ijkl} n_j \left (s^l_c u_k(\xv _c) + \sum _{\alpha = 1}^n s^l_\alpha u_k(\xv _\alpha )\right ) = \bar {t}_i.\end {equation}


$\mathbf {M}_l$


$(M_{l})_{ik} = C_{ijkl} n_j$


$l = 1,2$


\begin {equation}\label {ch3:eq:linear-traction-system} (s_c^l \mathbf {M}_l) \mathbf {u}(\xv _c) = \mathbf {t} - \sum _{\alpha = 1}^N (s_{\alpha }^l \mathbf {M}_l) \mathbf {u}(\xv _\alpha ).\end {equation}


$\mathbf {N}_c = (s_c^l \mathbf {M}_l)^{-1}$


$l = 1,2$


$\mathbf {N}_l = -\mathbf {N}_c \mathbf {M}_l$


\begin {equation}\label {ch3:eq:linear-traction-solution} \mathbf {u}(\xv _c) = \mathbf {N}_c \mathbf {t} + \sum _{\alpha =1}^N (s_{\alpha }^l \mathbf {N}_l) \mathbf {u}(\xv _{\alpha }).\end {equation}


$\mathbf {M}_l$


\begin {equation}\mathbf {M}_l = \lambda \mathbf {n} \otimes \mathbf {e}_l + \mu \left (\mathbf {e}_l \otimes \mathbf {n} + n_l \mathbf {I}\right ), \label {Xeqn29-33}\end {equation}


$\lambda $


$\mu $


$u_i^+(\xv _c)$


$u_i^-(\ReviewerOne {\xv _c})$


$[u_i] = [\bar {u}_i]$


$[C_{ijkl} n_j u_{k,l}] = [\bar {t}_i]$


$u^+_i(\xv _c) - u^-_i(\xv _c) = [\bar {u}_i]$


\begin {equation}C_{ijkl}^+ n_j \left (s_c^{l,+} u_k^+(\xv _c) + \sum _{\alpha = 1}^{n^+} s_{\alpha }^{l,+} u_k(\xv _{\alpha }^+)\right ) - C_{ijkl}^- n_j \left (s_c^{l,-} u_k^-(\xv _c) + \sum _{\alpha = 1}^{n^-} s_{\alpha }^{l,-} u_k(\xv _{\alpha }^-)\right ) = [\bar {t}_i]. \label {Xeqn30}\end {equation}


$\mathbf {M}_l^{\pm }$


\begin {align}\left [\begin {array}{@{}ll@{}}\mathbf {I} & -\mathbf {I} \\ (s^{l,+}_c \mathbf {M}_l^{+}) & -(s^{l,-}_c \mathbf {M}_l^{-})\end {array}\right ] \left [\begin {array}{@{}l@{}}\mathbf {u}^+(\xv _c) \\ \mathbf {u}^-(\sv _c)\end {array}\right ] = \left [\begin {array}{@{}l@{}}[\bar {\mathbf {u}}] \\ \tilde {\mathbf {t}}\end {array}\right ], \label {Xeqn31}\end {align}


$\tilde {\mathbf {t}}$


\begin {equation}\tilde {\mathbf {t}} = [\bar {\mathbf {t}}] - \left [\sum _{\alpha =1}^{n^+} (s_{\alpha }^{l,+} \mathbf {M}_l^{+}) \mathbf {u}(\xv _{\alpha }^+) - \sum _{\alpha = 1}^{n^-} (s_{\alpha }^{l,-} \mathbf {M}_l^{-}) \mathbf {u}(\xv _{\alpha }^-)\right ]. \label {Xeqn32}\end {equation}


$\mathbf {N}_c = (s_c^{l,+} \mathbf {M}_l^{+} - s_c^{l,-} \mathbf {M}_l^{-})^{-1}$


$l = 1,2$


$\mathbf {N}_l^{\pm } = -\mathbf {N}_{c} \mathbf {M}_l^{\pm }$


\begin {equation}\left [\begin {array}{@{}ll@{}}\mathbf {I} & -\mathbf {I} \\ \mathbf {M}_1 & -\mathbf {M}_2\end {array}\right ] \left [\begin {array}{@{}ll@{}}(\mathbf {M}_1 - \mathbf {M}_2)^{-1} & \\ & (\mathbf {M}_1 - \mathbf {M}_2)^{-1}\end {array}\right ] \left [\begin {array}{@{}ll@{}}-\mathbf {M}_1 & \mathbf {I} \\ -\mathbf {M}_2 & \mathbf {I}\end {array}\right ] = \left [\begin {array}{@{}ll@{}}\mathbf {I} & \\ & \mathbf {I}\end {array}\right ], \label {Xeqn33}\end {equation}


\begin {equation}\mathbf {u}^+(\xv _c) = \bar {\mathbf {u}} + \mathbf {N}_c [\bar {\mathbf {t}}] + (s_c^{l,-} \mathbf {N}_l^-) [\bar {\mathbf {u}}] \,{\rm {and}}\, \mathbf {u}^-(\xv _c) = \bar {\mathbf {u}} + \mathbf {N}_c [\bar {\mathbf {t}}] + (s_c^{l,+} \mathbf {N}_l^+) [\bar {\mathbf {u}}], \label {Xeqn34}\end {equation}


$\bar {\mathbf {u}}$


\begin {equation}\bar {\mathbf {u}} = \sum _{\alpha =1}^{n^+} (s_{\alpha }^{l,+} \mathbf {N}_l^{+}) \mathbf {u}(\xv _{\alpha }^+) - \sum _{\alpha = 1}^{n^-} (s_{\alpha }^{l,-} \mathbf {N}_l^{-}) \mathbf {u}(\xv _{\alpha }^-). \label {Xeqn35}\end {equation}


$[\bar {\mathbf {u}}]$


$[\bar {\mathbf {t}}]$


$\mathbf {u}^+(\xv _c) = \mathbf {u}^-(\xv _c) = \bar {\mathbf {u}}$


\begin {equation}\label {ch3:eq:linear-elastic-test-case} u_1(\xv ) = 0.04 \sin (4\pi x_1) \cos (2\pi x_2), \quad u_2(\xv ) = 0.04 \sin (4\pi x_1) \cos (6\pi x_2).\end {equation}


$\xv _0 = [0.501, 0.502]$


$r_0 = 0.379$


$\tilde {r} = 0.015$


$r_0 = 0.151$


$\tilde {r} = 0.035$


\begin {equation}\lambda (\xv ) = 1.5 + 0.5 \cos ^2(2\pi x_1) \cos ^2(2\pi x_2), \quad \mu (\xv ) = 0.8 + 0.3 \sin ^2(2\pi x_1) \sin ^2(2\pi x_2). \label {Xeqn37}\end {equation}


$N_x \times N_x$


$L_\infty $


$L_\infty $


$\partial _j (C_{ijkl} \partial _l u_k)$


$\Delta x$


$L_\infty $


$L_\infty $


$\Omega ^-$


$r_0 = 0.221$


$r_0 = 0.419$


\begin {equation}u_1^-(\xv ) = 0.02 \sin (2\pi x_1)\sin (2\pi x_2), \quad u_2^-(\xv ) = 0.028 \sin (2\pi x_1)\cos (4\pi x_2), \label {Xeqn38}\end {equation}


\begin {equation}\lambda ^-(\xv ) = 1.1 + 0.3 \cos ^2(4 \pi x_1) \cos ^2(2\pi x_2), \quad \mu ^-(\xv ) = 0.6 + 0.7 \sin ^2(2 \pi x_1) \cos ^2(4\pi x_2). \label {Xeqn39}\end {equation}


$y_i(\xv )$


$\xv $


$W(\mathbf {F})$


$F_{ij}(\xv ) = \partial _j y_i(\xv )$


\begin {equation}S_{ij} = \frac {{\partial }W}{{\partial }F_{ij}}. \label {Xeqn40}\end {equation}


$y_i(\xv )$


\begin {equation}\label {ch3:nonlinear-elasticity} \begin {aligned} \partial _j S_{ij}(\mathbf {F}) &= \bar {f}_i \,{\rm {on}}\, \Omega , \\ y_i &= \bar {y}_i \,{\rm {on}}\, \Gamma _D, \\ S_{ij}(\mathbf {F}) n_j &= \bar {t}_i \,{\rm {on}}\, \Gamma _N. \\ \end {aligned}\end {equation}


\begin {equation}\left [S_{ij}(\mathbf {F}) n_j \right ] = [\bar {t}_i] \,{\rm {on}}\, \Gamma _M. \label {Xeqn42}\end {equation}


$\bar {f}_i$


$\bar {t}_i$


$u_i$


$\mathbf {y}$


$\Omega $


$\Gamma _N \cup \Gamma _M$


$\mathbf {r}^f$


$\mathbf {r}^t$


$\mathbf {r}^{[t]}$


\begin {equation}\label {ch3:eq:nonlinear-residual-fields} \begin {aligned} r^f_i &= \bar {f}_i - \partial _j S_{ij}(\mathbf {F}) \,{\rm {on}}\, \Omega , \\ r^t_i &= \bar {t}_i - S_{ij}(\mathbf {F}) n_j \,{\rm {on}}\, \Gamma _N, \\ r^{[t]}_i &= \left [\bar {t}_i\right ] - \left [ S_{ij}(\mathbf {F}) n_j\right ] \,{\rm {on}}\, \Gamma _M. \end {aligned}\end {equation}


\begin {equation}A_{ijkl}(\xv ) \equiv \frac {{\partial }S_{ij}(\mathbf {F})}{{\partial }F_{kl}} \left |_{\mathbf {F}(\xv )} = \frac {{\partial }^{2}W(\mathbf {F})}{{\partial }F_{ij}}{F_{kl}} \right |_{\mathbf {F}(\xv )}. \label {Xeqn44}\end {equation}


$A_{ijkl} = A_{klij}$
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$\mathbf {S}(\partial _1 \mathbf {y}, \partial _2\mathbf {y})$
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$w$


$x_1$
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$\partial _2 \mathbf {y}$


$\partial _1 S_{11}(\partial _1 \mathbf {y}, \cdot )$


$x_1$


\begin {equation}\label {ch3:eq:nonlinear-stress-d1S1} \partial _1 S_{11}(\xv _{i,j}) = \sum _{k = -w}^w D_{0k} S_{11} \left (\sum _{l = -w}^w D_{k \ell } \mathbf {y}_{i+\ell ,j}, \partial _2 \mathbf {y}_{i + k, j}\right ) + \order {\Delta x^{2w}}.\end {equation}


$\partial _2 S_{12}$


$\partial _1 \mathbf {y}$


$\partial _2 S_{12}(\cdot , \partial _2 \mathbf {y})$


$x_2$


\begin {equation}\label {ch3:eq:nonlinear_stress_d2S2} \partial _2 S_{12}(\xv _{i,j}) = \sum _{k = -w}^w D_{0k} S_{12} \left (\partial _1 \mathbf {y}_{i, j + k}, \sum _{l = -w}^w D_{k l} \mathbf {y}_{i,j + l}\right ) + \order {\Delta x^{2w}}.\end {equation}
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$\Gamma _D$
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$\{s_c^j, s_\alpha ^j\}$


$\bar {\mathcal {X}}_c$


$\partial _j$


\begin {equation}\label {ch3:eq:gradient_stencil} F_{ij}(\xv _c) = \partial _j u_i(\xv _c) = s_c^j u_i(\xv _c) + \sum _{\alpha = 1}^n s^j_\alpha u_i(\xv _\alpha ) + \order {\Delta x^{k}}.\end {equation}


$\mathbf {r}^t_c$


\begin {equation}\label {ch3:eq:nonlinear_traction} \mathbf {r}_c = \bar {\mathbf {t}}_c - \mathbf {S}(\mathbf {F}_c) \nv _c.\end {equation}


\begin {equation}\label {ch3:eq:nonlinear_interface} \mathbf {r}^{[t]}_c = \left [ \bar {\mathbf {t}}_c\right ] - \left [\mathbf {S}^+(\mathbf {F}^+_c) - \mathbf {S}^-(\mathbf {F}^-_c) \right ] \nv _c,\end {equation}


$\mathbf {F}^+(\xv _c)$


$\mathbf {F}^-(\xv _c)$


$\mathbf {r}^t_c = 0$


$\mathbf {r}^{[t]}_c = 0$


$\Gamma _N$


$\Gamma _M$
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$y_{\Gamma }^D$


$y_{\Omega }$


$y_{\Gamma }^N$


$(r_{\Omega }, r_{\Gamma }^N)$


\begin {equation}\label {ch3:eq:nonlinear_system} \begin {aligned} r_{\Omega }(y_{\Omega }, y_{\Gamma }^N; y_{\Gamma }^D) &= 0, \\ r_{\Gamma }^N(y_{\Omega }, y_{\Gamma }^N) &= 0. \end {aligned}\end {equation}


$y_{\Gamma }^{D,k-1}$


$k - 1$


$(y_{\Omega }^{k - 1}, y_{\Gamma }^{N,k-1})$


$k$


$\delta y_{\Gamma }^D = y_{\Gamma }^{D,k} - y_{\Gamma }^{D,k - 1}$


$\delta y_{\Gamma }^D$


$k$


$y_{\Omega }^k = \delta y_{\Omega } + y_{\Omega }^{k -1}$


$y_{\Gamma }^{N,k} = \delta y_{\Gamma }^N + y_{\Gamma }^{N,k-1}$


$(\delta y_{\Omega }, \delta y_{\Gamma }^N)$


\begin {equation}\label {ch3:eq:nonlinear-load-increment} \begin {aligned} \left (\frac {{\partial }r_{\Omega }}{{\partial }y_{\Omega }}\right ) \delta y_{\Omega } + \left (\frac {{\partial }r_{\Omega }}{{\partial }y_{\Gamma }^N}\right ) \delta y_{\Gamma }^N &= - \left (\frac {{\partial }r_{\Omega }}{{\partial }y_{\Gamma }^D}\right ) \delta y_{\Gamma }^D, \\ \left (\frac {{\partial }r_{\Gamma }^N}{{\partial }y_{\Omega }}\right ) \delta y_{\Omega } + \left (\frac {{\partial }r_{\Gamma }^N}{{\partial }y_{\Gamma }^N}\right ) \delta y_{\Gamma }^N &= 0, \end {aligned}\end {equation}


$(y_{\Omega }^{k - 1}, y_{\Gamma }^{N,k-1})$


$k$


$\delta \mathbf {y}_{i,j}$


$\partial _1 S_{(\cdot )1}$


\begin {equation}\label {ch3:eq:linearized-stress-residual} \delta (\partial _1 S_{(\cdot )1})_{i,j} = \sum _{k = -w}^w D_{0k} \frac {{\partial }S_{(\cdot )1}}{{\partial }\mathbf {F}} \left (\widetilde {\partial _1 \mathbf {y}}_{i + k, j}, \partial _2 \mathbf {y}_{i + k, j}\right ) : \left [\widetilde {\partial _1 \delta \mathbf {y}}_{i + k, j}, \, \partial _2 \mathbf {\delta y}_{i + k, j}\right ],\end {equation}
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$[\mathbf {a}, \, \mathbf {b}]$
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$(\widetilde {\partial _1 \mathbf {y}}_{i + k, j}, \partial _2 \mathbf {y}_{i + k, j})$


$r_{\Gamma }^N$


$\Gamma ^N$


\begin {equation}\frac {{\partial }r^t_i}{{\partial }y^c_k} = A_{ijkl}(\mathbf {F}_c) n_j s^c_l, \quad \frac {{\partial }r^t_i}{{\partial }y^\alpha _k} = A_{ijkl}(\mathbf {F}_c) n_j s^\alpha _l. \label {Xeqn53}\end {equation}
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$\frac {{\partial }r_{\Gamma }^N}{{\partial }y_{\Omega }}$


\begin {equation}\label {ch3:eq:nonlinear-test-case} u_1(\xv ) = A_1 \cos (2\pi x_1) \sin (2\pi x_2), \quad u_2(\xv ) = -A_2 \sin (2\pi x_1) \cos (2\pi x_2),\end {equation}


$A_1 = 0.08$


$A_2 = 0.06$


\begin {equation}\label {ch3:eq:neo_hookean} W(\mathbf {F}) = \frac {\mu }{2}\left (I_1 - 2 - 2 \log J\right ) + \frac {\lambda }{2}(J - 1)^2,\end {equation}
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\begin {equation}\label {ch3:eq:st_venant_kirchhoff} W = \frac {\lambda }{2} ({\rm {tr}} \mathbf {E})^2 + \mu {\rm {tr}} (\mathbf {E}^2), \quad \mathbf {E} = \frac {1}{2}\left (\mathbf {F}^T \mathbf {F} - \mathbf {I}\right )\end {equation}
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\begin {equation}\begin {array}{r@{\,}c@{\,}l} \psi _{\text {top}}({\mathbf {x}}) &=& x_2 - 0.14 - 0.04 \cos (10\pi (x_1 + 0.02)), \\ \psi _{\text {bottom}}({\mathbf {x}}) &=& -x_2 + 0.66 + 0.04 \cos (10\pi (x_1 - 0.02)), \\ \psi _{\text {lattice}}({\mathbf {x}}) &=& 1 - \left [\sin (10\pi x_1) + \cos (10\pi x_2) + \sqrt {2} \cos (10\pi x_1)\sin (10\pi x_2)\right ]^2, \end {array} \label {Xeqn57}\end {equation}
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deterioration in conditioning of the linear system associated with small cells; and the enforcement of essential boundary conditions 
on immersed boundaries and interfaces. Though the focus of this work is on a finite difference based method, we briefly discuss below 
these main challenges in the finite element community to motivate the proposition of an alternative approach.

For numerical integration, subdivision of cut-cells is typically employed to achieve effective but low-order quadrature in the 
vicinity of discontinuities [2,4]. Local quad- or octree-based refinement approaches can then be used to reduce the integration error 
through spatial refinement [1,2,10], whose efficiency can be improved through boundary-conforming subdivision [11]. In the FCM, 
such refinement approaches to reducing quadrature errors is combined with a high order FEM discretization to yield high order 
convergence of the scheme overall. However, as highlighted in [12], refinement techniques can result in a significant increase in the 
number of sub-cells, especially in three dimensions. Alternatively, the immersed geometry can be integrated using subtriangulation [4] 
or other interface reconstruction approaches, typically relying on a level-set representation. High-order versions of such quadrature 
schemes have been proposed by [13,14] and [15,16], which account for the curvature of the boundary but require involved geometric 
reconstruction efforts that can sacrifice robustness. Overall, constructing robust, high-order quadrature schemes remains a persisting 
challenge in immersed finite element methods, motivating the development of alternative approaches [17].

A separate issue with immersed finite element methods is that the presence of small cells typically increases the condition number 
of the system of equations associated with the discretized problem. This is no different from the cut-cell finite volume community, 
where the ‘small-cell’ problem has received extensive attention in the past [18]. For the finite cell method, the fictitious stiffness 
parameter can be scaled to improve stability; nevertheless, [2] notes that poor conditioning still prevents the use of iterative solvers. 
In CutFEM, stabilization is typically achieved using a ghost penalty technique, which adds a user-defined penalty parameter that scales 
a stabilization term acting on neighboring cut elements [4,19]. An extensive and recent review on further conditioning approaches 
is provided in [9]. 

To impose Dirichlet (essential) boundary conditions, weak enforcement approaches are typically used. The original FCM relied on 
a simple but robust penalization approach [1], approximating the Dirichlet condition using a penalization term that balanced stability 
and accuracy. Nitsche’s method provides a more consistent manner to enforce Dirichlet boundary conditions [9,20], but introduces 
a per-cell parameter that can, theoretically, become arbitrarily large on cut-cells [21]. To mitigate this, stabilization as in the ghost 
penalty or non-symmetric approaches [22,23] can be used. The review in [9] provides a state-of-the-art review of stabilization and 
conditioning issues in immersed finite element methods.

Overall, immersed finite element methods have seen tremendous development to maturation, and are now broadly applied in 
scientific research across domains. However, issues pertaining to extension to high order, stability, and efficiency persist, motivating 
continuing development and improvement. In particular, the development of formally high order approaches that combine robustness 
and simplicity of implementation is still an area of active research.

Immersed finite difference/volume based methods offer an alternative to the finite element approach, and face their own set of 
challenges. These methods discretize the strong form of the equations, allowing explicit treatment of boundary and jump conditions 
on embedded geometries in the discrete differential operators. Notably, [24] demonstrated a finite difference/volume method to 
tackle single material linear elasticity problems with Dirichlet (displacement) or Neumann (stress) boundary conditions imposed on 
immersed boundaries. The method exhibits second order accuracy and treats bodies with homogeneous, isotropic material properties. 
Results were demonstrated in both 2D and 3D domains, and the utility of the approach was proven using a shape optimization method. 
In [25,26] the authors propose a second order accurate Immersed Interface Method to handle multimaterial elasticity problem with 
imposed jump conditions on immersed interfaces. The approach was developed in 2D for isotropic materials with piecewise-constant 
material parameters. In [27], a second order finite difference method was presented with largely the same characteristics as [25], but 
extended to tackle inhomogeneous material properties – the method was extended to 3D in [28]. In [29], a second order generalized 
finite difference method was developed for 2D linear elasticity problems with piecewise-constant material properties, separated by 
an immersed interface on which displacement and traction jump conditions are enforced.

Compared to immersed finite element methods, finite difference approaches avoid the challenges related to numerical quadrature 
and the imposition of essential boundary conditions, while conditioning challenges are typically easily avoided as well. However, 
the above finite difference/volume works share some common limitations compared to the capabilities of prevalent immersed finite 
element methods. First, these existing methods impose either domain boundary conditions (Dirichlet, Neumann [24]) or material 
interface conditions [25–29] on the immersed geometry, but no method has demonstrated the ability to handle both. Second, the 
elastic models considered have been constrained to isotropic materials, with only [27] treating nonhomogeneous material properties. 
Third, all discretizations are second order accurate. Finally, all approaches are restricted to linear elastic problems, and hence small 
deformations. In this work we address all four restrictions through a high order immersed interface discretization of linear and 
nonlinear elasticity problems. Our method is based on a discretization of the Laplacian that relies on previous work on parabolic and 
elliptic partial differential equations [30–32], but is extended here to cross-derivative terms with variable coefficients. Our approach 
has no limitations on the constitutive law and thus allows for anistropic materials. We demonstrate up to sixth order convergence of the 
solution and boundary tractions in the infinity norm, while representing our geometry fully locally and only through grid intersections 
and associated normal vectors. Further, we extend our approach to finite deformation elasticity with hyperelastic materials while 
retaining high order convergence. We show the ability of our solver to simulate challenging lattice structure elasticity problems, and 
compare the accuracy of our approach with a commercial finite element solver.

The rest of this manuscript is structured as follows. In Section 2 we recall the constant coefficient discretization of the scalar 
Poisson equation presented in [32]. The discretization is extended to variable coefficients in Section 3. These stencils form the basis 
of our linear elasticity discretization as explained in Section 4. The extension to nonlinear elasticity is discussed in Section 5. Though 
each of the sections above contain individual convergence and verification results, we show further applications of our methodology 
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in Section 6, including a comparison with a finite element solver. We discuss the relative merits of our method in Section 7, and 
provide conclusions in Section 8.

2.  Discretization of the constant-coefficient scalar Poisson equation

In this section, we briefly summarize the results of [32] presenting our high-order immersed discretization of the scalar Poisson 
equation. We first consider the treatment of the constant coefficient Poisson equation with immersed domain boundaries on which 
Dirichlet and/or Neumann boundary conditions are imposed. Then, we discuss the piecewise-constant coefficient Poisson equation 
with immersed interfaces on which jump conditions are imposed.

2.1.  Discretization of immersed boundaries

For immersed boundary problems, we consider the Poisson equation posed in domain Ω+ with Dirichlet or Neumann conditions 
prescribed on the boundary, so that the PDE and boundary conditions are 

∇ ⋅ (𝛽∇𝑢) = 𝑓 inΩ+,

𝑢 = 𝑢̄ on Γ𝐷,

𝛽𝜕𝑛𝑢 = 𝑞 on Γ𝑁 ,

(1)

where Γ = Γ𝐷 ∪ Γ𝑁  is the boundary of domain Ω+. Here the prescribed boundary conditions and the source term 𝑓 (𝐱) are assumed to 
be smooth functions, and the coefficient 𝛽 is assumed constant. The discretization of the Laplace operator follows the methodology 
outlined in [30,31], which is briefly summarized here.

For interior points, the Laplacian operator ∇2 =
∑𝑑
𝑖=1 𝜕

2
𝑖  is discretized at each grid point using dimension splitting, with the 

standard central centered finite difference stencil used to discretize the second derivative 𝜕2𝑖  along each coordinate axis. Near immersed 
boundaries an interpolation procedure incorporating boundary information is used to extend the solution, providing ghost values for 
the finite difference scheme.

The boundary treatments used in this work are based on an evolution of the original immersed interface method [33,34], as 
presented in [30,35] and outlined below. Following a convention from the immersed interface literature, we refer to the intersection 
between a 1D finite difference stencil and the surface Γ as a control point, denoted 𝐱𝑐 . The evaluation point for this stencil is referred 
to as an affected point, since the discretization is affected by the presence of the surface.

In our approach, each control point 𝐱𝑐 on the immersed domain boundary is associated with a set of interpolation points +
𝑐 ⊂ Ω+, 

and with a polynomial 𝑝𝑐 (𝐱) of degree 𝑘 that approximately interpolates the domain values {𝑢(𝐱𝑖) ∣ 𝐱𝑖 ∈ +
𝑐 } in a least squares sense. 

Each 1D finite difference stencil that intersects the boundary at 𝐱𝑐 is applied not directly to the function 𝑢(𝐱), but to the extended 
function

𝑢𝑐 (𝐱) =
{

𝑢(𝐱), 𝐱 ∈ Ω+

𝑝𝑐 (𝐱), 𝐱 ∉ Ω+
(2)

As defined in [31], the set of interpolation points in the least squares domain +
𝑐  includes the control point, excludes the closest 

grid point, and includes all other grid points that are (1) part of the domain Ω+, and (2) fall within a half-elliptical region centered on 
the boundary whose semi-major axis is aligned with the local normal vector to the surface (Fig. 1(a)). These interpolants are suitable 
for all boundary conditions and any smooth geometry satisfying a well-defined curvature constraint [31]. In this work, for any given 
polynomial order we choose the major and minor axes of the region so that we can guarantee the existence of 𝑝𝑐 (𝐱) on a grid with 
spacing Δ𝑥 as long as the immersed surface satisfies

|𝜅Δ𝑥| < 1∕4, (3)

where 𝜅 is the maximum scalar curvature of the surface.
Each of the 1D finite difference stencils which intersect the boundary at 𝐱𝑐 can require up to 𝑤 ghost values at grid points {𝐱𝑔} that 

fall outside of the domain. These ghost values are obtained by evaluating 𝑝𝑐 (𝐱) through 𝑤 separate stencil operations with coefficients 
{𝑠𝑔𝑐 } ∪ {𝑠𝑔𝛼}𝑛𝛼=1 [31], so that

𝑝𝑐 (𝐱𝑔) = 𝑠𝑔𝑐 𝑢(𝐱𝑐 ) +
𝑛
∑

𝛼=1
𝑠𝑔𝛼𝑢(𝐱𝛼) (4)

at each point 𝐱𝑔 requiring a ghost value. For points with Neumann boundary conditions 𝑢(𝐱𝑐 ) is not directly available, but it can 
be approximated based on the boundary condition 𝑞(𝐱𝑐 ) and nearby solution values. To clarify, let {𝑠𝑐} ∪ {𝑠𝑖}𝑛𝑖=1 be a set of stencil 
coefficients that approximate the normal derivative of 𝑝𝑐 at 𝐱𝑐 , so that

𝜕𝑛𝑢(𝐱𝑐 ) = 𝑠𝑐𝑢(𝐱𝑐 ) +
𝑛
∑

𝑖=1
𝑠𝑖𝑢(𝐱𝑖) + (Δ𝑥𝑘−1). (5)

When a Neumann condition is prescribed at a control point, Eq. (5) can be inverted to give

𝑢(𝐱𝑐 ) =
1
𝑠𝑐

(

𝑞(𝐱𝑐 )
𝛽

−
𝑁−1
∑

𝑖=1
𝑠𝑖𝑢(𝐱𝑖)

)

+ (Δ𝑥𝑘). (6)

This requires one additional set of stencil coefficients which evaluate the normal derivative 𝜕𝑛𝑝(𝐱𝑐 ) on the boundary.
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2.2.  Discretization of immersed interfaces

For problems with immersed interfaces, we consider the Poisson equation defined over two subdomains Ω+ and Ω− with piecewise 
constant coefficients 𝛽+ and 𝛽−:

𝛽(𝐱) =
{

𝛽+, 𝐱 ∈ Ω+

𝛽−, 𝐱 ∈ Ω−
. (7)

Jump conditions on the solution and its flux are prescribed on the interface between the subdomains, Γ𝑀 , so that the full problem 
becomes

∇ ⋅ (𝛽∇𝑢) = 𝑓 inΩ,

[𝑢] = 𝑗0(𝐬) on Γ𝑀 ,
[𝛽𝜕𝑛𝑢] = 𝑗1(𝐬) on Γ𝑀 . (8)

Here [𝑔] = 𝑔+ − 𝑔− denotes the jump of function g across the interface, defined as the difference between 𝑔+, the limit of 𝑔(𝐱) ap-
proaching the interface from the positive side, and 𝑔−, the limit of 𝑔(𝐱) approaching the interface from the negative side. Positive and 
negative sides are here associated with the sign of the level-set field so that surface normals point into the positive side. In classical 
elasticity, these jumps are typically zero to enforce continuity of displacement and tractions; examples of non-zero jumps can arise 
when considering electromechanics, slip, or active interfaces. The source term 𝑓 (𝐱) is also allowed to be discontinuous across the 
material interface, though this has minimal effect on the solution procedure.

For piecewise constant 𝛽(𝐱), the operator ∇ ⋅ (𝛽∇𝑢) reduces to 𝛽∇2𝑢 away from Γ𝑀 , so that the standard dimension-split discretiza-
tion of interior points remains valid. To discretize the jump boundary conditions, the boundary values 𝑢−(𝐱𝑐 ) and 𝑢+(𝐱𝑐 ) from either 
side of the interface are computed with the aid of two sets of stencils coefficients [30,31], associated with half-elliptical regions 
as shown in Fig. 1(b). The first set {𝑠+𝑐 , 𝑠+𝑖 } maps the boundary value 𝑢+(𝐱𝑐 ) and solution values from Ω+ to the normal derivative 
𝜕𝑛𝑢+(𝐱𝑐 ), while the second set {𝑠−𝑐 , 𝑠−𝑖 } is designed analogously to map solution values from Ω− to the normal derivative 𝜕𝑛𝑢−(𝐱𝑐 ). The 
boundary values 𝑢±(𝐱𝑐 ) can then be determined from the discretized jump conditions 𝑢+(𝐱𝑐 ) − 𝑢−(𝐱𝑐 ) = 𝑗0(𝐱𝑐 ) and 

𝛽+
⎛

⎜

⎜

⎝

𝑠+𝑐 𝑢
+(𝐱𝑐 ) +

𝑛+
∑

𝑖=1
𝑠+𝑖 𝑢(𝐱

+
𝑖 )
⎞

⎟

⎟

⎠

− 𝛽−
(

𝑠−𝑐 𝑢
−(𝐱𝑐 ) +

𝑛−
∑

𝑖=1
𝑠−𝑖 𝑢(𝐱

−
𝑖 )

)

= 𝑗1(𝐱𝑐 ). (9)

Fig. 1. Each crossing between a grid line and the boundary (𝑥𝑐) is used to construct ghosts points for an affected grid point (light grey) using a 
multidimensional interpolant constructed from a half-elliptical region of grid points. For immersed boundaries (a), the interpolant is constructed 
by incorporating imposed boundary conditions (Dirichlet, Neumann). For immersed interfaces (b), interpolants on both sides are constructed by 
incorporating imposed jump conditions.
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For 𝑗0(𝐱𝑐 ) = 𝑗1(𝐱𝑐 ) = 0, the closed-form solution to Eq. (9) is 

𝑢−(𝐱𝑐 ) = 𝑢+(𝐱𝑐 ) = 𝑢̄with 𝑢̄ = −
𝛽+

∑𝑛+
𝑖=1 𝑠

+
𝑖 𝑢(𝐱

+
𝑖 ) − 𝛽

− ∑𝑛−
𝑖=1 𝑠

−
𝑖 𝑢(𝐱

−
𝑖 )

𝛽+𝑠+𝑐 − 𝛽−𝑠−𝑐
. (10)

When jumps are present, the boundary values instead are given separately by 

𝑢+(𝐱𝑐 ) = 𝑢̄ +
𝑗1 − 𝛽−𝑠−𝑐 𝑗0(𝐱)
𝛽+𝑠+𝑐 − 𝛽−𝑠−𝑐

, 𝑢−(𝐱𝑐 ) = 𝑢̄ +
𝑗1 − 𝛽+𝑠+𝑐 𝑗0(𝐱)
𝛽+𝑠+𝑐 − 𝛽−𝑠−𝑐

. (11)

Once determined, the boundary values 𝑢±(𝐱𝑐 ) can be used in stencil operations on either side of the interface. We note that Eq. (9) 
treats both sides of the interface on an even footing. Further, as the ratio 𝛽−∕𝛽+ tends to zero, Eq. (11) approaches to the well-
behaved Neumann boundary treatment given the previous section. This indicates that the boundary treatment is robust to large 
jumps in coefficients and does not exhibit singular behavior when 𝛽−∕𝛽+ tends to zero or infinity.

3.  Discretization of variable coefficient scalar Poisson equation

In our previous work and as discussed above, the coefficient 𝛽(𝐱) in the Poisson equation was restricted to be either constant or 
piecewise constant. When 𝛽(𝐱) is spatially variable, both the interior and boundary discretizations must be altered to maintain high 
order accuracy. This section introduces a novel variable-coefficient immersed interface discretization which reduces to the constant 
coefficient discretization when ∇𝛽 = 𝟎. We restrict our focus on the scalar Poisson equation, with extensions to a vector equation 
discussed in the next section.

For generality, the discretization assumes that 𝛽(𝐱) is defined only by its value at each grid point and at the control points. This 
allows the method to generalize easily to systems of nonlinear elliptic PDEs, in which 𝛽 may depend on the solution and several other 
auxiliary fields. Collocating 𝛽(𝐱) with the solution 𝑢(𝐱) at each grid point also reduces the amount of geometry processing needed 
compared a staggered arrangement, and allows any boundary stencils to be applied to both solution values and coefficient values. 
This will be essential for the discretization introduced below.

3.1.  Bilinear stencils for the variable coefficient operator

For interior points, the operator ∇ ⋅ (𝛽∇𝑢) =
∑𝑑
𝑖=1 𝜕𝑖(𝛽𝜕𝑖𝑢) is discretized via dimension splitting. It is possible to discretize the 1D 

operators 𝜕𝑖(𝛽𝜕𝑖𝑢) by replacing each first derivative with a centered difference stencil of width 𝑤. However, the resulting discrete 
operator has an unnecessarily large stencil width of 2𝑤, and does not reduce to the standard centered discretization of 𝛽∇2𝑢 for 
constant 𝛽. Here we derive an alternative that maintains a total stencil width of 𝑤 and reduces to the standard discretization for 
constant 𝛽. The derivation is similar to the variable-coefficient finite-volume discretization developed in [36] and applied to ice sheet 
modeling in [37].

Consider a 1D Cartesian grid with grid points 𝑥𝑖 = 𝑖Δ𝑥, and let 𝑢𝑖 and 𝛽𝑖 indicate the value of the solution and coefficient at the 
𝑖-th grid point. The operator 𝜕𝑥(𝛽𝜕𝑥𝑢) is invariant under the transformation 𝑥 → −𝑥 and linear in both 𝑢(𝑥) and 𝛽(𝑥). Thus it is natural 
to require that a finite difference discretization of this operator is symmetric and bilinear in the solution {𝑢𝑖} and coefficient {𝛽𝑖}. 
Fixing a stencil width 𝑤, we seek a discretization of the form

𝜕𝑥(𝛽𝜕𝑥𝑢)𝑖 =
𝑤
∑

𝑗,𝑘=−𝑤
𝐺𝑗𝑘𝛽(𝑥𝑖+𝑗 )𝑢(𝑥𝑖+𝑘) + (Δ𝑥2𝑤), (12)

where the bilinear stencil coefficients 𝐺𝑖𝑗 obey the symmetry condition 𝐺𝑖,𝑗 = 𝐺−𝑖,−𝑗 , and the order 2𝑤 error term is chosen to match 
accuracy of the centered second derivative stencil of the same width.

To determine the accuracy of the bilinear stencil, the solution and coefficient can be replaced by their Taylor expansions 𝛽(𝑥) =
∑∞
𝑝=0 𝛽

(𝑝) 𝑥𝑝
𝑝!  and 𝑢(𝑥) =

∑∞
𝑞=0 𝑢

(𝑞) 𝑥𝑞
𝑞! . Choosing 𝑥0 = 0 as the evaluation point, the resulting expressions for both the continuous and 

discrete operators are

𝜕𝑥(𝛽𝜕𝑥𝑢) =
∞
∑

𝑝,𝑞=0

𝛽(𝑝)𝑢(𝑞)

𝑝!𝑞!
𝑞(𝑝 + 𝑞 − 1)𝑥𝑝+𝑞−2, (13)

𝜕𝑥(𝛽𝜕𝑥𝑢) =
∞
∑

𝑝,𝑞=0

𝛽(𝑝)𝑢(𝑞)

𝑝!𝑞!

𝑤
∑

𝑗,𝑘=−𝑤
𝐺𝑗𝑘𝑥

𝑝
𝑗𝑥
𝑞
𝑘. (14)

To achieve the maximal order of accuracy 𝑛 = 2𝑤, Eqs. (13) and (14) must agree for all terms with 𝑝 + 𝑞 − 2 < 𝑛. After rescaling the 
{𝑥𝑖} to eliminate factors of Δ𝑥, this leads to the exactness conditions

𝑤
∑

𝑗,𝑘=−𝑤
𝐺𝑗𝑘𝑗

𝑝𝑘𝑞 =

{

𝑞(𝑝 + 𝑞 − 1), 𝑝 + 𝑞 = 2,
0, otherwise,

(15)

which must hold for 𝑝 + 𝑞 − 2 < 𝑛 and 𝑝, 𝑞 ≥ 0. The symmetry condition implies that ∑𝐺𝑗𝑘𝑗𝑝𝑘𝑞 = (−1)𝑝+𝑞
∑

𝐺𝑗𝑘𝑗𝑝𝑘𝑞 , so that Eq. (15) 
is automatically satisfied when 𝑝 + 𝑞 is odd. The remaining exactness conditions occur for 𝑝 + 𝑞 even and form a system of (𝑤 + 1)2

independent linear constraints on the coefficients 𝐺𝑗𝑘. A quick accounting shows that there are (2𝑤 + 1)(𝑤 + 1) unique coefficients in 
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the symmetric bilinear stencil, leading to a 𝑤(𝑤 + 1) dimensional space of stencils with width 𝑤 and order 2𝑤. This is in contrast to 
the standard difference centered stencil for 𝜕2𝑥 of width 𝑤 and order 2𝑤, which is uniquely determined.

Before constructing any stencils 𝐺𝑗𝑘 which satisfy the order constraints, there are two points worth noting. First, when 𝛽(𝑥) = 1, 
any symmetric bilinear stencil of order 2𝑤 reduces to the standard centered difference stencil of order 2𝑤 for the second derivative. 
To show this, define the sums 𝑔𝑘 =

∑𝑤
𝑗=−𝑤 𝐺𝑗𝑘, so that the application of the bilinear stencil with 𝛽 = 1 reduces to 𝜕2𝑥𝑢𝑖 =

∑𝑤
𝑘=−𝑤 𝑔𝑘𝑢𝑘. 

The exactness conditions from Eq. (15) with 𝑝 = 0 reduce to constraints on 𝑔𝑘,
𝑤
∑

𝑘=−𝑤
𝑔𝑘𝑘

𝑞 =

{

𝑞(𝑞 − 1), 𝑞 = 2,
0, otherwise,

(16)

which are only satisfied when 𝑔𝑘 is the unique second derivative stencil of width 𝑤 and order 2𝑤. This immediately implies the second 
point, which is that no bilinear stencil of width 𝑤 can have an order of accuracy greater than 2𝑤, despite the 𝑤(𝑤 + 1) free parameters 
available. If one were to exist, it would reduce for 𝛽 = 1 to a finite difference stencil of width 𝑤 and accuracy greater than 2𝑤, which 
does not exist.

3.2.  Two constructions for high order bilinear stencils

For immersed interface discretizations, we make use of two constructions for symmetric bilinear stencils of arbitrary even order 
2𝑤. Both constructions are chosen because they generalize immediately to nonlinear operators of the form 𝜕𝑥𝑓 (𝑥, 𝑢, 𝜕𝑥𝑢), which will 
be useful in later discretizations of nonlinear elasticity presented in Section 5.

For the first construction, let {𝐷𝑖𝑗}𝑤𝑗,𝑘=−𝑤 be the unique differentiation matrix that satisfies

𝜕𝑥𝑢𝑗 =
𝑤
∑

𝑘=−𝑤
𝐷𝑗𝑘𝑢𝑘 + (Δ𝑥2𝑤) for −𝑤 ≤ 𝑗 ≤ 𝑤. (17)

The 𝑗-th row of 𝐷𝑗𝑘 is a first derivative stencil of order 2𝑤 with an evaluation point offset by 𝑗 grid points from the stencil center. 
To approximate 𝜕𝑥(𝛽𝜕𝑥𝑢), the solution values {𝑢𝑘}𝑤𝑘=−𝑤 are multiplied by 𝐷𝑗𝑘 to approximate the derivatives {𝜕𝑥𝑢𝑗}𝑤𝑗=−𝑤 at each 
stencil point. These derivatives are then multiplied point-wise by the coefficient values {𝛽𝑗}𝑤𝑗=−𝑤, and the centered difference stencil 
{𝐷0𝑗}𝑤𝑗=−𝑤 is applied to the result. Choosing 𝑥0 = 0 as the evalution point, the full approximation reads

𝜕𝑥(𝛽𝜕𝑥𝑢) =
𝑤
∑

𝑗,𝑘=−𝑤
𝐷0𝑗𝛽𝑗 (𝐷𝑗𝑘𝑢𝑘) ⇒ 𝐺𝑗𝑘 = 𝐷0𝑗𝐷𝑗𝑘. (18)

One can verify that this construction leads to a symmetric stencil 𝐺𝑗𝑘 satisfying the conditions for accuracy of order 2𝑤. For the 
nonlinear extension, pointwise multiplication by 𝛽𝑗 is replaced by pointwise evaluation of the nonlinear function 𝑓 (𝑥𝑗 , 𝑢𝑗 , 𝜕𝑥𝑢𝑗 ). The 
resulting discretization is

𝜕𝑥𝑓 (𝑥, 𝑢, 𝜕𝑥𝑢) =
𝑤
∑

𝑗=−𝑤
𝐷0𝑗𝑓

(

𝑥𝑗 , 𝑢𝑗 ,
𝑤
∑

𝑘=−𝑤
𝐷𝑗𝑘𝑢𝑘

)

. (19)

A Taylor series analysis confirms that the nonlinear discretization also has accuracy of order 2𝑤 when 𝑞 is smooth in all of its 
arguments.

The second construction is slightly more complex, but leads to a conservative finite difference scheme. Instead of discretizing 
𝜕𝑥(𝛽𝜕𝑥𝑢) directly, the discrete operator is written as a difference of fluxes defined at the half grid points, so that

𝜕𝑥(𝛽𝜕𝑥𝑢)𝑖 =
(𝛽𝜕𝑥𝑢)𝑖+1∕2 − (𝛽𝜕𝑥𝑢)𝑖−1∕2

Δ𝑥
+ (Δ𝑥2𝑤). (20)

To achieve accuracy of order 2𝑤, each flux (𝛽𝜕𝑥𝑢)𝑖−1∕2 is constructed as a bilinear combination of the solution and coefficient values 
at the nearest 2𝑤 grid points. Let {𝑄𝑗𝑘}𝑤−1𝑗,𝑘=−𝑤 be the unique differentiation matrix that satisfies

𝜕𝑥𝑢𝑗 =
𝑤−1
∑

𝑘=−𝑤
𝑄𝑗𝑘𝑢𝑘 + (Δ𝑥2𝑤−1), −𝑤 ≤ 𝑗 ≤ 𝑤 − 1, (21)

so that multiplication by 𝑄𝑗𝑘 transforms a vector of solution values {𝑢𝑖+𝑗}𝑤−1𝑗=−𝑤 into a vector of approximate derivatives {𝜕𝑥𝑢𝑖+𝑗}𝑤−1𝑗=−𝑤. 
After obtaining the derivatives and multiplying pointwise by the coefficient 𝛽, the values {(𝛽𝜕𝑥𝑢)𝑖+𝑗}𝑤−1𝑗=−𝑤 are interpolated to construct 
the flux value (𝛽𝜕𝑥𝑢)𝑖−1∕2. For a conservative finite difference scheme, the standard interpolation coefficients {𝐼𝑗}𝑤−1𝑗=−𝑤 are constructed 
to satisfy

𝑢𝑖−1∕2 =
𝑤−1
∑

𝑗=−𝑤
𝐼𝑗 𝑢̄𝑖+𝑗 + (Δ𝑥2𝑤), with 𝑢̄𝑖 = ∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2
𝑢(𝑥)d𝑥. (22)

This construction is introduced and justified in [38], with further analysis provided in [39]. The full bilinear flux for the conservative 
discretization can then be written

(𝛽𝜕𝑥𝑢)𝑖−1∕2 =
𝑤−1
∑

𝑗,𝑘=−𝑤
𝐼𝑗𝑄𝑗𝑘𝛽𝑖+𝑗𝑢𝑖+𝑘. (23)
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Although the derivative matrix 𝑄𝑗𝑘 yields derivatives with order 2𝑤 − 1 accuracy at each interpolation point, the symmetry of the full 
bilinear flux stencil leads to order 2𝑤 accuracy for the operator 𝜕𝑥(𝛽𝜕𝑥𝑢). For a nonlinear operator the corresponding discretization is

𝜕𝑥𝑓 (𝑥, 𝑢, 𝜕𝑥𝑢)𝑖 =
𝑓𝑖+1∕2 − 𝑓𝑖−1∕2

Δ𝑥
, with 𝑓𝑖−1∕2 =

𝑤−1
∑

𝑗=−𝑤
𝐼𝑗𝑓

(

𝑥𝑗 , 𝑢𝑗 ,
𝑤−1
∑

𝑘=−𝑤
𝑄𝑗𝑘𝑢𝑖+𝑘

)

. (24)

As above, this discretization has accuracy of order 2𝑤 for smooth 𝑓 . The conservative scheme is used to generate all results in this 
work, unless otherwise specified.

3.3.  Immersed interface discretization with variable coefficients

Compared to the interior discretization, the modifications to the immersed interface boundary treatment with variable coefficients 
are minor. Each bilinear stencil which crosses a domain boundary or material interface requires ghost values for both 𝑢(𝐱) and 
𝛽(𝐱). The ghost solution values are approximated via the usual boundary stencil operation. Because 𝛽(𝐱) is also defined at the grid 
points and the control points, the ghost coefficient values can be obtained using the same interpolation stencils. The bilinear stencil 
of order 𝑛 has the same stencil width and order of accuracy as the standard centered difference stencil of order 𝑛, so that the 
variable coefficient discretization requires the same set of boundary stencil coefficients as its constant coefficient counterpart. Dirichlet 
boundary conditions are handled without modification, by incorporating known boundary data ̄𝑢(𝐱𝑐 ) into the stencil operation at each 
control point 𝐱𝑐 . Neumann conditions and jump conditions on the material interface are also handled in the usual way, using the 
local coefficient values 𝛽(𝐱𝑐 ) or 𝛽±(𝐱𝑐 ) in Eqs. (6) and (11).

3.4.  Verification for the variable-coefficient Poisson equation

To verify the convergence of the variable-coefficient Poisson test case, we use the five-lobed star-shaped geometry used previously 
in [32]. We employ the following functional form of the manufactured solution and variable coefficient

𝑢(𝐱) = sin(4𝜋𝑥1) sin(2𝜋𝑥2), (25)

𝛽(𝐱) = exp(sin(2𝜋𝑥1) sin(4𝜋𝑥2)). (26)

The geometry and the field 𝛽(𝐱) are illustrated in Fig. 2(a).
For brevity, we refer to a discretization with an 𝑛-th order interior stencil and 𝑘-th order boundary interpolants as an (𝑛, 𝑘)

discretization, and focus on high order interior discretizations with 𝑛 = 4 or 𝑛 = 6. Throughout this work we set 𝑘 = 𝑛 + 1 rather than 
𝑘 = 𝑛 + 2, motivated by elliptical regularity effects. In [40] it was shown using potential theory that reduced truncation errors near 
cut cells with imposed boundary conditions do not deteriorate the overall solution error. For our method, we confirmed that the 
choice 𝑘 = 𝑛 + 1 is indeed sufficient to achieve 𝑘th order convergence in the 𝐿∞ norm for all boundary conditions considered here 
[30–32], both for parabolic and elliptic equations with constant coefficients. Fig. 2(b) plots the 𝐿∞ error in the discrete solution for 
both (4, 5) and (6, 7) discretizations with Dirichlet or Neumann boundary conditions and a variable coefficient The results confirm 
that also with variable coefficients, the proposed discretizations converge with the expected order of accuracy, regardless of the type 
of boundary condition imposed.

Fig. 2. Results for the scalar Poisson equation with a variable coefficient. (a) the geometry and variable coefficient for this test case. (b) 𝐿∞ error 
in the discrete solution for (4, 5) and (6, 7) discretizations with Dirichlet or Neumann boundary conditions. The discretizations converge at the 
expected fourth or sixth order for either boundary condition.
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Fig. 3. Spectra of the (4, 5) and (6, 7) variable-coefficient discretizations at 𝑁𝑥 = 64. Each plot shows the scaled eigenvalues 𝜆̃ = Δ𝑥2𝜆∕𝛽max. For 
both discretizations the real part of the scaled eigenvalues remains within the range predicted by the constant-coefficient interior discretization of 
the same order.

Since all our immersed geometry corrections are linear in the field values, the discretized form of the variable-coefficient Poisson 
equation together with the boundary conditions can be written as a linear system of equations for the unknown solution 𝑢 at the grid 
points. Fig. 3 plots the spectra of the matrix associated with this linear system for each of the considered boundary conditions and 
discretization orders at resolution 𝑁𝑥 = 64, with the eigenvalues scaled by a factor Δ𝑥2∕𝛽max where 𝛽max = max𝐱∈Ω 𝛽(𝐱). Also shown 
is a dashed line indicating the most negative eigenvalue of interior discretization with a constant coefficient 𝛽max, determined using a 
standard von Neumann analysis. The eigenvalues of both the (4, 5) and (6, 7) discretizations have real parts of smaller magnitude, indi-
cating that the boundary treatment does not suffer from a “small-cell" issue. Overall, the results indicate that the variable coefficient 
discretization achieves the same high order accuracy and well-behaved spectrum as the constant-coefficient case.

4.  Linear elasticity

This section applies the variable coefficient Poisson discretization from Section 3 to the equations of linear elasticity, which involve 
a vector-valued unknown, cross-derivative terms, and more complex boundary and interface conditions.

4.1.  Continuous formulation

For convenience, we adopt the Einstein summation convention for the remainder of this work, unless explicitly stated otherwise. 
Consider a domain Ω occupied by an elastic body, and let 𝑢𝑖(𝐱) represent the two components of the displacement field. Throughout 
the domain, a prescribed body force 𝑓𝑖 acts on the elastic material. The linear elastic properties of the material are characterized by 
the spatially-variable rank-four stiffness tensor 𝐶𝑖𝑗𝑘𝑙(𝐱), which may be discontinuous across a material interface Γ𝑀 . Let 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘
represent the Cauchy stress tensor in the material, and let 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 represent the traction vector on either the domain boundary or a 
material interface. To specify boundary conditions on the material, the domain boundary 𝜕Ω is partitioned into two sets Γ𝐷 and Γ𝑁 . 
On Γ𝐷 a fixed displacement field 𝑢̄𝑖(𝐬) is prescribed, while on Γ𝑁  the traction 𝑡𝑖(𝐬) is prescribed. Finally, on the material interfaces 
Γ𝑀  both the jump in displacement [𝑢̄𝑖] and jump in traction [𝑡𝑖] are prescribed. Taken all together, the equilibrium equation for the 
body and the prescribed boundary conditions form the elliptic PDE system

𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) = 𝑓𝑖 onΩ,

𝑢𝑖 = 𝑢̄𝑖 on Γ𝐷
𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝜕𝑘𝑢𝑙 = 𝑡𝑖 on Γ𝑁

[

𝑢𝑖
]

=
[

𝑢̄𝑖
]

on Γ𝑀
[

𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝜕𝑙𝑢𝑘
]

= [𝑡𝑖] on Γ𝑀 .

(27)

The stiffness tensor 𝐶𝑖𝑗𝑘𝑙(𝐱) is assumed to obey the major symmetry 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 , the minor symmetry 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙, and the positive 
definiteness property 𝐶𝑖𝑗𝑘𝑙𝜖𝑖𝑗𝜖𝑘𝑙 > 0 for all nonzero symmetric tensors 𝜖𝑖𝑗 . The discretizations presented below are valid with no further 
assumptions on the stiffness tensor, to allow for anisotropic materials. However, for convergence tests we assume an isotropic but 
spatially variable stiffness tensor of the form

𝐶𝑖𝑗𝑘𝑙 = 𝜆(𝐱)𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝐱)
(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑘𝑗
)

, (28)

where 𝜆(𝐱) and 𝜇(𝐱) are spatially-variable Lamé parameters.
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4.2.  Immersed interface discretization

On the whole, the discretization of the linear elastic system is a straightforward extension of the variable-coefficient Poisson 
discretization with a vector unknown 𝑢𝑖(𝐱) and tensor coefficient 𝐶𝑖𝑗𝑘𝑙(𝐱). For fixed 𝑖 and 𝑘, terms of the form 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) with 𝑗 = 𝑙
involve derivatives taken along the same axis, and are treated using the dimension-split variable coefficient discretization outlined in 
Section 3. The main numerical novelties are the treatment of cross derivative terms 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) with 𝑗 ≠ 𝑙, the elimination of traction 
boundary conditions, and the elimination of material interface conditions, each of which is discussed separately below.

4.2.1.  Cross derivative terms with variable coefficients
For notational simplicity, this section treats a scalar cross derivative term notated 𝜕𝑗 (𝛽𝜕𝑖𝑢) with 𝑖 ≠ 𝑗. For linear elasticity, the 

resulting procedure is applied separately to discretize each term 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) with 𝑗 ≠ 𝑙.
On the interior of the domain, cross derivative terms are discretized in a dimension-split manner. The inner derivative 𝜕𝑖𝑢 is 

approximated using a centered difference stencil of width 𝑤 and order 𝑛 = 2𝑤 applied along the 𝑥𝑖 axis, and the result is multiplied 
by the coefficient 𝛽(𝐱) to form the field 𝛽𝜕𝑖𝑢. Finally, a centered difference stencil is applied to this field along the 𝑥𝑗 axis to complete 
the discretization of 𝜕𝑗 (𝛽𝜕𝑢𝑖). The result has order 𝑛 accuracy, and requires an 𝑛 + 1 by 𝑛 + 1 block of solution values centered on the 
grid point along with 𝑛 + 1 coefficient values offset from the grid point along the 𝑥𝑗 axis.

Near domain boundaries, the centered difference stencils for 𝜕𝑖𝑢 intersect the domain boundary at control points located on 𝑥𝑖-
direction grid lines. At these control points, ghost values of the solution 𝑢(𝐱) are constructed using values from the interpolation points 
in ̄𝑐 , including the boundary value 𝑢(𝐱𝑐 ). Incorporating ghost values into each centered difference results in a high order accurate 
gradient 𝜕𝑖𝑢 at the affected points, which can be multiplied point-wise by the coefficient to yield 𝛽𝜕𝑖𝑢 at each affected point. To 
differentiate 𝛽𝜕𝑖𝑢 at the affected points, a second centered difference stencil is applied along the 𝑥𝑗 axis. These stencils intersect the 
domain boundary at control points aligned with the 𝑥𝑗 axis, and require ghost values for the field 𝛽𝜕𝑖𝑢. At each control point, ghost 
values for the gradient 𝜕𝑖𝑢 are obtained evaluating by the derivative of the interpolating polynomial 𝑝𝑐 (𝐱), using 𝑤 sets of coefficients 
{𝑠𝑖,𝑔𝑐 } ∪ {𝑠𝑖,𝑔𝛼 }𝑛𝛼=1 satisfying

𝜕𝑖𝑝𝑐 (𝐱𝑔) = 𝑠𝑖,𝑔𝑐 𝑢(𝐱𝑐 ) +
𝑛
∑

𝛼=1
𝑠𝑖,𝑔𝛼 𝑢(𝐱𝛼) (29)

for each of the 𝑤 required ghost points 𝐱𝑔 . Ghost values of the coefficient are obtained with the usual stencil operation, using the 
boundary values 𝛽(𝐱𝑐 ) as well and interior values {𝛽(𝐱𝛼)}𝑛𝛼=1. The results are multiplied point-wise to yield ghost values for the field 
𝛽𝜕𝑢𝑖.

Eliminating traction boundary conditions
While similar in form to a Neumann boundary condition, the traction boundary condition 𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝜕𝑙𝑢𝑘 = 𝑡𝑖 involves a vector un-

known 𝑢𝑖. Consequently, obtaining the wall displacement value 𝑢(𝐱𝑐 ) from the traction boundary condition (analogous to Eq. (6) for 
the Poisson equation) involves forming and inverting a small linear system at each control point. For 𝑖 = 1, 2 let {𝑠𝑖𝑐} ∪ {𝑠𝑖𝛼}

𝑛
𝛼=1 be a 

set of stencil coefficients defined so that 𝜕𝑖𝑢(𝐱𝑐 ) = 𝑠𝑖𝑐𝑢(𝐱𝑐 ) +
∑𝑁
𝛼=1 𝑠

𝑖
𝛼𝑢(𝐱𝛼) + (Δ𝑥𝑘−1). In terms of these stencil coefficients, the traction 

boundary condition at each control point can be discretized as

𝐶𝑖𝑗𝑘𝑙𝑛𝑗

(

𝑠𝑙𝑐𝑢𝑘(𝐱𝑐 ) +
𝑛
∑

𝛼=1
𝑠𝑙𝛼𝑢𝑘(𝐱𝛼)

)

= 𝑡𝑖. (30)

To simplify, define a pair of matrices 𝐌𝑙 so that (𝑀𝑙)𝑖𝑘 = 𝐶𝑖𝑗𝑘𝑙𝑛𝑗 for 𝑙 = 1, 2. Rearranging Eq. (30) leads to the two by two linear 
system

(𝑠𝑙𝑐𝐌𝑙)𝐮(𝐱𝑐 ) = 𝐭 −
𝑁
∑

𝛼=1
(𝑠𝑙𝛼𝐌𝑙)𝐮(𝐱𝛼). (31)

To express the boundary displacement explicitly as a function of the prescribed traction and interior displacement values, let 𝐍𝑐 =
(𝑠𝑙𝑐𝐌𝑙)−1 and for 𝑙 = 1, 2 let 𝐍𝑙 = −𝐍𝑐𝐌𝑙. Inverting Eq. (31) then gives

𝐮(𝐱𝑐 ) = 𝐍𝑐 𝐭 +
𝑁
∑

𝛼=1
(𝑠𝑙𝛼𝐍𝑙)𝐮(𝐱𝛼). (32)

For the case of linear isotropic elasticity, the matrices 𝐌𝑙 can be written explicitly as
𝐌𝑙 = 𝜆𝐧⊗ 𝐞𝑙 + 𝜇

(

𝐞𝑙 ⊗ 𝐧 + 𝑛𝑙𝐈
)

, (33)

where 𝜆 and 𝜇 are the Lamé parameters evaluated at the control point.

Eliminating material interface conditions
The techniques of the previous section can also be used to obtain wall displacement values 𝑢+𝑖 (𝐱𝑐 ) and 𝑢−𝑖 (𝐱𝑐 ) from the material 

interface conditions [𝑢𝑖] = [𝑢̄𝑖] and [𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝑢𝑘,𝑙] = [𝑡𝑖], analogous to Eq. (11) for the Poisson equation. The displacement jump is written 
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explicitly as 𝑢+𝑖 (𝐱𝑐 ) − 𝑢−𝑖 (𝐱𝑐 ) = [𝑢̄𝑖]. The traction jump is discretized as

𝐶+
𝑖𝑗𝑘𝑙𝑛𝑗

⎛

⎜

⎜

⎝

𝑠𝑙,+𝑐 𝑢+𝑘 (𝐱𝑐 ) +
𝑛+
∑

𝛼=1
𝑠𝑙,+𝛼 𝑢𝑘(𝐱+𝛼 )

⎞

⎟

⎟

⎠

− 𝐶−
𝑖𝑗𝑘𝑙𝑛𝑗

(

𝑠𝑙,−𝑐 𝑢−𝑘 (𝐱𝑐 ) +
𝑛−
∑

𝛼=1
𝑠𝑙,−𝛼 𝑢𝑘(𝐱−𝛼 )

)

= [𝑡𝑖]. (34)

Define the matrices 𝐌±
𝑙  as above, now a superscript to indicate the appropriate side of the interface. The jump conditions form a four 

by four system 
[

𝐈 −𝐈
(𝑠𝑙,+𝑐 𝐌+

𝑙 ) −(𝑠𝑙,−𝑐 𝐌−
𝑙 )

][

𝐮+(𝐱𝑐 )
𝐮−(𝐬𝑐 )

]

=
[

[𝐮̄]
𝐭

]

, (35)

where the right hand side vector ̃𝐭 is defined by

𝐭 = [𝐭̄] −
⎡

⎢

⎢

⎣

𝑛+
∑

𝛼=1
(𝑠𝑙,+𝛼 𝐌+

𝑙 )𝐮(𝐱
+
𝛼 ) −

𝑛−
∑

𝛼=1
(𝑠𝑙,−𝛼 𝐌−

𝑙 )𝐮(𝐱
−
𝛼 )
⎤

⎥

⎥

⎦

. (36)

To proceed, let 𝐍𝑐 = (𝑠𝑙,+𝑐 𝐌+
𝑙 − 𝑠𝑙,−𝑐 𝐌−

𝑙 )
−1 and for 𝑙 = 1, 2 let 𝐍±

𝑙 = −𝐍𝑐𝐌±
𝑙 . Using the matrix identity

[

𝐈 −𝐈
𝐌1 −𝐌2

][

(𝐌1 −𝐌2)−1

(𝐌1 −𝐌2)−1

][

−𝐌1 𝐈
−𝐌2 𝐈

]

=
[

𝐈
𝐈

]

, (37)

the above system can be inverted to yield
𝐮+(𝐱𝑐 ) = 𝐮̄ + 𝐍𝑐 [𝐭̄] + (𝑠𝑙,−𝑐 𝐍−

𝑙 )[𝐮̄] and 𝐮
−(𝐱𝑐 ) = 𝐮̄ + 𝐍𝑐 [𝐭̄] + (𝑠𝑙,+𝑐 𝐍+

𝑙 )[𝐮̄], (38)

where 𝐮̄ is a linear combination of the interior solution values given by

𝐮̄ =
𝑛+
∑

𝛼=1
(𝑠𝑙,+𝛼 𝐍+

𝑙 )𝐮(𝐱
+
𝛼 ) −

𝑛−
∑

𝛼=1
(𝑠𝑙,−𝛼 𝐍−

𝑙 )𝐮(𝐱
−
𝛼 ). (39)

When the jumps [𝐮̄] and [𝐭̄] vanish, the solution reduces to 𝐮+(𝐱𝑐 ) = 𝐮−(𝐱𝑐 ) = 𝐮̄.

4.3.  Verification for linear elasticity

As a test case for the linear elastic discretization, an elastic body is subjected to a prescribed deformation of the form
𝑢1(𝐱) = 0.04 sin(4𝜋𝑥1) cos(2𝜋𝑥2), 𝑢2(𝐱) = 0.04 sin(4𝜋𝑥1) cos(6𝜋𝑥2). (40)

The body occupies the region between two immersed boundaries, both of which are star-shaped and defined by the same star-
shaped level set as above. Both are centered on the point 𝐱0 = [0.501, 0.502]; the inner boundary has average radius 𝑟0 = 0.379 and 
perturbation radius ̃𝑟 = 0.015, while for the outer boundary 𝑟0 = 0.151 and ̃𝑟 = 0.035. The elastic body is isotropic with spatially varying 
Lamé parameters

𝜆(𝐱) = 1.5 + 0.5 cos2(2𝜋𝑥1) cos2(2𝜋𝑥2), 𝜇(𝐱) = 0.8 + 0.3 sin2(2𝜋𝑥1) sin
2(2𝜋𝑥2). (41)

The body is immersed in a unit square domain of uniform resolution 𝑁𝑥 ×𝑁𝑥. The geometry and prescribed deformation for this test 
case are illustrated in Fig. 4.

Fig. 5(a) plots the 𝐿∞ norm of the truncation error in the linear elastic operator 𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘) as a function of the grid spacing Δ𝑥
for both a (4, 5) and (6, 7) discretization. Results are shown for two separate test cases, one with displacement boundary conditions 
and one with traction boundary conditions. As for the Poisson test cases, these discretizations exhibit third and fifth order truncation 
error respectively for either set of boundary conditions. Fig. 5(b) plots the 𝐿∞ error in the displacement field obtained by solving the 
discrete system, this time with a displacement boundary condition on the outer boundary and a traction boundary condition on the 
inner boundary. The plot also includes the 𝐿∞ norm of the traction on the outer boundary, which is not prescribed but calculated 
from the discrete solution. The (4, 5) and (6, 7) discretizations achieve fourth and sixth order convergence respectively for both the 
displacement field and the boundary traction.

To test the discretization with material interfaces, a second region Ω− is added inside the inner star-shaped boundary, and the 
average radii are adjusted to 𝑟0 = 0.221 on the inner boundary and 𝑟0 = 0.419 on the outer boundary. On the newly added inner region, 
the manufactured displacement field is

𝑢−1 (𝐱) = 0.02 sin(2𝜋𝑥1) sin(2𝜋𝑥2), 𝑢−2 (𝐱) = 0.028 sin(2𝜋𝑥1) cos(4𝜋𝑥2), (42)

and the elastic body has an isotropic stiffness tensor with Lamé parameters
𝜆−(𝐱) = 1.1 + 0.3 cos2(4𝜋𝑥1) cos2(2𝜋𝑥2), 𝜇−(𝐱) = 0.6 + 0.7 sin2(2𝜋𝑥1) cos2(4𝜋𝑥2). (43)

For all tests a displacement boundary condition is prescribed on the outer boundary, while jumps in the displacement and traction 
are prescribed on the material interface. The geometry and prescribed displacement field for this test case are illustrated in Fig. 6. 
Fig. 7(a) plots the truncation error in the linear elastic operator with material interfaces, which is third order and fifth order for the 
(4, 5) and (6, 7) discretizations respectively. Fig. 7(b) plots the error in the displacement field obtained by solving the discrete system, 
as well as the traction distribution on the inner surface of the material interface. Both quantities converge with the expected fourth 
or sixth order accuracy.
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Fig. 4. Manufactured solution used to test the linear elastic discretization.

Fig. 5. Convergence of (a) the truncation error and (b) the solution error for a linear elastic test case. The (4, 5) and (6, 7) discretizations achieve 
fourth and sixth order convergence in the 𝐿∞ norm for both the displacement field and boundary traction. The truncation error for each discretization 
converges at third and fifth order, respectively.

Fig. 6. Manufactured solution used to test the linear elastic discretization with a material interface.
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Fig. 7. Convergence of (a) the truncation error and (b) the solution error for a linear elastic test case with material interfaces. The addition of the 
material interface does not affect the convergence rates, which match those observed in Fig. 5.

5.  Nonlinear elasticity

This final section presents a high order method for finite-deformation elasticity with hyperelastic materials. The discretization 
requires a nonlinear extension of the variable-coefficient and cross-derivative techniques presented in Sections 3 and 4, and an 
alternative approach to discretizing traction boundary conditions that is suitable for nonlinear problems.

5.1.  Continuous formulation

For 2D nonlinear elastic problems, we consider a Lagrangian formulation. Let 𝑦𝑖(𝐱) be the location in the deformed configuration of 
the material point located at 𝐱 in the reference configuration. The constitutive relation for a nonlinear hyperelastic material is defined 
by a nonlinear strain energy density function 𝑊 (𝐅), where 𝐹𝑖𝑗 (𝐱) = 𝜕𝑗𝑦𝑖(𝐱) is the deformation gradient. The stress in the interior of 
the reference configuration is defined by the first Piola-Kirchhoff stress tensor

𝑆𝑖𝑗 =
𝜕𝑊
𝜕𝐹𝑖𝑗

. (44)

In terms of these quantities, the nonlinear system of PDEs governing the deformation field 𝑦𝑖(𝐱) is
𝜕𝑗𝑆𝑖𝑗 (𝐅) = 𝑓𝑖 onΩ,

𝑦𝑖 = 𝑦̄𝑖 on Γ𝐷,

𝑆𝑖𝑗 (𝐅)𝑛𝑗 = 𝑡𝑖 on Γ𝑁 .

(45)

At material interfaces, the displacement is assumed to be continuous, so that there is no tearing or cracking of the material. However, 
a traction jump is permitted, and the corresponding interface condition is

[

𝑆𝑖𝑗 (𝐅)𝑛𝑗
]

= [𝑡𝑖] on Γ𝑀 . (46)

This section considers only dead loading conditions, in which the prescribed body force 𝑓𝑖 and the first Piola-Kirchhoff traction vector 
𝑡𝑖 prescribed on the boundary do not depend on the solution 𝑢𝑖.

As a nonlinear system of PDEs, Eq. (45) must be solved iteratively for the unknown displacements field 𝐲 defined on the domain 
Ω and on the non-displacement boundaries Γ𝑁 ∪ Γ𝑀 . To measure the convergence of the solution, define the domain residual field 
𝐫𝑓 , boundary residual field 𝐫𝑡, and material interface residual field 𝐫[𝑡] by

𝑟𝑓𝑖 = 𝑓𝑖 − 𝜕𝑗𝑆𝑖𝑗 (𝐅) onΩ,
𝑟𝑡𝑖 = 𝑡𝑖 − 𝑆𝑖𝑗 (𝐅)𝑛𝑗 on Γ𝑁 ,

𝑟[𝑡]𝑖 =
[

𝑡𝑖
]

−
[

𝑆𝑖𝑗 (𝐅)𝑛𝑗
]

on Γ𝑀 .

(47)

At each iteration of the nonlinear solve, Eq. (47) is linearized about the current solution, leading to terms that involve the elasticity 
tensor

𝐴𝑖𝑗𝑘𝑙(𝐱) ≡
𝜕𝑆𝑖𝑗 (𝐅)
𝜕𝐹𝑘𝑙

|

|

|

|

|

𝐅(𝐱) =
𝜕2𝑊 (𝐅)
𝜕𝐹𝑖𝑗

𝐹𝑘𝑙
|

|

|

|

|𝐅(𝐱)
. (48)

This tensor has the major symmetry 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑘𝑙𝑖𝑗 , but in general there is no minor symmetry, so that 𝐴𝑖𝑗𝑘𝑙 has ten independent 
components in 2D.
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5.2.  Interior discretization

Let 𝐒(𝜕1𝐲, 𝜕2𝐲) indicate the Piola-Kirchhoff stress calculated as a function of the two displacement derivatives 𝜕1𝐲 and 𝜕2𝐲. The fields 
𝜕1𝐲 and 𝜕2𝐲 are calculated at the grid points using centered difference stencils of width 𝑤 applied along the 𝑥1 and 𝑥2 axes respectively. 
To discretize 𝜕1𝑆11(𝜕1𝐲, 𝜕2𝐲), the derivative 𝜕2𝐲 is treated as a known quantity, while 𝜕1𝑆11(𝜕1𝐲, ⋅) is treated as a nonlinear second 
derivative operator applied along the 𝑥1 axis. Making use of the nonlinear variable-coefficient discretization proposed in Section 3.2 
leads to the discretization

𝜕1𝑆11(𝐱𝑖,𝑗 ) =
𝑤
∑

𝑘=−𝑤
𝐷0𝑘𝑆11

( 𝑤
∑

𝑙=−𝑤
𝐷𝑘𝓁𝐲𝑖+𝓁,𝑗 , 𝜕2𝐲𝑖+𝑘,𝑗

)

+ (Δ𝑥2𝑤). (49)

The term 𝜕2𝑆12 is obtained by permuting the axes, so that 𝜕1𝐲 is treated as a known quantity while 𝜕2𝑆12(⋅, 𝜕2𝐲) is treated as a nonlinear 
second derivative operator applied along the 𝑥2 axis. The result is

𝜕2𝑆12(𝐱𝑖,𝑗 ) =
𝑤
∑

𝑘=−𝑤
𝐷0𝑘𝑆12

(

𝜕1𝐲𝑖,𝑗+𝑘,
𝑤
∑

𝑙=−𝑤
𝐷𝑘𝑙𝐲𝑖,𝑗+𝑙

)

+ (Δ𝑥2𝑤). (50)

The terms 𝜕1𝑆21 and 𝜕2𝑆22 are obtained from Eqs. (49) and (50) by changing the first index on the stress function, and the residual 
vector at each point is taken to be 𝐫𝑓𝑖,𝑗 = 𝐟𝑖,𝑗 − (∇ ⋅ 𝐒)𝑖,𝑗 . Including the precomputation of 𝜕1𝐲 and 𝜕2𝐲, an order 𝑛 discretization of the 
residual depends on an 𝑛 + 1 by 𝑛 + 1 block of displacements centered on point 𝐱𝑖𝑗 , and requires 𝑛 + 1 evaluations of each component 
of the stress tensor.

Note that while the analysis so far has treated materials with a fixed constitutive relation, the extension to spatially-dependent 
material parameters is straightforward. In this case the constitutive relation is defined by a strain energy density function 𝑊 (𝐅,θ), 
where θ(𝐱) is a vector of spatially variable material properties defined at the grid points and the control points. For the interior 
discretization the values θ𝑖,𝑗 are incorporated into computations of the stress and elasticity tensors as needed. For the boundary 
treatment proposed in the next section, ghost values of θ can be calculated with the usual boundary stencil operations.

5.3.  Immersed interface boundary treatment

The boundary treatment for the residual 𝐫𝑓  follows the boundary treatment for cross derivatives defined in Section 4.2. At each 
control point, the displacement field 𝐲 is interpolated using points from the set ̄𝑐 . The derivatives 𝜕1𝐲 and 𝜕2𝐲 are precomputed at the 
affected points using centered difference stencils, evaluating the interpolant at each control point as needed to provide ghost values 
of 𝐲. To evaluate Eqs. (49) and (50) at the affected points, ghost values of 𝜕1𝐲 and 𝜕2𝐲 are obtained as needed by differentiating the 
same set of interpolants.

To reduce implementation complexity, Eqs. (49) and (50) are most easily viewed as a sum over 2𝑤 + 1 computation stages, each 
comprised of two stencil operations and a nonlinear function evaluation. For illustration, consider the computation of 𝜕1𝑆11. During 
stage 𝑘, the 1D difference stencil {𝐷𝑘𝑙}𝑤𝑙=−𝑤 is applied to 𝐲 along the 𝑥1 axis. The field 𝜕2𝐲 is then shifted by 𝑘 points along the same 
axis, which can be accomplished by applying the stencil with coefficients {𝛿𝑘𝑙}𝑤𝑙=−𝑤. Finally, the function 𝑆11(⋅, ⋅) is applied pointwise 
to the results of both stencil operations, and the output is weighted by the constant 𝐷0𝑘. This is repeated for −𝑤 ≤ 𝑘 ≤ 𝑤, and the 
results of all stages are summed to form the field (𝜕1𝑆11)𝑖,𝑗 . For efficiency, the 𝑘 = 0 stage can be omitted by noting that 𝐷00 = 0 for 
any stencil width 𝑤. At each stage both stencil operations are subject to the boundary treatment outlined above, which provides ghost 
points for the fields 𝐲 and 𝜕2𝐲.

For control points on Γ𝐷, displacement boundary conditions are enforced by incorporating the known displacement 𝐲̄(𝐱𝑐 ) into 
each polynomial interpolant. To discretize traction boundary conditions, let {𝑠𝑗𝑐 , 𝑠𝑗𝛼} be a set of vector stencil coefficients defined over 
the points in ̄𝑐 which approximate the gradient operator 𝜕𝑗 on the boundary, so that

𝐹𝑖𝑗 (𝐱𝑐 ) = 𝜕𝑗𝑢𝑖(𝐱𝑐 ) = 𝑠𝑗𝑐𝑢𝑖(𝐱𝑐 ) +
𝑛
∑

𝛼=1
𝑠𝑗𝛼𝑢𝑖(𝐱𝛼) + (Δ𝑥𝑘). (51)

The residual 𝐫𝑡𝑐 for each control point is computed from the discretized deformation gradient,
𝐫𝑐 = 𝐭̄𝑐 − 𝐒(𝐅𝑐 )𝐧𝑐 . (52)

Similarly, the residual vector for each control point on the material interface is defined by
𝐫[𝑡]𝑐 =

[

𝐭̄𝑐
]

−
[

𝐒+(𝐅+
𝑐 ) − 𝐒−(𝐅−

𝑐 )
]

𝐧𝑐 , (53)

with the displacement gradients 𝐅+(𝐱𝑐 ) and 𝐅−(𝐱𝑐 ) defined as in Eq. (51) for each side of the interface. In contrast to the linear elastic 
case, we do not solve the equations 𝐫𝑡𝑐 = 0 or 𝐫[𝑡]𝑐 = 0 individually at each control point. Instead, each control point on Γ𝑁  or Γ𝑀  adds 
two unknown displacement components 𝐲𝑐 and two nonlinear equations (one for each residual component) to the global nonlinear 
system, which is solved simultaneously for the displacement in the domain and on the boundaries.

5.4.  Nonlinear solution procedure

The spatial discretization provides a system of nonlinear equations which must be solved for the unknown displacements. As is 
typically the case for nonlinear elastic problems, a robust way to obtain solutions is to begin in the reference configuration with 
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homogeneous boundary conditions, then incrementally approach the final solution by a series of load steps. During each load step 
the applied displacements, loads, and body forces are increased by a small increment, and Newton’s method is used to solve for the 
equilibrium configuration. This strategy takes advantage of the fact that Newton’s method converges quickly when the initial guess 
is close to the final solution, and avoids the slow and unpredictable convergence behavior that results from a poor initial guess. For 
the examples shown below load stepping is only required to increment a prescribed displacement, and the corresponding algorithm 
is described below.

For the load stepping procedure, the displacements are partitioned into three groups (𝑦Ω, 𝑦𝐷Γ , 𝑦𝑁Γ ), which include the displacements 
at grid points, at control points with displacement boundary conditions, and at control points with traction boundary conditions, 
respectively. The displacements 𝑦𝐷Γ  are prescribed and serve as known parameters, while 𝑦Ω and 𝑦𝑁Γ  are the system unknowns. The 
residual vector can be partitioned into vectors (𝑟Ω, 𝑟𝑁Γ ), defined analogously, so that the full nonlinear system takes the form

𝑟Ω(𝑦Ω, 𝑦𝑁Γ ; 𝑦𝐷Γ ) = 0,

𝑟𝑁Γ (𝑦Ω, 𝑦𝑁Γ ) = 0.
(54)

Let 𝑦𝐷,𝑘−1Γ  be the prescribed boundary condition at step 𝑘 − 1, and (𝑦𝑘−1Ω , 𝑦𝑁,𝑘−1Γ ) be the corresponding solution. At step 𝑘, the displace-
ments are incremented by 𝛿𝑦𝐷Γ = 𝑦𝐷,𝑘Γ − 𝑦𝐷,𝑘−1Γ . For all results below the load path is linear, so that 𝛿𝑦𝐷Γ  is identical at each step. The 
initial guesses for the unknowns at step 𝑘 can be written as 𝑦𝑘Ω = 𝛿𝑦Ω + 𝑦𝑘−1Ω  and 𝑦𝑁,𝑘Γ = 𝛿𝑦𝑁Γ + 𝑦𝑁,𝑘−1Γ , where the increments (𝛿𝑦Ω, 𝛿𝑦𝑁Γ )
must be determined to satisfy Eq. (54) as closely as possible. Linearizing the system about the previous solution leads to a linear 
system for the increments,

(

𝜕𝑟Ω
𝜕𝑦Ω

)

𝛿𝑦Ω +

(

𝜕𝑟Ω
𝜕𝑦𝑁Γ

)

𝛿𝑦𝑁Γ = −

(

𝜕𝑟Ω
𝜕𝑦𝐷Γ

)

𝛿𝑦𝐷Γ ,

(

𝜕𝑟𝑁Γ
𝜕𝑦Ω

)

𝛿𝑦Ω +

(

𝜕𝑟𝑁Γ
𝜕𝑦𝑁Γ

)

𝛿𝑦𝑁Γ = 0,

(55)

where the Jacobian matrices are evaluated at (𝑦𝑘−1Ω , 𝑦𝑁,𝑘−1Γ ). After solving Eq. (55) to calculate the resulting initial guess, the solution 
at step 𝑘 is obtained with Newton’s method.

Both the load stepping procedure and Newton’s method require the derivative of the residual vector with respect to each unknown. 
Returning to Eq. (49), an infinitesimal perturbation 𝛿𝐲𝑖,𝑗 to the discrete displacement field results in a perturbation to the stress 
divergence 𝜕1𝑆(⋅)1 given by

𝛿(𝜕1𝑆(⋅)1)𝑖,𝑗 =
𝑤
∑

𝑘=−𝑤
𝐷0𝑘

𝜕𝑆(⋅)1

𝜕𝐅

(

𝜕1𝐲𝑖+𝑘,𝑗 , 𝜕2𝐲𝑖+𝑘,𝑗
)

∶
[

𝜕1𝛿𝐲𝑖+𝑘,𝑗 , 𝜕2𝛅𝐲𝑖+𝑘,𝑗
]

, (56)

where ∶ denotes tensor contraction and [𝐚, 𝐛] denotes the horizontal concatenation of two vectors to form a two by two tensor. The 
expression for 𝛿(𝜕2𝑆(⋅)2)𝑖,𝑗 is obtained by swapping axes. Eq. (56) is linear in the perturbation 𝛿𝐲, and can be used to assemble the 
Jacobian matrices required by the load stepping procedure. In practice, the derivatives (𝜕1𝐲𝑖+𝑘,𝑗 , 𝜕2𝐲𝑖+𝑘,𝑗 ) are evaluated only once at 
each grid point, and used to evaluate both the residual and the components of the elasticity tensor that enter the Jacobian matrices. 
The derivatives of the boundary residual 𝑟𝑁Γ  are comparatively straightforward: for each control point on Γ𝑁 , differentiating Eq. (52) 
yields

𝜕𝑟𝑡𝑖
𝜕𝑦𝑐𝑘

= 𝐴𝑖𝑗𝑘𝑙(𝐅𝑐 )𝑛𝑗𝑠𝑐𝑙 ,
𝜕𝑟𝑡𝑖
𝜕𝑦𝛼𝑘

= 𝐴𝑖𝑗𝑘𝑙(𝐅𝑐 )𝑛𝑗𝑠𝛼𝑙 . (57)

These derivatives are assembled to form the matrices 𝜕𝑟
𝑁
Γ

𝜕𝑦𝑁Γ
 and 𝜕𝑟

𝑁
Γ

𝜕𝑦Ω
, respectively.

5.5.  Verification for nonlinear elasticity

As a test case for the nonlinear discretization, an elastic body is subjected to a prescribed deformation of the form
𝑢1(𝐱) = 𝐴1 cos(2𝜋𝑥1) sin(2𝜋𝑥2), 𝑢2(𝐱) = −𝐴2 sin(2𝜋𝑥1) cos(2𝜋𝑥2), (58)

with 𝐴1 = 0.08 and 𝐴2 = 0.06. The geometry and solution domain are identical to the linear elastic test case shown in Fig. 4. A 
traction boundary condition is prescribed on the inner boundary, while a displacement boundary condition is prescribed on the outer 
boundary. The constitutive relation is a compressible Neo-Hookean model with strain energy density

𝑊 (𝐅) = 𝜇
2
(

𝐼1 − 2 − 2 log 𝐽
)

+ 𝜆
2
(𝐽 − 1)2, (59)

with Lamé parameters 𝜆 = 4∕3 and 𝜇 = 1. Here 𝐼1 = tr(𝐅𝑇𝐅) is the first invariant of the right Cauchy-Green deformation tensor and 
𝐽 = det 𝐅. The prescribed traction and body force are calculated so that Eq. (58) is an equilibrium configuration, leading to residual 
fields 𝐫𝑓 (𝐱) = 0 on Ω and 𝐫𝑡(𝐬) = 0 on Γ𝑁 . Fig. 8 illustrates both the deformed and undeformed configurations for this test case, as 
well as the magnitude of the deformation ‖𝐮(𝐱)‖2 and the Jacobian determinant 𝐽 = det 𝐅.

Fig. 9(a) plots the 𝐿∞ norm of the residual vector that results when the discretization from the previous section is applied to the 
equilibrium configuration. This residual reflects the truncation error in the discretization of both the equilibrium equation and the 
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Fig. 8. Manufactured solution used to test the convergence of the nonlinear elastic discretization. While all results are obtained using a uniform 
Cartesian grid, a post-processed body-fitted triangle mesh is overlaid here to illustrate the deformation of the material.

Fig. 9. Convergence of (a) the truncation error and (b) the solution error for a nonlinear elastic test case. Both the (4, 5) and (6, 7) discretizations 
achieve fourth and sixth order convergence in the 𝐿∞ norm for the displacement field.

traction boundary condition. For (4, 5) and (6, 7) discretizations, the residual exhibits clean third or fifth order spatial convergence, 
matching the convergence rates observed for linear elasticity. To evaluate the solution error, the displacement field is initialized using 
the analytical solution from Eq. (58), and Newton iterations are performed until the update at each iteration satisfies ‖𝛿𝐲‖∞ < 10−12. 
The convergence of the 𝐿∞ error in the displacement field is shown in Fig. 9(b), demonstrating that both the fourth and sixth order 
discretizations achieve their nominal order of accuracy.

To test the nonlinear discretization with material interfaces, the same deformation is applied to the geometry from the linear 
elastic test case illustrated in Fig. 6. The outer material is Neo-Hookean with parameters 𝜆+ = 1.1 and 𝜇+ = 0.6, while the inner 
material has a Saint Venant-Kirchhoff strain energy density function

𝑊 = 𝜆
2
(tr𝐄)2 + 𝜇tr(𝐄2), 𝐄 = 1

2
(

𝐅𝑇𝐅 − 𝐈
)

(60)

with parameters 𝜇− = 0.8 and 𝜆− = 1.5. Fig. 10(a) illustrates the body in the deformed configuration, colored by the magnitude of the 
body force in the deformed configuration ̄𝐟∕𝐽 . While the deformation is continuous, both the traction and body force are discontinuous 
across the material interface. Fig. 10(b) plots the convergence of the displacement field and the first Piola-Kirchhoff traction on the 
inner surface of the material interface, after solving the nonlinear system to a tolerance of ‖𝛿𝐲‖∞ < 10−12. Both quantities converge 
at fourth or sixth order for the (4, 5) and (6, 7) discretizations.
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Fig. 10. Nonlinear elasticity with material interfaces. (a) The deformed configuration of the elastic body, colored by the body force per deformed 
volume ‖𝐟‖2∕𝐽 . A post-processed body-fitted triangle mesh is overlayed here to illustrate the deformation of the material, while all computations 
are performed on a uniform Cartesian grid. (b) The 𝐿∞ error in both the deformation field and the first Piola-Kirchhoff traction vector on the inner 
sided of the material interface. The (4, 5) and (6, 7) discretizations achieve fourth and sixth order convergence for both quantities.

6.  Examples

In this section we show several examples of the ability of our code to solve challenging problems across single and multiple 
materials, and linear and nonlinear responses.

6.1.  Linear periodic lattice

This linear elastic test case showcases the ability of high order immersed methods to capture complex geometry without mesh 
generation. The (4, 5) discretization is applied to a gyroid lattice structure with material interfaces, represented implicitly by the 
level sets

𝜓top(𝐱) = 𝑥2 − 0.14 − 0.04 cos(10𝜋(𝑥1 + 0.02)),
𝜓bottom(𝐱) =−𝑥2 + 0.66 + 0.04 cos(10𝜋(𝑥1 − 0.02)),

𝜓lattice(𝐱) = 1 −
[

sin(10𝜋𝑥1) + cos(10𝜋𝑥2) +
√

2 cos(10𝜋𝑥1) sin(10𝜋𝑥2)
]2
,

(61)

which form the top surface, bottom surface, and lattice structure illustrated in Fig. 11. The lattice consists of two isotropic elastic 
materials which occupy the regions 𝜓lattice(𝐱) > 0 and 𝜓lattice(𝐱) < 0, with material properties defined by the Poisson ratios and Young’s 
moduli 𝜈− = 0.3, 𝐸− = 3, 𝜈+ = 0.35, 𝐸+ = 1. Displacement boundary conditions are prescribed on both the top and bottom surfaces, 
with the top surface displaced by a distance 𝛿𝑢1 = 0.05 along the 𝑥1 axis and the bottom surface fixed in place. On material interfaces 
there are no jumps in the displacement or traction, so that [𝐮̄] = 0 and [𝐭̄] = 0. The unit square solution domain is discretized with 
𝑁𝑥 = 176 grid points along each axis, and the resulting linear system is inverted with a sparse direct solver.

For post-processing purposes, the displacement gradient 𝜕𝑗𝑢𝑖 can be calculated at each grid point using a centered difference stencil 
with an immersed interface boundary treatment. At the control points, the displacement gradient is calculated via boundary stencil 
operations. This allows the stress tensor 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜕𝑙𝑢𝑘 to be computed at each grid point and each control point. Fig. 11 plots the 
stress distribution inside the lattice structure, in particular the Von Mises stress 𝜎𝑉𝑀 =

√

𝜎211 + 𝜎
2
22 − 𝜎11𝜎22 + 3𝜎212 and a hydrostatic 

stress measure 𝜎𝐻 = (𝜎11 + 𝜎22)∕2. While there is no jump in the traction 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 across the material interfaces, discontinuities in 
other stress measures are present and sharply resolved by the high order immersed interface discretization.

6.2.  Nonlinear periodic lattice

In this section, the fourth order nonlinear discretization is applied to the lattice structure introduced in previous section. The ge-
ometry and spatial resolution are kept identical, and the inner material is removed to yield a single material problem. The hyperelastic 
material is Neo-Hookean with parameters that correspond to a linear elastic response with 𝐸 = 1 and 𝜈 = 0.35, and the upper surface 
of the lattice is subject to a deformation 𝛿𝐲 = [0.15, 0.45] applied over five load steps. The deformed and undeformed configuration 
are shown in Fig. 12, colored by the Jacobian determinant 𝐽 = det 𝐅, which illustrates the extreme stretching of the material.
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Fig. 11. Stress distribution inside of a multi-material gyroid lattice. The structure has a fixed lower surface and upper surface which displaced 
horizontally. The (a) von Mises stress (b) hydrostatic stress are both discontinuous across material interfaces, and both are sharply resolved by the 
fourth order immersed interface discretization.

Fig. 12. The undeformed (left) and deformed (right) configurations of a hyperelastic gyroid lattice, colored by the Jacobian determinant 𝐽 = det 𝐅. 
The deformation is based on a displacement of the top boundary 𝛿𝐲 = [0.15, 0.45].

6.3.  Honeycomb lattice

To demonstrate the flexibility and accuracy of our approach, we apply it to an architectured structure consisting of interconnected 
finite-width rods. The structure is defined as a list of 𝑁 line segments  = {𝐩(𝑖)𝑠 ,𝐩

(𝑖)
𝑒 , 𝑤(𝑖)

| 1 ≤ 𝑖 ≤ 𝑁}, with 𝐩(𝑖)𝑠,𝑒 the start and end position 
and 𝑤(𝑖) the width of the 𝑖th line segment in the list. Different line segments may share the same starting or ending position, though 
they may not intersect. In this example, for simplicity, we set 𝑤(𝑖) = 𝑤 as a constant throughout the lattice.

To create our discretization, we define a signed-distance function based on . Since our discretization requires a minimum radius 
of curvature of the interface (Eq. (3)), we apply a small rounding by replacing every rod-rod intersection with a circular arc of a 
specified radius of curvature. This procedure leads to a pre-processing step that is further detailed in Appendix A. After the signed-
distance function is evaluated on the grid, the intersections between the interface and the grid lines are evaluated by a level-set based 
interpolation strategy [30,35, appendices].

We compare our results to those obtained by the commercial finite element solver Abaqus. The Abaqus results are obtained from 
a traditional triangular body-fitted mesh on the original rod-based geometry. The finite elements used are 6-node quadratic plain 
stress elements (CPS6), and a standard linear solve is performed. For simulations where the interior of the structure is filled with a 
second material, the embedded element approach is used.

We choose a geometry based on a honeycomb lattice with 29 × 29 cells, each with an edge length of 22.7 µm, and some edges 
randomly removed. The width of the rods is set to 𝑤 = 0.01mm. The lattice is made of an isotropic linearly elastic model with Poisson’s 
ratio 𝜈 = 0.3 and Young’s modulus 𝐸 = 70MPa. Displacement boundary conditions are prescribed on the top and bottom of the lattice, 
with the top surface displaced horizontally by 𝛿𝑢1 = 0.01mm and the bottom surface fixed in place.

6.3.1.  Single material
For the single material case, all edges except those on the top and bottom of the material are traction free. The IIM results are run 

with a grid size of, effectively, 1.085 µm, using a fourth-order discretization described as above. The total number of active grid points 
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Fig. 13. The Von-Mises stress (left) and pressure (right) in the sheared honeycomb-like lattice structure, compared between the IIM results (left 
panel in each) and the FEM results (right panel in each). Insets provide successive close-ups, highlighted with dashed squares. Values are provided 
in units of kPa.

in the IIM grid, and hence the system size, is 416 204, whereas the FEM results are run with 37 645 elements for a total of 91 312 
nodes. We note the geometry is especially unfavorable for the IIM approach, since it has to resolve the small radius of curvature at 
the corners. In this light, we will focus on an accuracy comparison, demonstrating the ability of IIM to produce accurate results even 
in this extreme case, without accounting for performance. Future work would be needed to investigate further the efficient handling 
of geometries with sharp corners in a more explicit way, and/or using adaptive grids to locally refine the grid near the corners.

Fig. 13 shows the Von Mises stress (left) and the pressure (right) compared between the IIM and the FEM results on the undeformed 
lattice. For the IIM results, a contour plot is created from a triangulated grid containing both the grid points and the control points 
similar to Figs. 8 and 10(a) above. The FEM results are visualized directly from Abaqus. The figures are rendered with the same 
colormap so that a one-to-one comparison is possible. The comparison shows that the IIM results match very well with the reference 
FEM results, both for the stress distribution within the individual rods, and the macroscopic stress field of the entire structure.

6.3.2.  Composite structure
Extending the previous example, we now fill in all closed cavities in the honeycomb structure with a softer material of Young’s 

modulus 𝐸2 = 10MPa and Poisson’s ratio 𝜈2 = 0.3. In the IIM, we apply jump boundary conditions on all material interfaces, and in 
Abaqus embedded elements are used. All exterior boundaries are traction free, and as above, displacement boundary conditions are 
applied at the top and bottom boundaries. The IIM results are run with an effective grid spacing of 0.72 µm, again using a fourth-order 
discretization. The total number of active grid points in the IIM grid, including both material regions, is 2 132 986. The FEM results 
are run using 541 364 elements for a total of 1 428 947 nodes.

Fig. 14 shows the same visual comparison as for a single material, demonstrating the ability of the IIM to recover micro- and 
macro-scale stress distributions also in multi-material composite structures. To perform a more quantitative comparison, we plot the 
stresses and vertical displacements evaluated across a line at 𝑦 = 0.5mm throughout the composite structure. For the IIM, this line 
corresponds to a gridline so that the stress jumps at the control points can be included in the plot wherever the grid line intersects a 
material boundary (or interface). The FEM results are obtained using the built-in ‘X-Y data along a path’ routine in Abaqus. Fig. 15 
shows the stress and displacement distributions along this line, across the entire structure (left) and for the center 0.2mm (right). 
Again, the IIM results match well with the embedded element results, both inside the soft matrix and inside the stiffer lattice structure. 
Further, even more noticeable here is the embedded element method’s treatment of material interfaces, leading to some oscillations 
in the visualized stresses near interface boundaries , though this could also be partially attributed to the interpolation routine. On 
the other hand, the IIM results remain smooth up to the material interfaces.

7.  Discussion

The analysis and results above demonstrate that the proposed immersed method is able to achieve high fidelity results with high 
convergence orders for a variety of single and multi-material, linear and nonlinear elasticity problems.

As mentioned in the introduction, prevalent immersed methods in solid mechanics are typically based on immersed finite element 
methods. The main benefit of our approach is the simplicity of the required geometric information of the problem. Specifically, the 
proposed algorithm requires only local information: a list of intersection locations between the geometry and the Cartesian grid, with 
each intersection tagged by a position, surface normal vector, a type of boundary/interface condition, and an associated displacement, 
stress, or jump value. Notably, the algorithm itself does not require curvature information of the geometry, nor does it require any 
information about the topology of the intersections, as the corrections are handled locally for each finite difference stencil. Thus, 
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Fig. 14. The Von-Mises stress (left) and pressure (right) in the sheared honeycomb-like lattice structure with a soft matrix material, compared 
between the IIM results (left panel in each) and the FEM results (right panel in each). Insets provide successive close-ups, highlighted with dashed 
squares. Values are provided in units of kPa.

Fig. 15. Comparison of the Von Mises stress (top) and 𝑦-displacement (bottom) along a line crossing through the composite honeycomb structure at 
𝑦 = 0.5mm. The IIM results are shown in black, including thin lines connecting the jump in stress values across material interfaces. The FEM results, 
obtained with an embedded element method, are shown in red. The right plots show zoom-ins of the left plots, with vertical dashed lines marking 
material transitions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the approach avoids all numerical integration challenges common to immersed finite element methods, while retaining high order 
accuracy in the interior and boundary solutions.

Throughout this work, we use the algorithm proposed in [30] to extract the geometric intersection information from a level 
set function. Functional geometry descriptions like signed distance functions are increasingly used natively in various modeling 
packages, driven by organic shapes unlocked in additive manufacturing [41]. Further, signed distance function based geometries are 
extensively used in generative modeling, e.g. [42]. For geometries that are defined traditionally using e.g. spline or constructive solid 
geometry representations (CSG), one could develop specialized geometric tools to find intersections directly. More readily, algorithms 
to compute signed distance functions or level-set fields from 2D or 3D explicit surface representations are prevalent in the computer 
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graphics community, e.g. based on the software EBGeometry [43,44], after which the required intersections can be found directly 
from the level-set field.

As with most other immersed approaches, our algorithm requires that geometries with high curvatures or thin features are dis-
cretized with sufficient resolution. In our case, the resolution requirement Eq. (3) ensures that the regions sketched in Fig. 1 contain 
enough points to form a polynomial of the desired order. In addition, our algorithm detects whether the least-squares system based 
on ±

𝑐  is ill-posed, thus identifying the need to refine in thin regions. Alternatively, one could also reduce the order of accuracy of 
the polynomial 𝑝𝑐 (𝐱) locally to the available points in the regions ±

𝑐 .
At a corner, i.e. in the limit of infinite curvature, the resolution requirement Eq. (3) is always violated, and moreover a unique 

normal vector can not be defined. Corner features can thus not directly be discretized with the same order of accuracy as smooth 
geometries in our method, and in practice we therefore explicitly disallow such geometries. Similar concerns about non-smooth 
geometric features are common across immersed methods, e.g. as imposed by [13] for high order integration of implicit surfaces, 
recognized in [45] for level-set reinitialization, and discussed in [46] for cut-cell finite volume methods. To treat robustly corners 
in practice, as noted in [46], a mollification strategy is an effective approach. In Section 6.3 we use an ad-hoc specialized algorithm 
for lattice-type structures of constant thickness by introducing a single length scale for replacing the corners with circular arcs. More 
generally, smooth minimum approaches can be used on signed distance functions, which are common in geometric analyses and 
cut-cell methods. For instance, [46] introduces smooth minimum function that restores the high order convergence rate on their 
Poisson’s equation solution. Similarly, [47] and more recently [48] provide strategies to systematically obtain differentiable smooth 
level-set or distance-based geometries in two and three dimensions.

Finally, we note that even with the sharp corner constraint in place the resulting subset of possible geometries contains many 
cases of practical interest: these include shell-based metamaterials [49,50], biological shapes [51], and organically designed shapes 
for additive manufacturing [52]

8.  Conclusion

This work poses several contributions to the field of solving elasticity problems using immersed finite difference/volume dis-
cretization methods. First, we show high order accuracy of the solution in the domain, as well as solution quantities on the immersed 
interface. Second, we demonstrate robust treatment of boundary conditions (prescribed displacement or traction) and interface con-
ditions (jump conditions in displacement and traction) on complex geometries. Third, our method can handle non-homogeneous 
isotropic and anisotropic material properties in each solution domain. Lastly, the method extends to nonlinear large strain problems. 
This makes the proposed approach a robust platform for use in, for instance, level-set based pipelines for topology optimization or 
data-driven machine learning models.

This work also creates a promising starting point for further developments. The extension to three-dimensional static elastic 
problems is largely an implementation problem, as all important discretizations extend naturally to 3D. In fact, we have already 
shown 3D results of high order immersed discretizations of scalar elliptic problems in [32], and similarly for hyperbolic and parabolic 
PDEs in [30,35]; these are all based on the same approach as presented here. Moreover, the approach integrates well with high order 
grid refinement techniques, such as our wavelet-based grid adaptation method developed in [53] and used in [32].

The approach also provides a viable starting ground for fluid-structure interaction problems. For this, an Eulerian method such as 
the reference map technique [54,55] can be used. Our immersed discretizations could offer a sharp, high order interface approach for 
handling continuity of displacement and stress across the fluid-solid boundary. The treatment of moving boundary problems while 
maintaining high order was discussed in [31].

Open challenges in our method pertain to the explicit treatment of sharp corners (in 2D and 3D) and edges (in 3D). The immersed 
interface method as discussed here relies both on a finite curvature and a well-defined normal vector to exist along the embedded 
boundary. In principle, different interpolation schemes could be used to alleviate the first constraint, and local regularization methods 
can be developed for cases where control points do not have well-defined normal vectors. These approaches are left for future work.
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Appendix A.  Appendix

To create a honeycomb lattice signed distance function with rounded corners, we perform a geometric pre-processing approach.
We start from a rod-based structure defined as a list of 𝑁 centerline segments  = {𝐩(𝑖)𝑠 ,𝐩

(𝑖)
𝑒 , 𝑤(𝑖)

| 1 ≤ 𝑖 ≤ 𝑁}, with 𝐩(𝑖)𝑠,𝑒 the start and 
end position and 𝑤(𝑖) the width of the 𝑖th centerline segment in the list. As an example, Fig. A.16 shows a simple constant-thickness 
three-rod lattice whose centerline segments are drawn using black dashed lines. Our pre-processing approach starts by extruding 
all line segments in their normal direction, creating a ‘top’ and ‘bottom’ line segment for each rod as shown in Fig. A.16a. In the 
next step, we identify all interior corners and open edges, and determine which of the extruded line segments need to be connected. 
Finally, we use the tangent vectors of the extruded line segments to compute the center and opening angle of the arc connecting 
the tangent vectors. The curvature of the arc is provided as an input argument, so that the solution is unique. Lastly, we shorten the 
original extruded line segments to ensure they smoothly connect to the arcs. This leads to Fig. A.16 (right), where the shortened line 
segments are highlighted in red, and the arcs in blue.

Fig. A.16. Geometric processing approach for rod-based lattice, shown for a three-rod structure with centerline segments drawn using black dashed 
lines. (a) naive extrusion of the centerlines to create a thickened geometry. (b) Final structure after connecting edge segments (in red) by rounding 
arcs (in blue). Here the thickness 𝑤 = 0.05 and the radius of curvature 𝑅 = 0.0125, using the same units as the plot. (c) After constructing the signed 
distance function (colors) the intersections (black circles) and normal vectors (lines) are constructed, here shown on a grid with uniform spacing 
ℎ = 1∕128 and zoomed-in to the bottom-left part of the geometry. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

After this processing step, the thickened geometry is represented in a list  = {𝐪(𝑖)𝑠 ,𝐪
(𝑖)
𝑒 ‖ 1 ≤ 𝑖 ≤ 𝑁𝑞 ;(𝑗)

| 1 ≤ 𝑗 ≤ 𝑁𝑎}. Here 𝐪(𝑖)𝑠,𝑒
denotes the start/end position of the 𝑁𝑞 straight line segments (the red lines in Fig. A.16b). Further, (𝑗) defines the 𝑗th arc connecting 
the straight line segments at each intersection (the blue arcs in Fig. A.16b). Each arc is defined by its center, radius of curvature, and 
starting/ending angle.

We compute the signed distance function at any point on our Cartesian grid through a search for the closest element in , 
Fig. A.16c. This search is accelerated using a cell-list approach. Finally, once we have the signed distance function evaluated on the 
grid, we compute the location of the intersections and the normal vectors through high order interpolation, as detailed in [30]. The 
resulting intersections and normal vectors for part of the geometry discussed here are shown in Fig. A.16c as the black circles and 
black lines, respectively.

References

[1] A. Duster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Eng. 197 
(2008) 3768–3782. https://doi.org/10.1016/j.cma.2008.02.036

[2] D. Schillinger, M. Ruess, The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. 
Comput. Methods Eng. 22 (2014) 391–455. https://doi.org/10.1007/s11831-014-9115-y

[3] P. Hansbo, M.G. Larson, S. Zahedi, A cut finite element method for a stokes interface problem, Appl. Numer. Math. 85 (2014) 90–114. https://doi.org/10.1016/
j.apnum.2014.06.009

[4] E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng. 104 
(2014) 472–501. https://doi.org/10.1002/nme.4823

[5] I. Babuska, J.M. Melenk, The partition of unity method, Int. J. Numer. Methods Eng. 40 (1997) 727–758. 
[6] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131–150. 
[7] K.W. Cheng, T. Fries, Higher-order XFEM for curved strong and weak discontinuities, Int. J. Numer. Methods Eng. 82 (2009) 564–590. https://doi.org/10.1002/

nme.2768

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269 

21 

https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1007/s11831-014-9115-y
https://doi.org/10.1007/s11831-014-9115-y
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1002/nme.4823
https://doi.org/10.1002/nme.4823
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0005
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0006
https://doi.org/10.1002/nme.2768
https://doi.org/10.1002/nme.2768
https://doi.org/10.1002/nme.2768
https://doi.org/10.1002/nme.2768


James and Wim M.

[8] T. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng. 84 (2010) 
253–304. https://doi.org/10.1002/nme.2914

[9] F. de Prenter, C.V. Verhoosel, E.H. van Brummelen, M.G. Larson, S. Badia, Stability and conditioning of immersed finite element methods: analysis and remedies, 
Arch. Comput. Methods Eng. 30 (2023) 3617–3656. https://doi.org/10.1007/s11831-023-09913-0

[10] A. Abedian, J. Parvizian, A. Duster, H. Khademyzadeh, E. Rank, Performance of different integration schemes in facing discontinuities in the finite cell method, 
Int. J. Comput. Methods 10 (2013) 1350002. https://doi.org/10.1142/s0219876213500023

[11] L. Kudela, N. Zander, S. Kollmannsberger, E. Rank, Smart octrees: accurately integrating discontinuous functions in 3D, Comput. Methods Appl. Mech. Eng. 306 
(2016) 406–426. https://doi.org/10.1016/j.cma.2016.04.006

[12] S.C. Divi, C.V. Verhoosel, F. Auricchio, A. Reali, E.H. van Brummelen, Error-estimate-based adaptive integration for immersed isogeometric analysis, Comput. 
Math. Appl. 80 (2020) 2481–2516. https://doi.org/10.1016/j.camwa.2020.03.026

[13] T. Fries, S. Omerovic, Higher-order accurate integration of implicit geometries, Int. J. Numer. Methods Eng. 106 (2015) 323–371. https://doi.org/10.1002/nme.
5121

[14] T. Fries, S. Omerovic, D. Schöllhammer, J. Steidl, Higher-order meshing of implicit geometries-Part I: integration and interpolation in cut elements, Comput. 
Methods Appl. Mech. Eng. 313 (2017) 759–784. https://doi.org/10.1016/j.cma.2016.10.019

[15] R.I. Saye, High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput. 37 (2015) A993–A1019. https:
//doi.org/10.1137/140966290

[16] R.I. Saye, High-order quadrature on multi-component domains implicitly defined by multivariate polynomials, J. Comput. Phys. 448 (2022) 110720. https:
//doi.org/10.1016/j.jcp.2021.110720

[17] J.E. Fromm, N. Wunsch, R. Xiang, H. Zhao, K. Maute, J.A. Evans, D. Kamensky, Interpolation-based immersed finite element and isogeometric analysis, Comput. 
Methods Appl. Mech. Eng. 405 (2023) 115890. https://doi.org/10.1016/j.cma.2023.115890

[18] M. Berger, Cut Cells: Meshes and Solvers, Elsevier, 2017. https://doi.org/10.1016/bs.hna.2016.10.008
[19] E. Burman, Ghost penalty, C.R. Math. 348 (2010) 1217–1220. https://doi.org/10.1016/j.crma.2010.10.006
[20] S. Fernández-Méndez, A. Huerta, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004) 1257–1275. 

https://doi.org/10.1016/j.cma.2003.12.019
[21] F. de Prenter, C. Lehrenfeld, A. Massing, A note on the stability parameter in Nitsche’s method for unfitted boundary value problems, Comput. Math. Appl. 75 

(2018) 4322–4336. https://doi.org/10.1016/j.camwa.2018.03.032
[22] E. Burman, A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions, SIAM J. Numer. Anal. 50 (2012) 1959–1981. 

https://doi.org/10.1137/10081784x
[23] D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S.K. Stoter, Y. Yu, Y. Zhao, The non-symmetric nitsche method for the parameter-free imposition of weak 

boundary and coupling conditions in immersed finite elements, Comput. Methods Appl. Mech. Eng. 309 (2016) 625–652. https://doi.org/10.1016/j.cma.2016.
06.026

[24] M. Theillard, L.F. Djodom, J.-L. Vié, F. Gibou, A second-order sharp numerical method for solving the linear elasticity equations on irregular domains and 
adaptive grids - application to shape optimization, J. Comput. Phys. 233 (2013) 430–448. https://doi.org/10.1016/j.jcp.2012.09.002

[25] X. Yang, Immersed interface method for elasticity problems with interfaces, Ph.D. thesis, 2004. https://www.proquest.com/dissertations-theses/immersed-
interface-method-elasticity-problems/docview/305165073/se-2 

[26] X. Yang, B. Li, Z. Li, The immersed interface method for elasticity problems with interfaces, Dyn. Contin. Discrete Impulsive Syst., Series A – Math. Anal. 10 
(2003) 783–808. Conference on Partial Differential Equations (PDE), Washington State University, Pullman, Washington, May 2002. 

[27] B. Wang, K. Xia, G.W. Wei, Matched interface and boundary method for elasticity interface problems, J. Comput. Appl. Math. 285 (2015) 203–225. https:
//doi.org/10.1016/j.cam.2015.02.005

[28] B. Wang, K. Xia, G.W. Wei, Second order method for solving 3D elasticity equations with complex interfaces, J. Comput. Phys. 294 (2015) 405–438. https:
//doi.org/10.1016/j.jcp.2015.03.053

[29] Y. Xing, L. Song, C.M. Fan, A generalized finite difference method for solving elasticity interface problems, Eng. Anal. Bound. Elem. 128 (2021) 105–117. 
https://doi.org/10.1016/j.enganabound.2021.03.026

[30] J. Gabbard, W.M. van Rees, A high-order 3D immersed interface finite difference method for the advection-diffusion equation, in: AIAA SCITECH 2023 Forum, 
2023, p. 2480. https://doi.org/10.2514/6.2023-2480

[31] J. Gabbard, W.M. van Rees, A high-order finite difference method for moving immersed domain boundaries and material interfaces, J. Comput. Phys. 507 (2024) 
112979. https://doi.org/10.1016/j.jcp.2024.112979

[32] J. Gabbard, A. Paris, W.M. van Rees, A high order multigrid-preconditioned immersed interface solver for the Poisson equation with boundary and interface 
conditions, 2025, arXiv:2503.22455

[33] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994) 
1019–1044. https://doi.org/10.1137/0731054

[34] Z. Li, K. Ito, The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, SIAM, 2006. 
[35] J. Gabbard, T. Gillis, P. Chatelain, W.M. van Rees, An immersed interface method for the 2D vorticity-velocity Navier–Stokes equations with multiple bodies, J. 

Comput. Phys. 464 (2022) 111339. https://doi.org/10.1016/j.jcp.2022.111339
[36] W. Thacher, H. Johansen, D. Martin, A high order cartesian grid, finite volume method for elliptic interface problems, J. Comput. Phys. 491 (2023) 112351. 
[37] W. Thacher, H. Johansen, D. Martin, A high order cut-cell method for solving the shallow-shelf equations, J. Comput. Sci. 80 (2024) 102319. 
[38] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys. 83 (1989) 32–78. 
[39] B. Merriman, Understanding the shu–osher conservative finite difference form, J. Sci. Comput. 19 (2003) 309–322. 
[40] H. Johansen, P. Colella, A cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys. 147 (1998) 60–85. https:

//doi.org/10.1006/jcph.1998.5965
[41] F. Veloso, J. Gomes-Fonseca, P. Morais, J. Correia-Pinto, A.C. Pinho, J.L. Vilaca, Overview of methods and software for the design of functionally graded lattice 

structures, Adv. Eng. Mater. 24 (2022) 2200483. https://doi.org/10.1002/adem.202200483
[42] G. Chou, Y. Bahat, F. Heide, Diffusion-SDF: conditional generative modeling of signed distance functions, 2023,
[43] R. Marskar, EBGeometry repository, 2023, https://rmrsk.github.io/EBGeometry/
[44] R. Marskar, An adaptive cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in 

complex geometries, J. Comput. Phys. 388 (2019) 624–654. https://doi.org/10.1016/j.jcp.2019.03.036
[45] R. Saye, High-order methods for computing distances to implicitly defined surfaces, Commun. Appl. Math. Comput. Sci. 9 (2014) 107–141. https://doi.org/10.

2140/camcos.2014.9.107
[46] D. Devendran, D. Graves, H. Johansen, T. Ligocki, A fourth-order Cartesian grid embedded boundary method for Poisson’s equation, Commun. Appl. Math. 

Comput. Sci. 12 (2017) 51–79. https://doi.org/10.2140/camcos.2017.12.51
[47] Q. Li, Smooth piecewise polynomial blending operations for implicit shapes, Comput. Graphics Forum 26 (2007) 157–171. https://doi.org/10.1111/j.1467-8659.

2007.01011.x
[48] J.E. Hicken, S. Kaur, An explicit level-set formula to approximate geometries, 2022, https://doi.org/10.2514/6.2022-1862
[49] C. Bonatti, D. Mohr, Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments, J. 

Mech. Phys. Solids 122 (2019) 1–26. https://doi.org/10.1016/j.jmps.2018.08.022
[50] S. Dhulipala, C.M. Portela, Curvature-guided mechanics and design of spinodal and shell-based architected materials, 2025, arXiv:2505.21509
[51] G. Domokos, A. Goriely, A.G. Horvath, K. Regos, Soft cells and the geometry of seashells, PNAS Nexus 3 (2024) pgae311. https://doi.org/10.1093/pnasnexus/

pgae311

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269 

22 

https://doi.org/10.1002/nme.2914
https://doi.org/10.1002/nme.2914
https://doi.org/10.1007/s11831-023-09913-0
https://doi.org/10.1007/s11831-023-09913-0
https://doi.org/10.1142/s0219876213500023
https://doi.org/10.1142/s0219876213500023
https://doi.org/10.1016/j.cma.2016.04.006
https://doi.org/10.1016/j.cma.2016.04.006
https://doi.org/10.1016/j.camwa.2020.03.026
https://doi.org/10.1016/j.camwa.2020.03.026
https://doi.org/10.1002/nme.5121
https://doi.org/10.1002/nme.5121
https://doi.org/10.1002/nme.5121
https://doi.org/10.1002/nme.5121
https://doi.org/10.1016/j.cma.2016.10.019
https://doi.org/10.1016/j.cma.2016.10.019
https://doi.org/10.1137/140966290
https://doi.org/10.1137/140966290
https://doi.org/10.1137/140966290
https://doi.org/10.1137/140966290
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1016/j.cma.2023.115890
https://doi.org/10.1016/j.cma.2023.115890
https://doi.org/10.1016/bs.hna.2016.10.008
https://doi.org/10.1016/bs.hna.2016.10.008
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.cma.2003.12.019
https://doi.org/10.1016/j.cma.2003.12.019
https://doi.org/10.1016/j.camwa.2018.03.032
https://doi.org/10.1016/j.camwa.2018.03.032
https://doi.org/10.1137/10081784x
https://doi.org/10.1137/10081784x
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.cma.2016.06.026
https://doi.org/10.1016/j.jcp.2012.09.002
https://doi.org/10.1016/j.jcp.2012.09.002
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0025
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0025
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0026
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0026
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.cam.2015.02.005
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.jcp.2015.03.053
https://doi.org/10.1016/j.enganabound.2021.03.026
https://doi.org/10.1016/j.enganabound.2021.03.026
https://doi.org/10.2514/6.2023-2480
https://doi.org/10.2514/6.2023-2480
https://doi.org/10.1016/j.jcp.2024.112979
https://doi.org/10.1016/j.jcp.2024.112979
http://arXiv.org/abs/2503.22455
https://doi.org/10.1137/0731054
https://doi.org/10.1137/0731054
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0033
https://doi.org/10.1016/j.jcp.2022.111339
https://doi.org/10.1016/j.jcp.2022.111339
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0035
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0036
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0037
http://refhub.elsevier.com/S0045-7825(25)00541-9/sbref0038
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1006/jcph.1998.5965
https://doi.org/10.1002/adem.202200483
https://doi.org/10.1002/adem.202200483
https://doi.org/10.1016/j.jcp.2019.03.036
https://doi.org/10.1016/j.jcp.2019.03.036
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/10.2140/camcos.2017.12.51
https://doi.org/10.2140/camcos.2017.12.51
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.1111/j.1467-8659.2007.01011.x
https://doi.org/10.2514/6.2022-1862
https://doi.org/10.2514/6.2022-1862
https://doi.org/10.1016/j.jmps.2018.08.022
https://doi.org/10.1016/j.jmps.2018.08.022
http://arXiv.org/abs/2505.21509
https://doi.org/10.1093/pnasnexus/pgae311
https://doi.org/10.1093/pnasnexus/pgae311
https://doi.org/10.1093/pnasnexus/pgae311
https://doi.org/10.1093/pnasnexus/pgae311


James and Wim M.

[52] O. Al-Ketan, D.-W. Lee, R.K. Abu Al-Rub, Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials, Addit. Manuf. 48 
(2021) 102418. https://doi.org/10.1016/j.addma.2021.102418

[53] T. Gillis, G. Winckelmans, P. Chatelain, Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries, J. Comput. Phys. 354 
(2018) 403–416. https://doi.org/10.1016/j.jcp.2017.10.042

[54] K. Kamrin, J.C. Nave, An Eulerian approach to the simulation of deformable solids: application to finite-strain elasticity, 2009, https://doi.org/10.48550/ARXIV.
0901.3799

[55] K. Kamrin, C.H. Rycroft, J.C. Nave, Reference map technique for finite-strain elasticity and fluid-solid interaction, J. Mech. Phys. Solids 60 (2012) 1952–1969. 
https://doi.org/10.1016/j.jmps.2012.06.003

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118269 

23 

https://doi.org/10.1016/j.addma.2021.102418
https://doi.org/10.1016/j.addma.2021.102418
https://doi.org/10.1016/j.jcp.2017.10.042
https://doi.org/10.1016/j.jcp.2017.10.042
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.48550/ARXIV.0901.3799
https://doi.org/10.1016/j.jmps.2012.06.003
https://doi.org/10.1016/j.jmps.2012.06.003

	A high-order immersed finite-difference discretization for solving linear and nonlinear elasticity problems 
	1 Introduction
	2 Discretization of the constant-coefficient scalar Poisson equation
	2.1 Discretization of immersed boundaries
	2.2 Discretization of immersed interfaces

	3 Discretization of variable coefficient scalar Poisson equation
	3.1 Bilinear stencils for the variable coefficient operator
	3.2 Two constructions for high order bilinear stencils
	3.3 Immersed interface discretization with variable coefficients
	3.4 Verification for the variable-coefficient Poisson equation

	4 Linear elasticity
	4.1 Continuous formulation
	4.2 Immersed interface discretization
	4.2.1 Cross derivative terms with variable coefficients

	4.3 Verification for linear elasticity

	5 Nonlinear elasticity
	5.1 Continuous formulation
	5.2 Interior discretization
	5.3 Immersed interface boundary treatment
	5.4 Nonlinear solution procedure
	5.5 Verification for nonlinear elasticity

	6 Examples
	6.1 Linear periodic lattice
	6.2 Nonlinear periodic lattice
	6.3 Honeycomb lattice
	6.3.1 Single material
	6.3.2 Composite structure


	7 Discussion
	8 Conclusion
	A Appendix


