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We present a high-order sharp treatment of immersed moving domain boundaries and material 
interfaces, and apply it to the advection-diffusion equation in two and three dimensions. The 
spatial discretization combines dimension-split finite difference schemes with an immersed 
boundary treatment based on a weighted least-squares reconstruction of the solution, providing 
stable discretizations with up to sixth order accuracy for diffusion terms and third order accuracy 
for advection terms. The temporal discretization relies on a novel strategy for maintaining high-

order temporal accuracy in problems with moving boundaries that minimizes implementation 
complexity and allows arbitrary explicit or diagonally-implicit Runge-Kutta schemes. The 
approach is broadly compatible with popular PDE-specialized Runge-Kutta time integrators, 
including low-storage, strong stability preserving, and diagonally implicit schemes. Through 
numerical experiments we demonstrate that the full discretization maintains high-order spatial 
and temporal accuracy in the presence of complex 3D geometries and for a range of boundary 
conditions, including Dirichlet, Neumann, and flux conditions with large jumps in coefficients.

1. Introduction

Moving domain boundaries and material interfaces are a hallmark of many single- and multiphysics problems, including multi-

phase flows and fluid-structure interaction. For stationary surfaces it is feasible to generate a mesh that conforms to the problem 
geometry. However, for moving surfaces the cost of mesh adaptation and remeshing can become prohibitively high. This is particu-

larly relevant in large-scale parallel simulations, which may require a significant communication overhead to maintain mesh quality 
and load balance.

Immersed methods offer an alternative where the surface geometry is incorporated within the discretization scheme, so that 
regular, structured grids can be used. In these schemes the surface is typically superimposed on a background Cartesian grid and 
the discretization is locally altered to account for the boundary or interface conditions prescribed on the immersed surface. The 
first immersed methods were developed with low order (second or lower) spatial accuracy [1–3], but recent progress has generated 
a variety of immersed methods for stationary geometries that treat sharply defined boundaries with third order spatial accuracy 
or higher. Notable examples include explicit dimension-split finite difference schemes in 2D [4–6] and in 3D [7,8]; compact finite 
difference schemes in 2D [9–13] and 3D [14,15]; inverse Lax-Wendroff (ILW) finite difference schemes for 2D hyperbolic PDEs 
[16–22]; cut-cell finite volume schemes in 2D [23,24] and 3D [25]; and implicit-mesh discontinuous Galerkin methods in 2D [26]

* Corresponding author.
Available online 2 April 2024
0021-9991/© 2024 Elsevier Inc. All rights reserved.

E-mail address: wvanrees@mit.edu (W.M. van Rees).

https://doi.org/10.1016/j.jcp.2024.112979

Received 26 October 2023; Received in revised form 27 March 2024; Accepted 27 March 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:wvanrees@mit.edu
https://doi.org/10.1016/j.jcp.2024.112979
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.112979&domain=pdf
https://doi.org/10.1016/j.jcp.2024.112979


Journal of Computational Physics 507 (2024) 112979J. Gabbard and W.M. van Rees

and 3D [27,28], enabled by the construction of high-order quadrature rules on implicitly defined cut cells [29,30]. Together these 
methods cover a variety of PDEs relevant in fluid and solid mechanics, including reactive gas dynamics [18], linear elastodynamics 
[28], the compressible Navier-Stokes equations [7,21,6], and the incompressible Navier-Stokes equations [9,11,13].

Despite rapid progress in the development of high-order immersed methods, very few of these methods allow for moving ge-

ometries. This is due in part to the difficulty of achieving high order temporal convergence near moving surfaces, which requires 
sharp immersed methods to address the issue of “freshly cleared” computational elements [31]. As an immersed domain boundary 
moves across a stationary Cartesian grid, grid points continuously enter and exit the problem domain. Exiting or “freshly covered” 
points can typically be removed from the discretization without complication. However, entering or “freshly cleared” points enter 
the domain with no predefined value or time history, making it difficult to apply a multistep or multistage time integrator to these 
systems. Strategies to address this issue fall into two broad categories, which are discussed separately in the following paragraphs: 
altering the temporal discretization to account for a discontinuity at each cell crossing, or constructing artificial values of the solution 
and its history that are compatible with standard time integrators.

One of the earliest sharp immersed methods to incorporate moving boundaries through direct alteration of the temporal dis-

cretization is the immersed interface method (IIM) for a prototypical 1D nonlinear PDE developed in [32]. The IIM is applied both 
to the spatial discontinuities at the interface and to temporal discontinuities in the solution when grid points cross the immersed 
interface. The authors estimate each of these crossing times and the magnitude of the discontinuity based on the interface motion 
and boundary conditions, and this information is used to construct a semi-implicit Adams-Bashforth/Crank-Nicolson (ABCN) time 
integrator that is modified to maintain first order accuracy at freshly cleared cells. The approach is extended to the 2D incompressible 
Navier-Stokes equations in [33] and applied to fluid-structure interaction with both elastic membranes and rigid solid boundaries. 
Brehm and Fasel [34] replace the Adams-Bashforth method with a specialized semi-implicit discretization of nonlinear convective 
terms. By using the interface boundary condition to obtain higher derivatives of the boundary motion from higher derivatives of 
the solution, the authors are able to maintain second order accuracy at freshly-cleared cells. For explicit time integrators, Xu and 
Wang [35] apply the IIM to treat freshly cleared cells in each stage of a four stage Runge-Kutta scheme, treating each stage as its own 
Euler-like time step. The method exhibits first order temporal convergence at freshly cleared cells, with marginally lower error than 
time integration that completely ignores the temporal discontinuities. While these approaches successfully allow for sharp moving 
interfaces, they are all specialized to a particular integration scheme and are difficult to extend to higher-order accuracy or PDEs 
with more complex boundary conditions.

An alternative strategy for freshly cleared cells is to generate either an initial value or an artificial time history for uncovered 
points, which can be achieved through spatial interpolation, spatial extrapolation, or a combination of the two. Here we categorize 
these methods as interpolation-based if initial values are prescribed to points after they enter the problem domain, and extrapolation-

based if a time history is assigned to points while they lie outside of the problem domain. The interpolation-based approach was 
developed in [31,36] for moving-interface diffusion simulations and the 2D incompressible Navier-Stokes equations, in which the 
authors determine solution values at freshly cleared points based on a second-order spatial interpolation that incorporates an interface 
boundary condition. Similar interpolation-based approaches for the 3D Navier-Stokes equations are developed in [37,38] and applied 
to biologically-inspired unsteady 3D flows in [39,40], as well as to wind-turbine simulations with adaptive mesh refinement in [41]. 
For 3D compressible flows the interpolation-based freshly cleared cell treatment is extended to higher-order interpolants and higher-

order RK integrators in [42], and an analysis presented therein indicates that the order of accuracy of the freshly cleared cell 
treatment is largely determined by the order of the spatial interpolation. The method is applied to large-scale 3D aeroacoustics, and 
to simulations to fluid-structure interaction with thin compliant structures in [43]. A variation of this method that mixes spatial 
interpolation and extrapolation is introduced in [44] for simulations of incompressible 3D turbulence with moving boundaries. In 
this method all cells inside the fluid domain and adjacent to the boundary are considered “forcing points”. They are not included in 
the three-stage low-storage Runge-Kutta (LSRK) scheme used in the interior, and they are assigned spatially interpolated field values 
at each stage. However, they also receive right hand side values calculated with a ghost-fluid approach, even though these values 
are not required for time integration with stationary boundaries. When a forcing point enters further into the fluid domain due to 
boundary motion, these extra right hand side values form a time history compatible with the LSRK scheme. A related approach based 
on spatial extrapolation alone is developed in [17] for the compressible Euler equations, with the state variables being extrapolated 
outside of the computational domain at each stage of a three-stage strong stability preserving Runge-Kutta scheme. In a similar spirit, 
[16] discretizes a variety of linear time-dependent PDEs by extrapolating the state variables to multiple layers of ghost points at the 
start of each step, and solving the governing equations on an extended domain that shrinks by one ghost layer at each Runge-Kutta 
stage. Boundary motion is accounted for through additional ghost layers, so that the dynamics extend to any point which may enter 
the domain during a given time step.

While previous efforts have led to a variety of successful treatments of freshly cleared cells, none of these have demonstrated 
greater than second order accuracy in both space and time for the 3D advection-diffusion equation with moving boundaries. We 
attribute this to the relatively small number of high-order sharp immersed methods that have been applied in 3D simulations, 
even with stationary boundaries. Additionally, there is little work that quantifies the temporal errors associated with high order 
freshly cleared cell treatments, and few proposed treatments that are independent of a specific choice of time integrator. In this 
work we extend previous freshly cleared cell treatments based on extrapolation to high-order spatial discretizations and arbitrary 
high-order explicit RK schemes, and quantify the magnitude of the associated errors through systematic numerical experimentation. 
Specifically, we introduce a high-order sharp immersed spatial discretization that allows for third order accurate advection terms 
and up to sixth order accurate diffusion terms in domains with complex immersed bodies. These discretizations are based on high-
2

order weighted least squares reconstructions near the immersed body, which can also be used to extrapolate the PDE solution to 
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points outside of the computational domain. We use this strategy to extrapolate both the solution and its time derivative during 
each stage of a Runge-Kutta time integration scheme, providing an artificial time history for freshly cleared cells. This history is 
sufficient to maintain the accuracy of simulations with arbitrary explicit or diagonally implicit RK schemes, including low storage 
(LS) and strong stability preserving (SSP) integrators, so long as the time step is chosen to satisfy a CFL constraint based on the 
interface velocity. Through 2D and 3D simulations of the advection-diffusion equation with moving boundaries, we demonstrate that 
our sharp immersed discretizations converge at third order or higher in the 𝐿∞ norm, accurately predict surface quantities, and can 
resolve thin boundary layers on moving interfaces, all of which have traditionally been challenging for immersed methods.

The remainder of this work is organized as follows. Section 2 reviews the high order sharp immersed spatial discretizations 
developed in [8] and their application to model hyperbolic and parabolic PDEs with stationary boundaries. Section 3 outlines a novel 
method for the time integration of immersed discretizations with moving boundaries that is compatible with general explicit Runge-

Kutta schemes and diagonally implicit Runge-Kutta schemes. Section 4.1 quantifies the error introduced by this moving boundary 
treatment through extensive numerical experiments with 1D systems, while the remainder of section 4 focuses on convergence results 
and applications involving 2D and 3D geometries. We draw conclusions in section 5.

2. Spatial discretizations

2.1. Sharp immersed finite difference schemes

In this work spatial discretizations are based on the high-order sharp immersed method outlined in [8], which we summarize here. 
We denote the computational domain Ω ⊂ℝ𝑑 , with 𝑑 ∈ [1, 2, 3] the dimensionality of the problem. Let Γ(𝑡) be a closed moving surface 
immersed in Ω at time 𝑡, defined by the zero level set of a smooth function 𝜙(𝐱, 𝑡). Here and below we label points on the surface by 
their Cartesian coordinates 𝐬 ∈ Γ(𝑡) ⊂ℝ𝑑 , and use the more general label 𝐱 ∈Ω ∈ℝ𝑑 to refer any point in the computational domain. 
We divide Ω into two regions based on the sign of the level-set function,

Ω+(𝑡) = {𝐱 ∈Ω ∣ 𝜙(𝐱, 𝑡) > 0} and Ω−(𝑡) = {𝐱 ∈Ω ∣ 𝜙(𝐱, 𝑡) ≤ 0}. (1)

For 𝐬 ∈ Γ(𝑡) let 𝐧(𝐬, 𝑡) =∇𝜙(𝐬, 𝑡)∕‖∇𝜙(𝐬, 𝑡)‖ be the normal vector pointing into Ω+(𝑡) and away from Ω−(𝑡). Likewise, for any function 
𝑢(𝐱, 𝑡) defined in a neighborhood of 𝐬 ∈ Γ(𝑡), let [𝑢](𝐬, 𝑡) = 𝑢+(𝐬, 𝑡) − 𝑢−(𝐬, 𝑡) indicate the jump in 𝑢 across the interface at 𝐬; here 
superscripts indicate quantities defined on the side of the interface adjacent to Ω+ or Ω−. While the level set formulation does not 
explicitly identify material points on the surface, the normal component of the surface velocity 𝐯𝑏(𝐬, 𝑡) can be computed directly from 
the level set via 𝐧(𝐬, 𝑡) ⋅ 𝐯𝑏(𝐬, 𝑡) = −𝜕𝑡𝜙(𝐬, 𝑡)∕‖∇𝜙(𝐬, 𝑡)‖.

We discretize partial derivative operators on a 𝑑-dimensional Cartesian grid with coordinates {𝑥𝑖}𝑑𝑖=1, unit vectors {𝐞̂𝑖}𝑑𝑖=1, and 
uniform grid spacing Δ𝑥 along each dimension. Spatial derivatives are discretized with non-conservative dimension-split finite 
difference schemes of the form

𝜕𝑢(𝐱)
𝜕𝑥𝑖

≈
𝑟∑

𝑗=−𝓁
𝑎𝑗𝑢(𝐱 + 𝑗Δ𝑥𝐞̂𝑖), (2)

where {𝑎𝑗}𝑟𝑗=−𝓁 are 1D finite difference coefficients with 𝓁 points to the left of the evaluation point and 𝑟 points to the right of the 
evaluation point. On the outer boundaries of the computational domain, which are assumed to align with the Cartesian grid, we 
supplement Eq. (2) with standard boundary treatments that are appropriate for the given PDE. For grid points near the immersed 
surface, one or more of these 1D finite difference stencils will cross Γ at a control point 𝐱𝑐 , defined to be the intersection between 
the grid line and the immersed surface. When this occurs the regular interior stencil becomes invalid, and ghost points must be 
constructed for the difference scheme.

To do so, we extrapolate field values across the surface using a weighted least squares approach. Let  = {𝐱1, 𝐱2, … , 𝐱𝑛} ⊂ℝ𝑑 be 
a set of 𝑛 interpolation points from a Cartesian grid with grid spacing Δ𝑥, and let 𝑢(𝐱) be a scalar function defined at the grid points. 
For a given set of positive weights 

{
𝑤𝑖

}𝑛
𝑖=1, the weighted least squares interpolant 𝑝(𝐱) of degree 𝑘 is defined by the minimization

𝑝(𝑥) = argmin
𝑞(𝐱)∈𝑘

∑
𝐱𝑖∈

𝑤𝑖

[
𝑞(𝐱𝑖) − 𝑢(𝐱𝑖)

]2
, (3)

where 𝑘 is the set of polynomials in 𝑑 variables with degree less than or equal to 𝑘. So long as any basis for 𝑘 is linearly 
independent over  , the interpolant is unique and its 𝑚-th derivative with respect to coordinate 𝑥𝑗 satisfies

𝜕𝑚
𝑥𝑗
𝑝(𝐱𝑒) = 𝜕𝑚

𝑥𝑗
𝑢(𝐱𝑒) +

(
Δ𝑥𝑘+1−𝑚

)
(4)

for any evaluation point 𝐱𝑒. Because the interpolant is linearly related to the input data, there exists a set of stencil coefficients 
{𝑠𝑖}𝑛𝑖=1 associated with each derivative 𝜕𝑚

𝑥𝑗
such that 𝜕𝑚

𝑥𝑗
𝑝(𝐱𝑒) =

∑𝑛

𝑖=1 𝑠𝑖𝑢(𝐱𝑖).
To construct this weighted least squares interpolant in a sharp immersed PDE discretization, we assign two sets of interpolation 

points to each control point on the immersed surface. For 1D discretizations, we construct the set +
𝑐

containing the 𝑛 closest points 
to the interface in Ω+, and the equivalent set −

𝑐
containing the 𝑛 closest points in Ω−, as shown in Fig. 1a. We note that a degree 

𝑛 −1 interpolant can interpolate these 𝑛 data points exactly, and no weights {𝑤𝑖} are required. For multidimensional discretizations, 
3

we construct the set +
𝑐

containing all available grid points in Ω+ that fall within a half ellipsoid centered on the control point 𝐱𝑐
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Fig. 1. (a) The 1D IIM boundary treatment outlined in section 2.1. For a Dirichlet boundary condition (red), a quadratic polynomial 𝑝𝑐 (𝑥) interpolates a solution 𝑢(𝑥)
at ̄𝑐 = {𝑥𝑖−2, 𝑥𝑖−1} and at 𝑥𝑐 , and the value 𝑝(𝑥𝑖+1) is used when applying a three-point centered finite difference (black). When no boundary condition is prescribed 
(blue), 𝑝𝑐 (𝑥) interpolates the solution at 𝑐 = {𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖} instead. (b) The half-elliptical stencil used to construct multidimensional polynomial interpolants in this 
work. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

with a major radius 𝑟𝑛 along the surface normal 𝐧𝑐 and a minor radius 𝑟𝑡 along any tangential direction, as shown in Fig. 1b. For 
the negative side of the surface we construct the equivalent set −

𝑐
using points from Ω− and a half ellipsoid with the same normal 

and tangential radii. For 3D geometries, the radii 𝑟𝑛 and 𝑟𝑡 are selected so that the resulting least-squares fit is well-posed whenever 
the surface is smooth and the principal curvatures 𝜅1, 𝜅2 of the surface satisfy ||𝜅𝑖Δ𝑥|| < 1∕4, indicating a radius of curvature greater 
than four grid points for any nonconvex feature. For 2D geometries, the constraint reduces to |𝜅Δ𝑥| < 1∕4 for the scalar curvature 
𝜅. For a degree 𝑘 − 1 interpolant the choices generally correspond to 𝑟𝑛 ≈ 𝑘Δ𝑥 and 𝑟𝑡 ≈ 𝑘Δ𝑥∕2, so that the resulting interpolation 
stencils resemble a one-sided stencil of order 𝑘 in the normal direction and a centered stencil of order 𝑘 in the tangential direction(s). 
If the control point 𝐱𝑐 is included in the interpolation stencil, we omit the grid point in −

𝑐
or +

𝑐
located closest to 𝐱𝑐 , as these 

two points can become arbitrarily close. In 1D discretizations this is necessary for a well-conditioned interpolation procedure, and in 
multiple dimensions we have found that the omission is necessary to ensure stability for PDEs with an advection terms, as discussed 
in section 2.2. Letting 𝐱−1 and 𝐱+1 be the closest interpolation points in −

𝑐
and +

𝑐
respectively, the resulting sets of grid points will 

be notated ̄+
𝑐
≡ +

𝑐
⧵ {𝐱+1 } and ̄−

𝑐
≡ −

𝑐
⧵ {𝐱−1 } below.

For an sharp immersed PDE discretization, the high-order polynomial fits constructed at each control point are used to maintain 
the accuracy of the regular interior difference scheme across an immersed boundary or interface. For example, assuming that a 
Dirichlet boundary condition for 𝑢(𝐱) is prescribed on the boundary, a polynomial approximation 𝑝𝑐 (𝐱) to the function 𝑢(𝐱) can be 
constructed using a least squares fit that incorporates the boundary condition at a single control point 𝐱𝑐 and the domain values 
{𝑢(𝐱𝑖) ∣ 𝐱𝑖 ∈ ̄+

𝑐
}. Each 1D finite difference stencil that intersects the boundary at 𝐱𝑐 can then be applied to the extended function

𝑢𝑐(𝐱) =
{

𝑢(𝐱), 𝐱 ∈Ω+

𝑝𝑐(𝐱), 𝐱 ∈Ω− . (5)

Provided that 𝑝𝑐 (𝐱) is a sufficiently high order interpolant, this procedure maintains the accuracy of the interior scheme for stencils 
that cross the boundary at 𝐱𝑐 . In general the least-squares interpolant does not exactly interpolate the prescribed boundary condition 
at 𝐱𝑐 , but still enforces this boundary condition with high-order accuracy. Throughout this work, when the interior scheme has order 
of accuracy 𝑃 and each 𝑝𝑐(𝐱) has degree 𝑘 − 1, we refer to the full IIM discretization as an (𝑃 , 𝑘) scheme for brevity.

2.2. Boundary conditions for advection and diffusion terms

In this work we focus on model initial-boundary value problems that form the building blocks for many common fluid systems: 
linear hyperbolic PDEs with Dirichlet boundary conditions, parabolic PDEs with Dirichlet or Neumann boundary conditions, and 
parabolic PDEs with discontinuous coefficients. Each requires a distinct algorithm for the proper enforcement of boundary or interface 
conditions.

For hyperbolic PDEs, we consider a (3, 4) IIM discretization of the linear advection equation 𝜕𝑡𝑢 + 𝐯 ⋅ ∇𝑢 = 0 on the irregular 
domain Ω+(𝑡) with interface Γ(𝑡). The interior scheme is a third order upwind discretization applied dimension-by-dimension, with 
each dimension using the 1D stencil

𝜕𝑢

𝜕𝑥

||||𝑖 =
{ 1

6Δ𝑥

(
𝑢𝑖−2 − 6𝑢𝑖−1 + 3𝑢𝑖 + 2𝑢𝑖+1

)
, 𝑣𝑖 ≥ 0,

1
6Δ𝑥

(
−2𝑢𝑖−1 − 3𝑢𝑖 + 6𝑢𝑖+1 − 𝑢𝑖+2

)
, 𝑣𝑖 < 0.

(6)

A Dirichlet boundary condition value is only required at control points where the relative velocity on the boundary acts as an inflow, 
4

so that 𝐧(𝐱𝑐) ⋅ (𝐯(𝐱𝑐) − 𝐯𝑏(𝐱𝑐)) > 0. At these points we construct fourth order polynomial interpolants using data from the points in ̄𝑐
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Fig. 2. (a) The spectrum of the (3, 4) IIM advection spatial discretization presented in section 2.2, for unit grid spacing and unit velocity on the semi-infinite domain 
𝑥 ∈ [𝛼, ∞]. The domain is discretized using grid points 𝑥𝑗 = 𝑗Δ𝑥 and an IIM boundary treatment at the inflow boundary 𝑥 = 𝛼. The eigenvalues of the third order 
upwind finite difference scheme used away from the inflow boundary fall on the border of the shaded region. The “whiskers” protruding from this region are the loci 
of all additional eigenvalues introduced by the boundary treatment as the position of the boundary is varied over the interval 0 ≤ 𝛼 ≤ Δ𝑥. (b) A list of CFL criteria 
that must be satisfied to guarantee stability when the (3, 4) IIM advection discretization is paired with each of the integrators referenced in this work. At this CFL the 
entire spectrum shown in the left panel is contained within the integrator’s linear stability region.

and the prescribed boundary condition at 𝐱𝑐 . For outflow control points satisfying 𝐧(𝐱𝑐) ⋅ (𝐯(𝐱𝑐) − 𝐯𝑏(𝐱𝑐)) ≤ 0 there is no prescribed 
boundary condition, and the interpolants are constructed using data from the set 𝑐 only. For 1D discretizations, the least squares 
fitting procedure reduces to 1D polynomial interpolation, and this third order boundary treatment is provably stable when paired 
with explicit RK schemes and a constraint on the CFL number 𝐶𝑣 = |𝑣Δ𝑡∕Δ𝑥|. The analysis is presented in [8] and builds on the 
methodology established in [20] for stability analyses of immersed methods for hyperbolic PDEs. The spectrum of the 1D difference 
scheme and boundary treatment is illustrated in Fig. 2, and is accompanied by precise CFL limits for the time integrators used in this 
work.

To ensure stability in 2D and 3D advection discretizations, we limit the multidimensional CFL number 𝐶𝑣 =maxΩ ‖𝐯(𝐱)‖1Δ𝑡∕Δ𝑥, 
and choose weights for each least squares fit that decay rapidly away from the control point as suggested in [23]. For the half-elliptical 
interpolation stencils used in this work, the weight function 𝑤(𝐱) =max[𝑑(𝐱, 𝐱𝑐), 0.7]−6 with elliptical distance function

𝑑(𝐱,𝐱𝑐) =
√

(𝐱 − 𝐱𝑐)𝑇𝚺𝑐(𝐱 − 𝐱𝑐) with 𝚺𝑐 =
𝐧𝑐𝐧𝑇𝑐
𝑟2
𝑛

+
𝐈− 𝐧𝑐𝐧𝑇𝑐

𝑟2
𝑡

(7)

has been shown to produce stable 2D and 3D boundary treatments for third-order discretizations of the advection equation with 
Dirichlet boundary conditions [8]. For higher order interior schemes, including the standard fourth order centered and fifth order 
upwind discretizations, similar boundary treatments based on least squares fits with higher than third order accuracy become unsta-

ble. While there are existing stable high-order boundary treatments for these schemes in 2D, they are limited to convex geometries 
[5] or require considerable complexity when extended to 3D [18,20]. As a result, we limit our attention to third order upwind 
advection schemes in this work.

As a model parabolic PDE, we consider the scalar diffusion equation 𝜕𝑡𝑢 = 𝛽∇2𝑢 defined on Ω+(𝑡) with bounding surface Γ(𝑡). 
The Laplacian operator is discretized with standard centered finite difference stencils of fourth or sixth order. For simulations with 
Dirichlet boundary conditions, the correction procedure described in the previous section is applied to all stencils that cross the 
immersed surface. For the case of diffusion on the full domain Ω(𝑡) with a diffusivity field 𝛽(𝐱) that is piecewise constant and 
discontinuous across the immersed interface Γ(𝑡), the following jump conditions hold

[𝑢(𝐬, 𝑡)] = 𝑗0(𝐬, 𝑡) on Γ,[
𝛽𝜕𝑛𝑢(𝐬, 𝑡)

]
= 𝑗1(𝐬, 𝑡) on Γ.

(8)

These jump conditions are enforced by determining equivalent boundary solution values 𝑢±(𝐱𝑐) at each control point 𝐱𝑐 , and sub-

sequently treating the two domains Ω+(𝑡) and Ω−(𝑡) as separate domains with prescribed Dirichlet boundary conditions given by 
𝑢±(𝐱𝑐). The equivalent boundary solution values are determined from a direct discretization of Eq. (8) using two sets of stencil coef-

ficients. The coefficients 𝑠+
𝑐

and {𝑠+
𝑖
} map the boundary value 𝑢+(𝐱𝑐) and domain values 

{
𝑢(𝐱𝑖) ∣ 𝐱𝑖 ∈ ̄+

𝑐

}
to the normal derivative 

𝜕𝑛𝑢
+(𝐱𝑐), approximated by the normal derivative of a least squares polynomial fit. The second set of coefficients 𝑠−

𝑐
and {𝑠−

𝑖
} is 

designed analogously to map data from Ω− to the normal derivative 𝜕𝑛𝑢−(𝐱𝑐). The boundary values 𝑢±(𝐱𝑐) can then be determined 
from the linear system

𝑢+(𝐱𝑐) − 𝑢−(𝐱𝑐) = 𝑗0(𝐱𝑐) and 𝛽+
⎛⎜𝑠+𝑢+(𝐱𝑐) + ∑

𝑠+𝑢+(𝐱𝑖)
⎞⎟− 𝛽−

⎛⎜𝑠−𝑢−(𝐱𝑐) + ∑
𝑠−𝑢−(𝐱𝑖)

⎞⎟ = 𝑗1(𝐱𝑐). (9)
5

⎜⎝ 𝑐

𝐱𝑖∈̄+
𝑐

𝑖 ⎟⎠ ⎜⎝ 𝑐

𝐱𝑖∈̄−
𝑐

𝑖 ⎟⎠
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For consistency, a single pair of polynomial fits is used both to approximate the normal derivatives and to construct ghost values for 
difference stencils that cross the boundary at each control point.

For the scalar diffusion equation on Ω+(𝑡) with Neumann boundary conditions 𝛽𝜕𝑛𝑢(𝐬, 𝑡) = 𝑔(𝐬, 𝑡) our approach is analogous to 
Eq. (9) with vanishing diffusivity 𝛽−. After dropping superscripts the boundary value 𝑢(𝐱𝑐) at each control point can be approximated 
by

𝑢(𝐱𝑐) =
1
𝑠𝑐

⎛⎜⎜⎝
𝑔(𝐱𝑐)
𝛽

−
∑

𝑥𝑖∈̄𝑐

𝑠𝑖𝑢(𝐱𝑖)
⎞⎟⎟⎠. (10)

Once the boundary value at each control point is computed, Ω+(𝑡) is treated as a domain with a prescribed Dirichlet boundary 
condition. As with jump conditions, a single polynomial fit is used both to construct ghost points for the difference stencils crossing 
the boundary at 𝐱𝑐 and to determine the stencil coefficients 𝑠𝑐 and {𝑠𝑖} that approximate the normal derivative on the boundary.

For all three type of boundary conditions for the diffusion equation described above, the weights used to construct each weighted 
least squares interpolant are chosen to be uniform (𝑤𝑖 = 1). For a (𝑃 , 𝑘) IIM discretization of a parabolic PDE, the truncation error 
at the boundary is of order 𝑘 − 2 for all three types of boundary conditions. However, due to elliptic regularity effects [50], spatial 
convergence of order 𝑃 for the solution in the 𝐿∞ norm requires only a (𝑃 , 𝑃 + 1) discretization for jump conditions or Neumann 
boundary conditions [8]. For Dirichlet boundary conditions, a (𝑃 , 𝑃 ) discretization provides 𝑃 -th order convergence [8], but we have 
observed that a (𝑃 , 𝑃 + 1) discretization often leads to lower error magnitudes at the same resolution. As a result, we use (𝑃 , 𝑃 + 1)
discretizations for all parabolic terms in this work, leading to truncation errors of order 𝑃 in the interior and 𝑃 −1 on the boundary.

3. Temporal discretizations

3.1. Runge-Kutta time integration with stationary boundaries

Before discussing moving boundaries and interfaces, we briefly review the formulation and notation of Runge-Kutta time integra-

tion for systems with stationary boundaries. After discretizing a time-dependent PDE in space we obtain a system of the form

𝑢̇ = 𝑓 (𝑢, 𝑡), 𝑢|𝑡=0 = 𝑢0, (11)

where 𝑢 represents the state of the discretized system, 𝑢0 is an initial condition, and 𝑓 (𝑢, 𝑡) is the discretized right hand side of the 
PDE. For PDEs with stationary boundaries we take 𝑢 ∈ ℝ𝑛, where 𝑛 is a constant number of discrete degrees of freedom, so that 
Eq. (11) is a finite dimensional ODE that can be integrated with standard multistep or multistage time integration schemes. In this 
work our focus is on Runge-Kutta schemes, which can be expressed in the modified Shu-Osher form [51,52]

𝑢(𝑖) = 𝑣𝑖𝑢
𝑛 +

∑𝑠

𝑗=1 𝛼𝑖𝑗𝑢
(𝑗) + Δ𝑡

∑𝑠

𝑗=1 𝛽𝑖𝑗𝑓 (𝑢
(𝑗), 𝑡(𝑗)) for 1 ≤ 𝑖 ≤ 𝑠+ 1,

𝑢𝑛+1 = 𝑢(𝑠+1).
(12)

Here Δ𝑡 is the length of the time step, 𝑠 is the number of stages, 𝑢𝑛 represents the state at the 𝑛-th time step, 𝑢(𝑗) represents the state 
at the 𝑗-th stage, 𝑣𝑖 is an 𝑠 + 1 element vector, and {𝛼𝑖𝑗 , 𝛽𝑖𝑗} are (𝑠 + 1) × 𝑠 matrices. The stage times are given by 𝑡(𝑖) ≡ 𝑡𝑛 + 𝑐𝑖Δ𝑡, 
where the abscissae 𝑐𝑖 are obtained by integrating the auxiliary ODE 𝑡̇ = 1. This representation is not unique, and any implicit or 
explicit Runge-Kutta scheme in this form can be re-expressed uniquely as Butcher tableau under mild assumptions on irreducibility 
[53]. However, the modified Shu-Osher form is useful for expressing PDE-specialized Runge-Kutta schemes such as strong stability 
preserving (SSP) or low-storage (LS) schemes. Any RK scheme presented as a Butcher tableau with coefficients {𝑎𝑖𝑗 , 𝑏𝑖} for 1 ≤ 𝑖, 𝑗 ≤ 𝑠

can be placed in modified Shu-Osher form by defining

𝑣𝑖 = 1, 𝛼𝑖𝑗 = 0, and 𝛽𝑖𝑗 =

{
𝑎𝑖𝑗 1 ≤ 𝑖 ≤ 𝑠

𝑏𝑗 , 𝑖 = 𝑠+ 1
, (13)

with stage times 𝑐𝑖 =
∑𝑠

𝑗=1 𝑎𝑖𝑗 . For diagonally implicit schemes 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are lower triangular, and for explicit schemes they are 
strictly lower triangular.

3.2. Runge-Kutta time integration with moving boundaries

For systems with moving boundaries, time integration becomes more complex. As computational elements enter or exit the 
problem domain, both the dimension of the state vector 𝑢 and the right hand side 𝑓 (𝑢, 𝑡) are constantly changing, and the discretized 
system cannot be viewed simply as a system of ODEs to be integrated with the method of lines. “Freshly-covered” points which 
exit the problem domain are excluded from the Runge-Kutta update while they lie outside of the domain, and do not influence the 
temporal discretization. However, “freshly-cleared” points which enter the problem domain do so without an initial value or time 
history, and some special treatment is necessary to provide these. Here we present an algorithm that is designed to preserve as 
much as possible the flexibility of the method of lines, avoiding intrusive alterations to the discretization of 𝑓 (𝑢, 𝑡) and retaining 
6

compatibility with a wide range of established RK integrators. We begin by discussing explicit integration schemes for PDEs posed 
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on an irregular domain, then expand this algorithm to diagonally implicit integrators as well as PDEs defined on both sides of an 
immersed interface and coupled through interface boundary conditions.

Elements in the state and right hand side evaluated at grid point 𝐱𝑘 at the 𝑖-th stage are denoted as 𝑢(𝑖)(𝐱𝑘) and 𝑓 (𝑖)(𝐱𝑘), respec-

tively. We will use a zero superscript (for example, 𝑢(0)) to refer to quantities at time 𝑡𝑛 whenever convenient. Following the notation 
of section 2, grid points in Ω+(𝑡(𝑖)) are referred to as active during the 𝑖-th stage, while those in Ω−(𝑡(𝑖)) are referred to as inactive. The 
complete vectors 𝑢(𝑖) and 𝑓 (𝑖) will be used to indicate a collection of values from all points on the grid, both active and inactive, with 
the understanding that 𝑓 (𝑢, 𝑡) ignores the input values of inactive points and assigns a zero value to inactive output points. During 
the 𝑖-th stage of any time step a standard sharp immersed discretization as discussed in section 2 can be used to evaluate the right 
hand side 𝑓 (𝑖) at all active points, provided that the state value 𝑢(𝑖) is known at all active points. Applying the standard Runge-Kutta 
update defined in Eq. (12) to calculate 𝑢(𝑖) at all active points in the domain leads to two possibilities. For currently active points 𝐱𝑘
that have also been active during all prior stages the Runge-Kutta update coincides with the standard method of lines procedure, and 
no further modification is necessary. For points 𝐱𝑘 that were inactive during a prior stage 𝑗, the values 𝑢(𝑗)(𝐱𝑘) and 𝑓 (𝑗)(𝐱𝑘) needed 
for the Runge-Kutta update are missing. This is the freshly cleared cell problem, which occurs in the stage that a cell is uncovered 
and in all subsequent stages due to the time history needed by multistage Runge-Kutta integrators.

We circumvent the freshly-cleared cell problem by calculating both the missing state 𝑢(𝑗)(𝐱𝑘) and the missing right hand side 
𝑓 (𝑗)(𝐱𝑘) at the inactive point 𝐱𝑘 through a spatial extrapolation from active point values at the associated stage time 𝑡(𝑗). We note 
that many existing methods use a similar extrapolation of the state 𝑢(𝑗) to allow moving boundaries, but the added extrapolation of 
the right hand side 𝑓 (𝑗) allows this procedure to be applied to any explicit multistage integration scheme that can be expressed in 
Shu-Osher form. More formally, we define the set

 (𝑖) = {𝐱𝑘 ∈Ω−(𝑡(𝑖)) ∣ 𝐱𝑘 has a neighbor in Ω+(𝑡(𝑖))} (14)

which contains all inactive points that have an active neighbor during the 𝑖-th stage. Here “neighbor” indicates two points that fall on 
the same grid line and are separated by distance Δ𝑥. While we do not do so here, the set  (𝑖) can be broadened to include points that 
fall further from the active domain, which may ease some of the restrictions on boundary motions that are discussed in section 3.5. 
We also define a zeroing operator 𝑍(𝑖)[⋅] for the 𝑖-th stage which sets the value of the argument on all points in  (𝑖) to zero, as 
well as an extension operator 𝐸(𝑖)[⋅] that overwrites the value of the argument on all points in  (𝑖) with an extrapolation from the 
solution on Ω(𝑡(𝑖)). Each step begins with an extrapolation of the initial state, so that 𝑢(0) = 𝐸(0)[𝑢𝑛]. In subsequent stages the state 
𝑢(𝑖) is assembled via the standard Runge-Kutta update at all points, and the zeroing operator is applied to remove any extraneous 
information at inactive points. The right hand side 𝑓 (𝑗) is then calculated as usual, and the extension operator is applied to both the 
state 𝑢(𝑖) and the right hand side 𝑓 (𝑖). When the time step is restricted by a body CFL criterion, as discussed below, the extrapolation 
ensures that any point which crosses from Ω− to Ω+ does so with a complete time history that can be used in subsequent Runge-Kutta 
updates. The complete moving-boundary explicit Runge-Kutta algorithm is presented in Algorithm 1 and illustrated in Fig. 3a.

Algorithm 1 Explicit Runge-Kutta integration with moving boundaries.

𝑢(0) =𝐸(0)[𝑢𝑛]
for 1 ≤ 𝑖 ≤ 𝑠 do

𝑢̃(𝑖) =𝑍(𝑖)
[
𝑣𝑖𝑢

(0) +
∑𝑠

𝑗=1𝛼𝑖𝑗𝑢
(𝑗) + Δ𝑡

∑𝑠

𝑗=1𝛽𝑖𝑗𝑓
(𝑗)
]

𝑓 (𝑖) =𝐸(𝑖)[𝑓 (𝑢̃(𝑖), 𝑡(𝑖))]
𝑢(𝑖) =𝐸(𝑖)[𝑢̃(𝑖)]

end for

𝑢𝑛+1 =𝑍(𝑠+1)
[
𝑣𝑠+1𝑢

(0) +
∑𝑠

𝑗=1𝛼𝑠+1,𝑗 𝑢
(𝑗) + Δ𝑡

∑𝑠

𝑗=1𝛽𝑠+1,𝑗𝑓
(𝑗)
]

We note that the precise form of the extrapolation operators 𝐸(𝑖)[⋅] is not fixed, and that many sharp immersed methods for 
stationary bodies already involve a ghost-point extrapolation procedure that can be reused in a moving boundary time integration 
algorithm. In this work we choose to extrapolate by reusing the existing interpolants, and further incorporate boundary conditions 
as much as possible. For a pure diffusion problem, this means we reuse the uniformly weighted least-squares interpolant that 
incorporates the boundary condition to extrapolate the solution 𝑢, and compute a new interpolant with the same weighting scheme 
and order to extrapolate the right hand side 𝑓 without a boundary condition. For advection and advection-diffusion problems, we 
extrapolate using the weighted least-squares interpolant from the advection term, again using any imposed boundary conditions 
on 𝑢 and without boundary conditions for 𝑓 . For outflow boundaries, where no boundary condition on 𝑢 is imposed, we use the 
advection-based interpolant to extrapolate both the solution and right hand side with no boundary information. For points with 
multiple neighbors in Ω+, each neighbor contributes an extrapolated value and the results are averaged as in [54]. While this 
averaging strategy may fail near sharp corners or thin, under-resolved features, it is an appropriate choice for smooth and well-

resolved geometries. From a software perspective, these extrapolations can be implemented as a callback which runs at the end of 
each integration stage in an established time integration package.

3.3. Diagonally-implicit integrators with moving boundaries

The Shu-Osher form given in Eq. (12) also encompasses standard diagonally implicit Runge-Kutta (DIRK) schemes and low-storage 
DIRK schemes such as those presented in [55]. For these diagonally implicit schemes, we begin each step by extrapolating the state 
7

𝑢𝑛, and thereafter each stage consists of the update
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Fig. 3. (a) From section 3.2: an illustration of Algorithm 1 applied to a 1D domain with four grid points and a time integrator with three stages. For the initial state 
and first stage, the state and right hand side are extrapolated to point 𝑥𝑖+1 which lies outside of the problem domain. When this point enters the domain during the 
second stage, its value is calculated using the standard RK update and the extrapolated time history. For the third stage the RK update relies on a mix of extrapolated 
and calculated values. (b) From section 3.5: constraints on the body CFL can be derived from the minimum distance between a boundary with curvature 𝜅 and a 
grid point with all of its nearest neighbors on the same side of the interface. For a planar boundary the closest approach is Δ𝑥∕

√
2 (upper right), while for a curved 

boundary the closest approach becomes smaller with increasing boundary curvature (lower left). The 3D problem can be solved analogously for both planar and 
spherical boundaries.

(1 − 𝛼𝑖𝑖)𝑢(𝑖) − Δ𝑡𝛽𝑖𝑖𝑓 (𝑢(𝑖), 𝑡(𝑖)) = 𝑟(𝑖), with 𝑟(𝑖) ≡ 𝑣𝑖𝑢
𝑛 +

∑𝑖−1
𝑗=1 𝛼𝑖𝑗𝑢

(𝑗) + Δ𝑡
∑𝑖−1

𝑗=1 𝛽𝑖𝑗𝑓 (𝑢
(𝑗), 𝑡(𝑗)). (15)

Here the residual 𝑟(𝑖) is a linear combination of previous stages and right hand side evaluations, which is assembled in a way 
analogous to the state 𝑢(𝑖) for an explicit integrator. Once 𝑟(𝑖) is assembled for all point inside the problem domain, the system 
(1 − 𝛼𝑖𝑖)𝑢(𝑖) − Δ𝑡𝛽𝑖𝑖𝑓 (𝑢(𝑖), 𝑡(𝑖)) = 𝑟(𝑖) can be solved using a sharp immersed spatial discretization designed for stationary domains. The 
state 𝑢(𝑖) and right hand side 𝑓 (𝑢(𝑖), 𝑡(𝑖)) are then extrapolated, and the integration proceeds to the next stage. This procedure is 
outlined in Algorithm 2. The issue of artificial time history arises only in the assembly of the residual 𝑟(𝑖), which can be calculated 
under the same conditions that apply to the state 𝑢(𝑖) in an explicit integrator.

For parabolic PDEs with moving boundaries, the use of a DIRK integrator can eliminate the severe time step restriction Δ𝑡 ∼
(Δ𝑥2) required by explicit integrators. However, as discussed further below in section 3.5, our proposed moving boundary treatment 
always comes with a boundary CFL restriction of Δ𝑡 ∼(Δ𝑥). Consequently, there is typically little incentive to use a DIRK scheme 
for advection-dominant moving boundary simulations. The numerical results using DIRK schemes presented in section 4.2 focus 
exclusively on the parabolic case.

Algorithm 2 Diagonally implicit Runge-Kutta integration with moving boundaries.

𝑢(0) =𝐸(0)[𝑢𝑛]
for 1 ≤ 𝑖 ≤ 𝑠 + 1 do

𝑟(𝑖) =𝑍(𝑖)
[
𝑣𝑖𝑢

(0) +
∑𝑠

𝑗=1𝛼𝑖𝑗𝑢
(𝑗) + Δ𝑡

∑𝑠

𝑗=1𝛽𝑖𝑗𝑓
(𝑗)
]

Solve (1 − 𝛼𝑖𝑖)𝑢̃(𝑖) − Δ𝑡𝛽𝑖𝑖𝑓 (𝑢̃(𝑖), 𝑡(𝑖)) = 𝑟(𝑖)

𝑓 (𝑖) =𝐸(𝑖)[𝑓 (𝑢̃(𝑖), 𝑡(𝑖))]
𝑢(𝑖) =𝐸(𝑖)[𝑢̃(𝑖)]

end for

𝑢𝑛+1 =𝑍(𝑠+1)[𝑢(𝑠+1)]

3.4. Modifications for high-order Runge-Kutta schemes in Butcher form

In the moving boundary treatment discussed above, we propose to extend the solution 𝑢 at each stage using spatial extrapolations 
that incorporate any prescribed boundary conditions. On the other hand, generally no boundary condition is available for the right-

hand side 𝑓 . It is therefore preferable to choose time integrators that incorporate as much as possible the state values 𝑢(𝑖) in their 
update, in order to increase the opportunity to enforce boundary conditions at freshly cleared points. This is the case for many 
common integrators that have nonzero 𝛼𝑖𝑗 when expressed in the modified Shu-Osher form of Eq. (12), but not for high-order 
Runge-Kutta schemes in Butcher form. In the standard Butcher-form Runge-Kutta update

𝑢(𝑖) = 𝑢𝑛 +Δ𝑡
∑𝑖−1

𝑗=1 𝑎𝑖𝑗𝑓 (𝑢
(𝑗), 𝑡(𝑗)) for 1 ≤ 𝑖 ≤ 𝑠,

(16)
8

𝑢𝑛+1 = 𝑢𝑛 +Δ𝑡
∑𝑠

𝑖=1 𝑏𝑖𝑓 (𝑢
(𝑖), 𝑡(𝑖)),
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freshly cleared cells at the 𝑖-th stage are filled using only the original state 𝑢𝑛 and the right hand sides 𝑓 (𝑗) for 1 ≤ 𝑗 < 𝑖. When 
expressed directly in modified Shu-Osher form, as in Eq. (13), this update leads to an empty 𝛼𝑖𝑗 coefficient matrix, indicating that 
extensions of the stage value 𝑢(𝑖) with boundary condition are not used in later updates. This stands in contrast with many SSP or 
low-storage RK schemes that have nonzero 𝛼𝑖𝑗 .

To maximize the opportunity for boundary condition enforcement, Runge-Kutta schemes in Butcher form can be re-expressed 
in a different but equivalent modified Shu-Osher form that maximizes the number of nonzero coefficients in 𝛼𝑖𝑗 without increasing 
the storage requirements of the scheme. While the two forms are equivalent for problems with stationary boundaries, they lead to 
different initial values for points that enter the computational domain, which are constructed using a different linear combination of 
previous stage values and stage boundary conditions. We propose an explicit form in which 𝛼𝑖𝑗 is strictly lower triangular and 𝛽𝑖𝑗 is 
nonzero only on the first subdiagonal, leading to the update

𝑢(1) = 𝑢𝑛,

𝑢(𝑖) =
∑𝑖−1

𝑗=1 𝛼𝑖𝑗𝑢
(𝑗) + Δ𝑡𝛽𝑖,𝑖−1𝑓 (𝑢(𝑖−1), 𝑡(𝑖−1)) for 2 ≤ 𝑖 ≤ 𝑠+ 1,

𝑢𝑛+1 = 𝑢(𝑠+1).

(17)

Because each 𝑓 (𝑗) is referenced only once, this algorithm can be implemented in a way that requires the same amount of storage as 
the standard Butcher implementation. The coefficients (𝛼𝑖𝑗 , 𝛽𝑖𝑗 ) can be obtained from the Butcher tableau (𝑎𝑖𝑗 , 𝑏𝑖) as follows. The 
coefficients of 𝛼𝑖𝑗 below the main diagonal (which form a lower-triangular matrix 𝛼𝑠×𝑠 ∈ ℝ𝑠×𝑠) can be written as 𝛼𝑠×𝑠 =𝑀2𝑀

−1
1 , 

where the lower-triangular matrices 𝑀1, 𝑀2 ∈ℝ𝑠×𝑠 include lower triangular blocks of 𝑎𝑖𝑗 and are given by

𝑀1 =
⎡⎢⎢⎢⎣
1 0 … 0
1 𝑎21 … 0
⋮ ⋮ ⋱ ⋮
1 𝑎𝑠,1 … 𝑎𝑠,𝑠−1

⎤⎥⎥⎥⎦ and 𝑀2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 … 0 0
1 𝑎31 0 … 0 0
1 𝑎41 𝑎42 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 𝑎𝑠,1 𝑠𝑠,2 … 𝑎𝑠,𝑠−2 0
1 𝑏1 𝑏2 … 𝑏𝑠−2 𝑏𝑠−1

⎤⎥⎥⎥⎥⎥⎥⎦
. (18)

This transformation is possible whenever the first 𝑠 − 1 columns of 𝑎𝑖𝑗 are linearly independent. The 𝑠 nonzero coefficients in 𝛽𝑖𝑗 are 
given by

𝛽𝑖,𝑖−1 = 𝑎𝑖,𝑖−1 for 2 ≤ 𝑖 ≤ 𝑠, and 𝛽𝑠+1,𝑠 = 𝑏𝑠. (19)

For all results presented in this work, Runge-Kutta schemes of order higher than four are implemented using the update in Eq. (17)

along with the moving boundary treatment in Algorithm 1.

3.5. Restrictions on boundary motion

For simplicity Algorithms 1 and 2 rely on an extrapolation to nearest neighbors only. To ensure that this generates a complete 
time history for the active points at each stage, there can be no points that are active at stage 𝑖 and both inactive and outside of  (𝑗)

in any stage 𝑗 < 𝑖. This condition is necessary and sufficient; a complete time history at 𝐱𝑘 implies that for each stage 𝑗 < 𝑖, 𝐱𝑘 was 
either active and received 𝑢(𝑗), 𝑓 (𝑗) through the standard path, or inactive but included in  (𝑗) so that 𝑢(𝑗) and 𝑓 (𝑗) are extrapolated 
values. The opposite direction follows immediately. While this condition is easy to check for a given boundary motion and time step, 
it does not directly offer guidance on the proper choice of time step Δ𝑡.

A more convenient sufficient condition is a constraint on the boundary CFL 𝐶𝑏 ≡max‖‖𝐯𝑏(𝐬, 𝑡) ⋅ 𝐧(𝐬, 𝑡)‖‖Δ𝑡∕Δ𝑥. Here the maximum 
velocity is taken over all 𝐬 ∈ Γ(𝑡) and all 𝑡 ∈ [𝑡min, 𝑡max], where 𝑡min and 𝑡max are the minimum and maximum of the stage times 
{𝑡(𝑗)}𝑠+1

𝑗=1 used during a single Runge-Kutta time step. This bracketing interval is necessary to accommodate Runge-Kutta schemes 
with abscissae 𝑐𝑖 that fall outside the interval [0, 1]. To arrive at a bound of this form, we focus on the case where  (𝑖) contains 
nearest neighbors only and consider the more restrictive condition that no point can be active in one stage and inactive along with 
all of its nearest neighbors during any other stage of the same time step. This places a restriction on both the rate that the boundary 
can advance and on the rate at which it can recede, although the former is not strictly necessary in one-sided problems. From there 
we determine the minimum possible distance 𝑑min between an inactive point with inactive neighbors and a boundary segment with 
given curvature 𝜅. A boundary CFL constraint follows by requiring that no point on the boundary travels further than 𝑑min along the 
normal direction during a given time step, which is guaranteed when max‖‖𝐯𝑏(𝐬, 𝑡) ⋅ 𝐧(𝐬, 𝑡)‖‖(𝑡max − 𝑡min) < 𝑑min.

To determine the distance 𝑑min, we consider the purely geometric problem illustrated in Fig. 3b of finding the minimum distance 
between a grid point with four neighbors on the same side of the boundary and a circular boundary with curvature 𝜅. For a straight 
segment (𝜅 = 0) the minimum distance is Δ𝑥∕

√
2 (Fig. 3b upper right), while for a curved boundary the minimum distance becomes 

smaller with increasing 𝜅 (Fig. 3b lower left). The analysis is similar in 3D: the minimum distance between a point with six neighbors 
on the same side of the boundary and a spherical shell of radius 𝜅−1 is at most 1∕

√
3 for planar boundaries and decreases for curved 

boundaries. Taking the circle and sphere as the worst-case geometry with a prescribed maximum curvature in 2D or prescribed 
9

maximum principal curvature in 3D, this geometric analysis leads to the bounds
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Fig. 4. The moving body implementation for two-sided interfaces described in section 3.6, using a four stage time integrator on a domain with six grid points. At 
the beginning of the step, four additional memory registers per stage are allocated to hold the values {𝑢(𝑗,+) , 𝑓 (𝑗,+), 𝑢(𝑗,−), 𝑓 (𝑗,−)} at both 𝑥𝑖 and 𝑥𝑖+1 , as these points 
each have a neighbor across the interface. At each stage the Runge-Kutta update is performed on both the domain and the auxiliary memory. After the RK update, 
the domain values at 𝑥𝑖 and 𝑥𝑖+1 are overwritten with values from one of the auxiliary memory registers; the choice of register is made based on the sign of the level 
set at that stage. This arrangement maintains a time history for the positive and negative side dynamics at 𝑥𝑖 and 𝑥𝑖+1 , with each history containing both calculated 
values (solid points) and extension values (open points). When no extension value is available to fill one of the registers, a missing value is assigned (indicated blank 
space), and that grid point is no longer eligible to cross the interface. This occurs for the Ω− auxiliary register at 𝑥𝑖 during the second stage, and an error would be 
thrown if 𝑥𝑖 crossed into Ω− during later stages.

𝐶𝑏,2𝐷 <

(
1

𝑐max − 𝑐min

)(√
1
2
− 1|𝜅Δ𝑥| +

√
1|𝜅Δ𝑥|2 − 1

2

)
=
(

1
𝑐max − 𝑐min

)(
1√
2
− |𝜅Δ𝑥|

4
− |𝜅Δ𝑥|3

32

)
+

(|𝜅Δ𝑥|5),
𝐶𝑏,3𝐷 <

(
1

𝑐max − 𝑐min

)(√
1
3
− 1|𝜅Δ𝑥| +

√
1|𝜅Δ𝑥|2 − 2

3

)
=
(

1
𝑐max − 𝑐min

)(
1√
3
− |𝜅Δ𝑥|

3
− |𝜅Δ𝑥|3

18

)
+

(|𝜅Δ𝑥|5), (20)

where 𝑐max and 𝑐min are the maximum and minimum of the abscissae {𝑐(𝑗)}𝑠+1
𝑗=1 for a given Runge-Kutta scheme. The 2D bound in 

Eq. (20) is presented in [56] for low storage Runge-Kutta schemes with all abscissae satisfying 0 ≤ 𝑐𝑖 ≤ 1. In this work we treat 
geometries that satisfy the curvature constraint |𝜅Δ𝑥| < 1∕4, as discussed in section 2.1, and the corresponding CFL restrictions are 
𝐶𝑏,2𝐷 < 0.644 and 𝐶𝑏,3𝐷 < 0.493. While these upper bounds are tighter than the CFL restrictions required for stability in advection-

dominant problems, the boundary CFL constraint may or may not reduce the maximum time step in practice, as the boundary CFL 
number 𝐶𝑏 depends on the 𝐿2 norm of the body velocity while the flow CFL number depends on the 𝐿1 norm of the flow velocity.

3.6. Two-sided interfaces

So far our analysis has focused on simulations where all dynamics occur on Ω+(𝑡), leaving Ω−(𝑡) as an empty domain on which 
extension values are stored. A modified implementation is necessary for simulations in which there are nontrivial dynamics on both 
Ω+(𝑡) and Ω−(𝑡) coupled by interface conditions on Γ(𝑡). Based on the kinematic analysis of the prior section, a grid point can only 
cross from Ω+(𝑡) to Ω−(𝑡) or vice versa during a time step if they have a neighbor in the opposite domain at time 𝑡𝑛. At the start of 
the time step we allocate 4𝑠 additional memory locations at each of these points to hold the both the time history (𝑢(𝑗,+), 𝑓 (𝑗,+)) for 
the positive-side dynamics and the time history (𝑢(𝑗,−), 𝑓 (𝑗,−)) for the negative-side dynamics at each stage 1 ≤ 𝑗 ≤ 𝑠. After this we 
perform Algorithm 1, applying the Runge-Kutta updates to both the buffers and the computational domain. The extension operator 
𝐸(𝑡(𝑗))[⋅] is re-interpreted as an operator that copies solution and extension values into the buffers, and the zero operator 𝑍(𝑡(𝑗))[⋅] is 
re-interpreted as an operator that copies either the positive or negative side buffer values back into the computational domain.

In addition to allowing two-sided dynamics, this implementation also allows for the direct verification of the restrictions on 
boundary motion. We do so by requiring that the extension operator assigns a flag value to the buffer when a point and all of its 
neighbors fall on the same side of the interface. This point should not cross the interface in future stages, and the zero operator can 
verify that values are not copied back into the computational domain from a flagged point. The verification procedure and buffer 
implementation are illustrated together in Fig. 4.

3.7. Time integrators

In the remainder of this work we focus on seven explicit Runge-Kutta schemes, each referred to by a standard abbreviation: 
RK2, a second order integrator with two stages; RK4, the classic fourth order integrator with four stages; LSRK(3, 3), a third order 
low-storage integrator with three stages [45]; LSRK(5, 4), a fourth order low-storage integrator with five stages that is optimized for 
10

stability when applied to advection-diffusion equations [47]; SSPRK(3, 3) and SSPRK(5, 3), both third order strong-stability-preserving 
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integrators with three and five stages, respectively [46,48]; and Vern7, Verner’s “most efficient” seventh order integrator with a sixth 
order embedded method and ten stages [49].

In our numerical experiments we apply Runge-Kutta schemes to PDEs with time-dependent boundary conditions, which can 
lead to an reduction in temporal order due to a mismatch in truncation error between the boundary and interior points [57]. For 
explicit integrators we do not observe this effect except in the most highly resolved convergence tests, indicating that these errors are 
typically dominated by existing spatial and temporal errors in our IIM simulations. Consequently, we do not explore any modification 
of the boundary conditions that could eliminate this effect, such as those proposed in [57–59]. For IIM simulations with implicit 
time integration this order reduction is more pronounced, and we rely on DIRK schemes with high weak stage order [59] that have 
been designed specifically to eliminate this effect. Here we adopt the notation DIRK(𝑠, 𝑝, 𝑞) to indicate a scheme of order 𝑝 with 𝑠
stages and weak stage order 𝑞, and consider the L-stable schemes DIRK(4, 3, 2) and DIRK(6, 4, 3) from [60] as well as DIRK(7, 4, 4)
from [61].

4. Results

4.1. Quantifying moving boundary errors in 1D

In this section we present error analyses of moving boundary treatment proposed above for a range of different physical problems 
and discretization schemes. For context, we note that in a previous work [56] the authors conjecture that a specialization of the 
moving boundary treatment presented in section 3, which was developed specifically for explicit low-storage Runge-Kutta schemes, 
introduces an (Δ𝑡Δ𝑥𝑁 ) error term when applied to 1D IIM discretizations with 𝑁 -th order spatial accuracy and Dirichlet boundary 
conditions. This result is confirmed in [56] via numerical experiments for third order 1D advection schemes and second order 1D 
diffusion schemes. In this section, we extend those results to include higher-order spatial discretizations, more general Runge-Kutta 
time integrators, and a wider range of boundary conditions.

4.1.1. 1D diffusion with Dirichlet boundary conditions

To begin, we consider a diffusion equation on a periodic 1D domain with an immersed body,

𝜕𝑡𝑢+ 𝛽𝜕𝑥𝑥𝑢 = 0 for 𝑥 ∈
[
0, 𝑥𝓁(𝑡)

]
∪
[
𝑥𝑟(𝑡),1

)
. (21)

Here the body occupies the moving region [𝑥𝓁(𝑡), 𝑥𝑟(𝑡)]. Following the method of manufactured solutions, we define a periodic 
solution 𝑔(𝑥, 𝑡) = exp(−𝛽𝑘2𝑡) sin(𝑘𝑥) with 𝑘 = 2𝜋 and 𝛽 = 0.01, which obeys the diffusion equation on the interval 𝑥 ∈ [0, 1]. Here 
and in all following diffusion test cases, the diffusivity 𝛽 is chosen so that the solution magnitude exp(−𝛽𝑘2𝑡) at the final time is a 
reasonable fraction of the initial magnitude (typically between 0.3 and 0.7). We discretize Eq. (21) with periodic domain boundaries, 
initial condition 𝑢(𝑥, 0) = 𝑔(𝑥, 0), and Dirichlet boundary conditions 𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) at the immersed boundary points {𝑥𝓁(𝑡), 𝑥𝑟(𝑡)}. 
For all tests here we choose an immersed body in the form of a uniformly translating interval [𝑥𝓁,0 + 𝑣𝑏𝑡, 𝑥𝑟,0 + 𝑣𝑏𝑡] with 𝑥𝓁,0 = 0.261
and 𝑥𝑟,0 = 0.447. The body translates with velocity 𝑣𝑏 = 0.25 from initial time 𝑡 = 0 to final time 𝑇 = 0.7.

This 1D system is discretized in space using centered finite differences of order four and six, with a 1D extension-based IIM 
applied at the immersed boundaries. For an (𝑃 , 𝑘) IIM discretization, polynomial interpolants of degree 𝑘 − 1 are constructed to 
interpolate the solution at the boundary point and the closest 𝑘 −1 points in the domain, excluding the point closest to the boundary, 
as illustrated in Fig. 1a (red); these polynomials are extended into the body to construct ghost points needed by the difference 
scheme. The temporal discretization follows the technique outlined in section 3, using polynomial extensions of the state 𝑢(𝑥, 𝑡)
and the discretized right hand side 𝑓 (𝑢, 𝑡). The extensions of the state are constructed as mentioned above; for the right hand side, 
polynomials of degree 𝑘 − 1 are constructed using the 𝑘 points closest to the boundary, including the closest point, as illustrated in 
Fig. 1a (blue).

To measure the spatial convergence of each IIM diffusion discretization, simulations are performed with varying spatial resolution 
and a time step of Δ𝑡 = 𝑟Δ𝑥2∕𝛽, where 𝑟 = 0.2 is a constant Fourier number. For each simulation we report the maximum error 
𝜖∞ = ‖𝑢(𝑥,𝑇 ) − 𝑔(𝑥,𝑇 )‖∞ in the solution at the final time 𝑡 = 𝑇 . The results for (4, 5) and (6, 7) IIM spatial discretizations paired 
with second, third, and fourth order RK time integrators are presented in Fig. 5. The (4, 5) spatial discretization converges at fourth 
order or higher for any of the chosen time integrators, which is consistent with a fourth order spatial error and a second order or 
higher temporal error combined with the constant Fourier number constraint Δ𝑡 ∼ Δ𝑥2. Results for the sixth order discretization 
are more complex, exhibiting fourth order convergence with RK2, fourth order convergence with a lower prefactor for LSRK(3, 3), 
and approximately sixth order convergence with LSRK(5, 4). To explain this convergence behavior, we also show the results of a set 
of simulations that replace the moving interval with a stationary interval [𝑥𝓁(𝑇 ), 𝑥𝑟(𝑇 )] that matches the moving geometry at the 
final time 𝑡 = 𝑇 . The error magnitudes for these cases are shown in Fig. 5 as dashed lines without markers and are nearly identical 
to the moving cases. This indicates that the convergence behavior is not driven primarily by the moving boundary treatment. For 
the simulations with higher temporal resolution, it appears that the dominant error is due to the order reduction phenomenon that 
affects Runge-Kutta schemes when applied to method-of-lines discretizations with time-varying boundary conditions. A reduction 
of each of the Runge-Kutta schemes to second order temporal accuracy, as suggested in [57,58], would lead to fourth order spatial 
convergence due to the time step restriction Δ𝑡 ∼(Δ𝑥2). This is consistent with the fourth order spatial convergence rates observed 
for simulations with LSRK(3, 3) and LSRK(5, 4).

To more thoroughly explore the temporal convergence of each discretization, we fix a single spatial resolution and perform 
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simulations with varying Δ𝑡, beginning at the maximum stable time step for the discretization and decreasing over several orders of 
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Fig. 5. Convergence results for 1D diffusion with Dirichlet boundaries at fixed Fourier number (section 4.1.1). Here 𝜖∞ represents 𝐿∞ norm of the error in the final 
time solution. Results are shown for both (a) a (4, 5) IIM discretization and (b) a (6, 7) IIM discretization, which exhibit roughly fourth or sixth order convergence 
respectively when integrated with a Runge-Kutta scheme of sufficiently high order. Dashed colored lines indicate the error in the equivalent stationary cases on both 
plots, though these are indistinguishable from the moving cases for the (4, 5) discretization.

Table 1

Spatial exponents of the mixed error terms 𝐴Δ𝑡Δ𝑥𝑁 observed in diffusion simulations with moving 
boundaries and Dirichlet boundary conditions (Dir, see Fig. 6), Neumann boundary conditions (Neu, 
see Fig. A.19), or discontinuous coefficients with jump conditions (Jump, see Fig. A.20). The data used 
to generate each fit is indicated by black dashed lines on the corresponding figures. The (6, 7) Dirichlet 
datapoint is omitted due to a lack of sufficient data for the fit.

Integrator (4, 5) Dir (6, 7) Dir (4, 5) Neu (6, 7) Neu (4, 5) Jump (6, 7) Jump

RK2 4.38 N/A 2.89 4.94 3.51 5.09
LSRK(3,3) 4.14 5.79 2.94 4.89 3.51 5.19
LSRK(5,4) 4.04 5.54 2.93 4.74 3.40 5.17

magnitude. The results are compared to a solution with the same resolution and a much smaller time step, so that any purely spatial 
error is removed from the comparison. Fig. 6 displays the results for (4, 5) and (6, 7) IIM discretizations with Dirichlet boundary 
conditions at resolutions 𝑁𝑥 = [32, 64, 128, 256]. Time integration is performed with either the RK2, LSRK(3, 3), and LSRK(5, 4) time 
integrators. Referring to Fig. 6a, corresponding to a (4, 5) scheme with RK2 time integration, we observe that for each fixed spatial 
resolution the temporal convergence order is initially second order, consistent with the order of the time integrator. When the number 
of time steps increases beyond a given threshold, the convergence diminishes to first order, indicating that the error introduced by 
moving boundaries is dominant. By varying the spatial resolution we can deduce that the magnitude of the (Δ𝑡2) error term is 
independent of Δ𝑥, while the (Δ𝑡) error term has a prefactor that scales with Δ𝑥𝑁 for some positive exponent 𝑁 . Similar behavior 
can be observed for the other combinations of time integrator and spatial discretization shown in Figs. 6b through 6f: for integrators 
of order 𝑀 , the convergence is initially (Δ𝑡𝑀 ), with an (Δ𝑡) error term that depends strongly on spatial resolution dominating at 
smaller time steps. This is consistent with the existence of an (Δ𝑡Δ𝑥𝑁 ) moving boundary error term, as proposed in [56].

To determine the exponent 𝑁 for a given discretization, we discard convergence data for which the (Δ𝑡𝑀 ) error term is 
dominant, and perform a linear least squares fit between log 𝜖∞ and log(𝐴Δ𝑡Δ𝑥𝑁 ) to determine the prefactor 𝐴 and exponent 𝑁 of 
the moving boundary error term. The results for each combination of spatial discretization and time integrator are listed in Table 1, 
which indicates that the exponent is primarily determined by the order of the spatial discretization: a (4, 5) scheme leads to 𝑁 ≈ 4, 
while a (6, 7) scheme leads to 𝑁 ≈ 6. Importantly, when the time step obeys the stability constraint Δ𝑡 ∼ Δ𝑥2 that is necessary for 
diffusion simulations with explicit time integration, the resulting moving boundary error terms have magnitude (Δ𝑥𝑁+2) and do 
not dominate the existing spatial error (Fig. 5).

4.1.2. 1D diffusion with Neumann boundary conditions

To evaluate the magnitude of the mixed error term introduced by Neumann boundary conditions, the temporal convergence tests 
described above are repeated with the same simulation parameters, discretizations, and resolutions, changing only the boundary 
condition prescribed in each simulation to the Neumann condition 𝜕𝑥𝑢(𝑥, 𝑡) = 𝜕𝑥𝑔(𝑥, 𝑡) for 𝑥 ∈ {𝑥𝓁(𝑡), 𝑥𝑟(𝑡)}. The results mirror the 
Dirichlet case, displaying regions with a dominant (Δ𝑡𝑀 ) error term and regions with a dominant (Δ𝑡Δ𝑥𝑁 ) error term; for full 
results see Fig. A.19 in the Appendix. To determine the exponent 𝑁 in the mixed error term, we repeat the least squares fitting 
procedure described above for each combination of time integrator and spatial discretization. The results are given in Table 1, which 
indicates that 𝑁 ≈ 3 for the (4, 5) IIM discretizations and 𝑁 ≈ 5 for the (6, 7) discretizations independent of the choice of time 
12

integrator. These exponents are one order lower than those observed with Dirichlet boundary conditions, likely due to a boundary 
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Fig. 6. Temporal convergence of the final-time 𝐿∞ error norm for the 1D diffusion equation with Dirichlet boundary conditions and a fourth order (left column) 
or sixth order (right column) discretization; see section 4.1.1. 𝑁𝑡 represents the number of time steps in each simulation. Time integration is performed with the 
RK2, LSRK(3, 3), or LSRK(5, 4) time integrators, and the leftmost point of each series represents the maximum stable time step for each discretization. For all cases 
the temporal convergence is dominated by either an (Δ𝑡𝑀 ) error term with a prefactor that is largely independent of spatial resolution or by an (Δ𝑡Δ𝑥𝑁 ) term 
attributed to the presence of moving boundaries, where 𝑀 is the order of the time integrator and 𝑁 is the order of the spatial discretization. Dashed lines indicate 
the data on each plot used to determine the corresponding exponent 𝑁 via a least squares fit.

condition that depends on the first derivative of the solution. As in the previous section, the mixed error term does not asymptotically 
dominate the spatial error when the time step is determined by the stability constraint Δ𝑡 ∼ Δ𝑥2.

4.1.3. 1D diffusion with discontinuous coefficients

To investigate PDEs with dynamics on both sides of an immersed interface, we repeat the analysis of the previous section for the 
diffusion equation with a piecewise constant diffusivity{

𝛽−, 𝑥 ∈ [𝑥𝓁(𝑡), 𝑥𝑟(𝑡)]
13

𝜕𝑡𝑢 = 𝛽(𝑥)𝜕𝑥𝑥𝑢, 𝛽(𝑥) =
𝛽+, otherwise

. (22)
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On the interface Γ(𝑡) = {𝑥𝓁(𝑡), 𝑥𝑟(𝑡)} boundary conditions are replaced by the jump conditions on the solution and the diffusive 
flux defined in Eq. (8). The magnitude of the jumps is set to match the manufactured solution

𝑔(𝑥, 𝑡) =

{
exp
(
−𝛽−𝑘2𝑡

)
sin(𝑘𝑥), 𝑥 ∈

[
𝑥𝓁(𝑡), 𝑥𝑟(𝑡)

]
exp
(
−𝛽+𝑘2𝑡

)
sin(𝑘(𝑥− 𝛿)), otherwise

(23)

with 𝛽− = 0.01, 𝛽+ = 0.005, 𝑘 = 2𝜋, and 𝛿 = 0.2. The moving interface begins at 𝑥𝓁,0 = 0.251, 𝑥𝑟,0 = 0.507 at time 𝑡 = 0 and translates 
at a constant velocity 𝑣𝑏 = 0.25 until final time 𝑇 = 1.

Repeating the temporal convergence tests of the previous two sections produces behavior that is consistent with the Dirichlet and 
Neumann cases; see Fig. A.20 in the Appendix for a full listing of the results. We observe both an (Δ𝑡𝑀 ) temporal error term and 
an (Δ𝑡Δ𝑥𝑁 ) mixed error term attributed to moving boundaries, with the exponent 𝑁 for each integrator and spatial discretization 
listed in Table 1. For each spatial discretization the measured exponent is larger than that observed with Neumann boundary 
conditions and smaller than that observed with Dirichlet boundary conditions: the (4, 5) discretization leads to 3.4 ≤𝑁 ≤ 3.51, while 
the (6, 7) discretizations leads to 5.09 ≤𝑁 ≤ 5.19.

4.1.4. 1D advection with Dirichlet boundary conditions

As a model hyperbolic system we consider the 1D linear advection equation 𝜕𝑡𝑢 + 𝑣𝜕𝑥𝑢 = 0. The problem domain is identical to 
the previous sections, an interval with initial position 𝑥𝓁,0 = 0.261 and 𝑥𝑟,0 = 0.447 translating at speed 𝑣𝑏. A Dirichlet boundary 
condition is prescribed on boundaries with 𝑛(𝑣 − 𝑣𝑏) > 0, where the normal 𝑛 = ±1 points into the problem domain. Convergence is 
measured with the method of manufactured solutions using the translating wave 𝑔(𝑥, 𝑡) = sin(𝑘(𝑥− 𝑣𝑡)) for (𝑥, 𝑡) ∈ [0, 1] × [0, 𝑇 ] with 
𝑘 = 6𝜋 and 𝑇 = 0.7. Errors are measured in the 𝐿∞ norm at the final time 𝑡 = 𝑇 . The IIM discretization uses the (3, 4) upwind finite 
difference scheme presented in section 2.2, and moving boundaries are treated using fourth-order extrapolations. Where a Dirichlet 
boundary condition is available, it is used both in the difference scheme and in the moving boundary extrapolations; otherwise all 
extrapolation is performed using the interior solution values only.

Throughout our test cases we set the boundary velocity to the constant value 𝑣𝑏 = 0.5 so that the boundaries move left-to-right, 
while varying the flow velocity 𝑣 in three different ways. For case one, the flow velocity 𝑣 = −𝑣𝑏, so that the flow moves right-

to-left, opposing the boundary motion. In case two, 𝑣 = 𝑣𝑏∕2 so that the flow and boundary are aligned, but the body outpaces 
the flow. Finally, in case three the flow and boundary translate at the same velocity 𝑣 = 𝑣𝑏, so that there is no through flow and 
no Dirichlet boundary condition is required. Fig. 7 presents temporal convergence results obtained with either RK2 or LSRK(3, 3)
time integration for these three cases. As with the diffusion test cases, an (Δ𝑡Δ𝑥𝑁 ) moving boundary error term dominates at 
fine temporal resolutions, and a least squares fit is used to determine the spatial exponent 𝑁 for each time integrator and velocity 
combination. For the first two cases 𝑣 = −𝑣𝑏 and 𝑣 = 𝑣𝑏∕2, the exponent is 2.6 ≤ 𝑁 ≤ 2.75, or slightly lower than the spatial 
convergence order of 3, which is consistent with the convergence order of the mixed term in the diffusion test cases. However, for 
the no-through flow case (case three) with either RK2 or LSRK(3, 3) integration we observe 𝑁 ≈ 2. To explain these values of 𝑁 we 
can postulate a straightforward error model, starting from the empirical observation that a pointwise error of magnitude (Δ𝑡Δ𝑥3) is 
introduced at each grid point that enters the domain. For linear PDEs the dynamics of the error mirror the dynamics of the solution, 
which means that any errors introduced into the problem domain are advected by the flow. When 𝑣 − 𝑣𝑏 ≠ 0 each of the pointwise 
(Δ𝑡Δ𝑥3) error contributions is advected away from the boundary, leaving an error field of rough magnitude (Δ𝑡Δ𝑥3) dispersed 
throughout the domain. When 𝑣 −𝑣𝑏 = 0, however, all error contributions are advected alongside the body, so that the error adjacent 
to the immersed boundary is an accumulation of the error from all grid point crossings. Under a CFL constraint, the number of grid 
point crossings is (Δ𝑥−1) at any given final time, explaining why the spatial exponent in the mixed error term is reduced by one 
for this case.

In all cases we observe that 𝑁 ≥ 2, so that when the time step is determined by a CFL criterion, the overall order of the moving 
boundary error term is equal to or higher than the third order spatial error. This means in practical simulations using explicit time 
integrators, the moving boundary error term will not dominate the convergence of the algorithm.

4.2. 1D simulations with additional time integrators

While the results of the previous section focused on low storage RK schemes, the moving boundary treatment outline in sec-

tion 3 is equally applicable to standard Butcher-form RK schemes, strong stability preserving RK schemes, and diagonally implicit 
schemes. As a representative example, Fig. 8a revisits the spatial convergence of 1D advection testcase with 𝑣 = −0.5, 𝑣𝑏 = 0.5, 
comparing LSRK(3, 3) time integration with the RK4, Vern7, SSPRK(3, 3) and SSPRK(5, 3) time integrators. Both the RK4 and Vern7 
integrators are implemented in the modified Shu-Osher form outlined in section 3.4, and all time steps are chosen to satisfy the 
CFL constraint 𝐶 = 𝐶𝑏 = 0.7. At lower resolutions all four integrators achieve third order convergence with nearly identical error 
magnitudes, indicating that the (Δ𝑥3) error of the spatial discretization is dominant. As the resolution increases, an (Δ𝑥2) error 
emerges for the third and fourth order time integrators, which is consistent with an order reduction due to time-dependent boundary 
conditions as discussed in section 3.7. Notably, the Vern7 integrator is able to maintain third order convergence up to the maxi-

mum resolution Δ𝑥 = 1∕4096, indicating that the prefactor on the (Δ𝑥2) error is significantly smaller than that of the lower order 
integrators.

For diffusion-dominated PDEs, explicit time integrators suffer from restrictive time step limits due to stability constraints. Diag-
14

onally implicit schemes offer an attractive alternative. Fig. 8b revisits the 1D diffusion test case from section 4.1.1, measuring the 
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Fig. 7. Temporal convergence of the final-time 𝐿∞ error norm for the 1D advection equation with Dirichlet boundary conditions and either RK2 (left column) or 
LSRK(3, 3) (right column) time integration. See section 4.1.4 for interpretation.

convergence of a (4, 5) IIM diffusion discretization when integrated with three different DIRK schemes of weak stage order higher 
than one [60,61]. For each integrator results are also shown for a similar case with the same parameters and a stationary body that 
occupies the interval [𝑥𝓁(𝑇 ), 𝑥𝑟(𝑇 )], which matches the geometry of the moving cases at the final time 𝑡 = 𝑇 . In each simulation the 
time step is chosen to yield a body CFL number that is 80% of the maximum acceptable value, which varies between integrators 
due to the fact that DIRK(6, 4, 3) and DIRK(7, 4, 4) have abscissae outside of the interval [0, 1]. There is no constraint on the Fourier 
number, so that Δ𝑡 ∼Δ𝑥 for these convergence tests. For each integrator the convergence of each moving test case is approximately 
fourth order at low resolutions, with an asymptotically larger (Δ𝑥2.5) error dominating at finer resolutions. For the fourth order 
integrators DIRK(6, 4, 3) and DIRK(7, 4, 4), the equivalent stationary test cases do not exhibit order reduction due to time-dependent 
boundary conditions, indicating that in general DIRK schemes with a high weak stage order do not mitigate order reduction when 
combined with our moving boundary treatment. Interestingly, the third order DIRK(4, 3, 2) integrator also exhibits order reduction 
15

in the stationary test case, but provides the most accurate results for moving test cases at fine resolutions, outperforming both of the 
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Fig. 8. Results from section 4.2. (a) 1D convergence results for a (3, 4) IIM advection discretization integrated with a constant body CFL and four different explicit 
Runge-Kutta schemes. At lower resolutions the (Δ𝑥3) spatial error dominates. At higher resolutions the (Δ𝑡2) error attributed to the presence of time-dependent 
boundary conditions becomes dominant for all integrators except Vern7. (b) 1D convergence results for a (4, 5) IIM diffusion discretization integrated with a constant 
body CFL and various DIRK schemes of weak stage order greater than one. For each integrator the results of an equivalent stationary test case are shown with a dashed 
line of the same color (though the stationary results for DIRK(7, 4, 4) nearly overlap DIRK(6, 4, 3)). In all moving test cases the convergence begins at approximately 
fourth order and degenerates to (Δ𝑥2.5) at fine resolutions, at which point the third order integrator DIRK(4, 3, 2) achieves the lowest error.

fourth order integrators with higher weak stage orders while requiring the fewest linear system solves. We leave a full investigation 
of these order reduction phenomena in moving boundary simulations to future work.

4.3. 2D convergence results

For all 2D results we consider PDEs posed on the unit square Ω = [0, 1]2 with periodic boundaries. The immersed surface Γ(𝑡) is 
a smooth five-pointed star with initial center 𝐱0 that translates uniformly with velocity 𝐯𝑏. In a polar coordinate system centered on 
the point 𝐱𝑏(𝑡) = 𝐱0 + 𝐯𝑏𝑡, the star is defined by the level set

𝜙(𝑟, 𝜃) = 𝑟− 𝑟0 − Δ𝑟 cos (5𝜃), (24)

where 𝑟0 is the average radius and Δ𝑟 is the maximum radial perturbation. For all cases we use the method of manufactured solutions 
and report the 𝐿∞ norm of the error in the final time solution.

4.3.1. 2D diffusion with Dirichlet or Neumann boundary conditions

For this test case we consider the 2D diffusion equation 𝜕𝑡𝑢 = 𝛽∇2𝑢 on an irregular domain, with either Dirichlet or Neumann 
boundary conditions on the immersed surface. The domain is defined by the star level set from Eq. (24) with average radius 𝑟 = 0.2, 
radial perturbation Δ𝑟 = 0.03, initial center 𝐱0 = [0.41, 0.41], and constant velocity 𝐯𝑏 = [0.4, 0.4]. The manufactured solution is a 
decaying sinusoid

𝑔(𝐱, 𝑡) = exp
(
−𝛽(𝑘21 + 𝑘22)𝑡

)
sin
(
𝑘1𝑥1

)
sin
(
𝑘2𝑥2

)
(25)

with diffusivity 𝛽 = 0.004 and wavenumbers 𝑘1 = 𝑘2 = 4𝜋. Time integration begins at 𝑡 = 0 and runs to a final time 𝑇 = 0.5, using 
the LSRK(3, 3) integrator and a fixed Fourier number 𝑟 = Δ𝑡𝛽∕Δ𝑥2 = 0.1. This ensures that as the spatial grid is refined, any purely 
temporal errors have a magnitude that reduces with (Δ𝑥6) at most.

Fig. 9 plots the 𝐿∞ error in the final time solution as a function of the grid resolution, using either a (4, 5) or (6, 7) IIM discretiza-

tion. Results for a moving domain are shown alongside a set of similar stationary cases, which use the same manufactured solution 
but a constant body center 𝐱𝑏 = 𝐱0 +𝐯𝑏𝑇 that agrees with the moving domain cases at the final time. For both Dirichlet and Neumann 
boundary conditions the IIM discretizations achieve the expected fourth or sixth order convergence in the 𝐿∞ norm, with an error 
magnitude that is comparable to the stationary cases.

4.3.2. 2D diffusion with discontinuous coefficients

For this test case we consider the 2D diffusion equation with an immersed interface that separates two regions with different 
diffusivities,

𝜕𝑡𝑢 = 𝛽(𝑥)∇2𝑢, 𝛽(𝑥) =

{
𝛽+, 𝜙(𝑥, 𝑡) > 0
𝛽−, 𝜙(𝑥, 𝑡) < 0

. (26)

On the interface jump conditions on the solution and diffusive flux are prescribed as in Eq. (8), with the jump values that are 
16

set to match the manufactured solution. The domain is defined by the star level set from Eq. (24) with average radius 𝑟 = 0.27, 
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Fig. 9. Convergence results for 2D diffusion with Dirichlet or Neumann boundary conditions (section 4.3.1). Each simulation is performed with LSRK(3, 3) time 
integration using (a) a fourth order spatial discretization or (b) a sixth order spatial discretization. Both the fourth and sixth order discretizations exhibit the expected 
order of accuracy, and the magnitude of the error is comparable to the equivalent stationary cases (dashed lines).

Fig. 10. Convergence results for 2D diffusion with discontinuous coefficients and a moving boundary (section 4.3.2). The final time manufactured solution is shown 
in (a), along with the 𝐿∞ error as a function of grid resolution in (b). Both the fourth and sixth order discretizations exhibit the expected order of accuracy, and the 
magnitude of the error is comparable to the equivalent stationary cases (dashed lines).

radial perturbation Δ𝑟 = 0.03, initial center 𝐱0 = [0.372, 0.360], and constant velocity 𝐯𝑏 = [0.4, 0.4]. The manufactured solution is a 
decaying sinusoid in each domain with differing wavenumbers,

𝑔(𝐱, 𝑡) =
{

+exp
(
−𝛽+‖‖𝐤+‖‖2𝑡) sin(𝑘+1 𝑥1) sin(𝑘+2 𝑥2), 𝜙(𝑥, 𝑡) > 0

−exp
(
−𝛽−‖𝐤−‖2𝑡) sin(𝑘−1 𝑥1) sin(𝑘−2 𝑥2), 𝜙(𝑥, 𝑡) < 0

, (27)

with diffusivities 𝛽+ = 0.002 and 𝛽− = 0.004. We choose wavenumbers 𝐤+ = [4𝜋, 4𝜋] and 𝐤− = [4.6𝜋, 3.4𝜋] to ensure that the jump 
conditions on the interface vary in both space and time. Time integration is performed as in the previous section with fixed Fourier 
number 𝑟 =max(𝛽+, 𝛽−)Δ𝑡∕Δ𝑥2 = 0.15.

Fig. 10 provides convergence results for both (4, 5) and (6, 7) IIM discretizations. Both achieve their nominal order of accuracy 
in the 𝐿∞ norm with error magnitudes that are equal to or less than the equivalent stationary cases. To demonstrate robustness to 
large jumps in coefficients, we repeat the tests above with the same 𝛽− and a larger diffusivity ratio 𝛽−∕𝛽+ = 104. Fig. 11a displays 
the results, which show roughly the same convergence behavior and error magnitudes as with 𝛽−∕𝛽+ = 2. This indicates that the 
error is dominated by the domain with the larger diffusivity (as shown in Fig. 11b), and that the stability of the discretization is 
not affected by large jumps in coefficients. Notably, the (6, 7) IIM discretization is able to converge at sixth order for a two-sided 
diffusion problem with a moving nonconvex interface, coupling conditions that involve surface gradients of the solution, and jumps 
17

in coefficients by up to four orders of magnitude.



Journal of Computational Physics 507 (2024) 112979J. Gabbard and W.M. van Rees

Fig. 11. Results for 2D diffusion with discontinuous coefficients and a large diffusivity ratio of 𝛽−∕𝛽+ = 104 (section 4.3.2). Convergence results in (a) indicate that 
both fourth and sixth order discretizations remain stable and achieve their nominal order of convergence despite the large diffusivity ratio. Additionally, the error 
magnitudes for these moving cases are comparable to those of the equivalent stationary cases (dashed lines). The final time error field for the (6, 7) discretization 
with 𝑁𝑥 = 64 is shown in (b) and indicates that the error is dominated by the region with larger diffusivity. This explains the similarity in error magnitude between 
these results and those shown in Fig. 10, which use the same 𝛽− and a smaller diffusivity ratio 𝛽−∕𝛽+ = 2.

4.3.3. 2D advection with Dirichlet boundary conditions and constant velocity

To test the stability and convergence of the IIM advection discretization developed in section 2, we consider the scalar advection 
equation 𝜕𝑡𝑢 + 𝐯 ⋅∇𝑢 = 0. For hyperbolic PDEs a boundary condition is required only where characteristics enter the domain, so that 
a Dirichlet boundary condition on a moving body takes the form

𝑢(𝐬, 𝑡) = 𝑔(𝐬, 𝑡) for all
{
𝐬 ∈ Γ(𝑡) ∣ (𝐯(𝐬, 𝑡) − 𝐯𝑏(𝐬, 𝑡)) ⋅ 𝐧(𝐬, 𝑡) > 0

}
. (28)

The above PDE and Dirichlet boundary condition are discretized using a (3, 4) IIM advection discretization, which has a third 
order spatial truncation error. The problem domain is periodic and consists of the exterior of the star defined by the level set 
given in Eq. (24), with radius 𝑟 = 0.2, radial perturbation Δ𝑟 = 0.03, initial center 𝐱0 = [0.351, 0.351], and constant body velocity 
𝐯𝑏 = [0.6, 0.6]. Convergence is assessed using the manufactured solution

𝑔(𝐱, 𝑡) = sin
(
4𝜋(𝑥1 − 𝑣1𝑡)

)
cos
(
4𝜋(𝑥2 − 𝑣2𝑡)

)
. (29)

To test the selective enforcement of inflow boundary conditions, we consider four distinct cases for the flow velocity: (i) a velocity 
field opposed to the body motion, 𝐯 = −𝐯𝑏; (ii) a velocity field perpendicular to the body motion, 𝐯 = 𝐯𝑏 × 𝐞̂3; (iii) a velocity field 
𝐯 = 𝐯𝑏∕2 that is parallel to the flow but slower; and (iv) a no through-flow velocity field with 𝐯 = 𝐯𝑏, for which no boundary condition 
is enforced on any part of the immersed surface. Time integration runs from 𝑡 = 0 to 𝑇 = 0.5 using the LSRK(3, 3) time integrator, 
with the time step determined by the body CFL constraint 𝐶𝑏 = 0.64. This results in a constant flow CFL of 𝐶𝑣 = 0.45 for case (iii) 
and 𝐶𝑣 = 0.9 for the other three cases.

Fig. 12a presents convergence results for all four test cases, as well as a free-space test case that uses the same manufactured 
solution with no solid body and 𝐯 = [0.6, 0.6]. All of the moving boundary cases converge at third order in the 𝐿∞ norm, and all but 
the no through-flow case show a similar or smaller error magnitude compared to the free space case. The final-time error field for 
the no through-flow case with 𝑁𝑥 = 32, shown in Fig. 12b, indicates that the IIM boundary treatment leads to an accumulation of 
error near the surface for this test case. This is possible because of the lack of relative motion between the flow and the body, which 
for other test cases allows some accumulated error to be covered by the boundary motion or advected into the problem domain. 
Consistent with the 1D convergence results presented in section 4.1.4, this accumulation of error does not affect the third order 
spatial convergence rate of the method.

4.3.4. 2D advection with Dirichlet boundary conditions and variable velocity

To test the utility of our advection discretization when applied to more realistic flow fields, we consider a test case with body 
and flow velocities that vary in both space and time. Manufactured solutions with variable velocity can be constructed through the 
use of a reference map 𝝃(𝐱, 𝑡) that obeys the advection equation 𝜕𝑡𝝃 + 𝐯 ⋅ ∇𝝃 = 0 with initial condition 𝜉(𝐱, 0) = 𝐱. For any initial 
condition 𝑔0(𝐱), the time-varying field 𝑔(𝐱, 𝑡) = 𝑔0(𝜉(𝐱, 𝑡)) solves the advection equation. Here use the sinusoidal reference map and 
corresponding velocity field

𝝃(𝐱, 𝑡) = 𝐱 − 𝛿 sin(𝜔𝑡)[sin
(
2𝜋𝑥2

)
, sin

(
2𝜋𝑥1

)
], 𝐯(𝐱, 𝑡) = [∇𝝃(𝐱, 𝑡)]−1𝜕𝑡𝝃(𝐱, 𝑡), (30)

with frequency 𝜔 = 7𝜋∕2, length scale 𝛿 = 0.1 and initial condition 𝑔0(𝐱) = sin
(
4𝜋𝑥1

)
sin
(
4𝜋𝑥2

)
. This velocity field is not incom-

pressible, and the reference map has a Jacobian 𝐽 = det(∇𝝃) in the range 1 ± 4𝜋2𝛿2. The domain is defined by the star level set from 
18

Eq. (24) with average radius 𝑟 = 0.2, radial perturbation 𝑟 = 0.03, and initial center 𝐱0 = [0.321, 0.321]. To create a time-varying body 
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Fig. 12. (a) Convergence results for 2D advection with Dirichlet boundary conditions (section 4.3.3). Cases (i) through (iv) and the free-space case are described in 
the text, and all cases converge at third order in the 𝐿∞ norm. (b) The final-time error field for the no through-flow case (case iv) with 𝑁𝑥 = 32. The maximum error 
is concentrated on the immersed surface, while the error in the rest of the domain is consistent with that of the free-space finite difference scheme.

Fig. 13. Results from section 4.3.4. (a) Third order 𝐿∞ norm convergence for the 2D variable velocity advection test case. The blue dashed line lying nearly on top of 
the series indicates the error for the equivalent stationary boundary test case. (b) The final time velocity field and error field for the variable velocity test case with 
𝑁𝑥 = 128. The path of the body center is superimposed as a dashed line.

velocity at each boundary point, the star rotates about an axis passing through 𝐱𝑐 = [0.5, 0.5] with constant angular velocity 𝜔𝑏 = 𝜋. 
Time integration begins at time 𝑡 = 0 and proceeds time 𝑇 = 1.0 using the LSRK(3, 3) time integrator and a constant time step chosen 
to satisfy the body CFL constraint 𝐶𝑏 < 0.64, which leads to a maximum flow CFL of 𝐶 = 0.93.

Fig. 13a plots the maximum error in the final time solution as a function of the spatial resolution 𝑁𝑥, demonstrating third-order 
spatial convergence with no order reduction in the presence of a moving boundary. The error magnitudes are nearly identical to 
those of the equivalent stationary boundary cases, shown as a dashed line. Fig. 13b illustrates the final time velocity field and error 
field for 𝑁𝑥 = 128, with the path of the body center superimposed. The maximum error occurs in the interior of the domain, and the 
effect of the Dirichlet boundary condition can be observed as a region of diminished error in the upper right hand corner. This is 
consistent with the behavior of stationary cases, in which the error has a minimum at Dirichlet inflow boundaries and grows as the 
solution is transported along characteristics into the interior of the domain. For this test case the moving boundary treatment acts as 
a source of error with magnitude well below that of the interior truncation error, and has a minimal effect on the final time error 
magnitude.

4.4. Surface quantities

One of the advantages of sharp immersed methods over diffuse immersed methods is the ability to accurately reconstruct quan-

tities defined on an immersed surface. To illustrate this capability, we return to the 2D moving advection test case presented in 
section 4.3.3 with flow velocity 𝐯 = [0.6, −0.6] perpendicular to the boundary motion, and extract the normal gradient of the solution 
on the boundary using the same fourth-order accurate weighted least squares interpolants that are used to discretize the advection 
19

term. The results at two different spatial resolutions are presented in Fig. 14a. For Δ𝑥 = 1∕32 the surface gradient closely follows 
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Fig. 14. Results from section 4.4. (a) The surface normal gradient at 𝑡 = 𝑇 for the 2D advection test case from section 4.3.3. Data for 𝑁𝑥 = 64 is offset for readability. 
(b) Time history of the surface normal gradient with 𝑁𝑥 = 1∕32. The four data series correspond to control points with 𝑥2 = 3∕8 ( and ) and 𝑥2 = 5∕8
( and ), with the first point in each pair satisfying 𝑥1 < 𝑥𝑏,1(𝑡) (on the ‘trailing’ side) and the second point satisfying 𝑥1 > 𝑥𝑏,1(𝑡) (on the ‘leading’ side). (c) 
Time history of the surface normal gradient with 𝑁𝑥 = 1∕64 for the same four control points. All data for this spatial resolution is downsampled by a factor of two for 
readability.

the exact value, even though at this resolution the star shaped body has only approximately five grid points across each of its lobes 
(see Fig. 12b). For Δ𝑥 = 1∕64, a more moderate resolution, the exact and numerical values are nearly indistinguishable. To examine 
the temporal history of surface gradients we consider a second test case with the same velocity field and a star-shaped body initially 
centered at 𝐱0 = [0.351, 0.503] that translates with body velocity 𝐯𝑏 = 0.6𝐞̂1. For this case the control points that lie on 𝑥1 direction 
grid lines coincide with the same material point on the boundary at each time step, so that it is possible to extract the time history 
of the normal gradient at a single material point. Fig. 14b provides this time history for material points located on the grid lines 
𝑥2 = 3∕8 and 𝑥2 = 5∕8 using a spatial resolution of Δ𝑥 = 1∕32; the equivalent results for Δ𝑥 = 1∕64 are shown in Fig. 14c. Neither 
case exhibits large temporal oscillations in the surface gradient, and with a resolution of Δ𝑥 = 1∕64 the maximum error at any of the 
four sample points is less than 5% of the maximum normal gradient observed at that point.

To assess the convergence of the surface normal gradient, we return to the advection test case from section 4.3.3 with velocity 
𝐯 = [−0.6, −0.6] that opposes the motion of the body. Fig. 15a plots the maximum error in the surface normal gradient at the final 
time as a function of the spatial resolution 𝑁𝑥. The results indicate second order convergence for moving boundary simulations, with 
error magnitudes that closely follow those of the equivalent stationary boundary simulations with geometry taken from the final 
time 𝑡 = 𝑇 . This is a reduction in order compared to the solution error, which is third order in the 𝐿∞ norm. Fig. 15b provides the 
final time error field for this test case with 𝑁𝑥 = 128, which indicates that the moving boundary in this test case acts as a source of 
error that is not smooth either in space or in time, but with magnitude approximately equal to that of the interior scheme. The result 
is a “wake” region behind the body in which the error has a magnitude that is (Δ𝑥3) and varies over a length scale that is (Δ𝑥), 
leading to (Δ𝑥2) convergence for the normal gradient.

We also consider the convergence of surface quantities for parabolic PDEs, returning to the 2D diffusion test case with Dirich-

let boundary conditions presented in section 4.3.1. Fig. 15c plots the maximum error in the surface normal gradient at the final 
time, using a (4, 5) IIM discretization and the same spatial resolutions and parameters as the convergence results in Fig. 9a. The 
convergence of the normal gradient is fourth order, and error magnitudes agree well with those of the equivalent stationary cases. 
20

Fig. 15d provides the magnitude of the final time error on a logarithmic scale for 𝑁𝑥 = 72, which indicates that the errors are smooth 
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Fig. 15. Convergence results for the surface normal gradient (section 4.4). (a) Second order convergence for the normal gradient in a 2D advection test case with 
Dirichlet boundaries. The error magnitudes agree well with those of the equivalent stationary cases, shown as a dashed line. (b) The final time error field for the (3, 
4) advection discretization with 𝑁𝑥 = 128, which indicates a non-smooth error. (c) Fourth order convergence for the normal gradient in a 2D diffusion test case with 
Dirichlet boundary conditions. (d) The final time error field for the (4, 5) diffusion discretization with 𝑁𝑥 = 72, shown on a logarithmic scale. The solution error is 
smooth and concentrated on the boundaries.

and concentrated on the boundaries. This is consistent with the increased truncation error in that region. As this boundary error 
source moves across the domain, a “wake” of increased error magnitude forms behind the body and diffuses into adjacent regions of 
the domain. Because the error field is smooth, the surface normal gradient achieves the same fourth order convergence rate as the 
solution error.

4.5. 3D convergence results

For 3D simulations, the sharp immersed method presented in sections 2 and 3 has been implemented within MURPHY [62], 
an open source software framework for PDE simulations on block-structured multiresolution grids. Following the methodology 
used for 2D simulations, we measure the convergence of 3D IIM discretizations via the method of manufactured solutions on the 
computational domain [0, 1]3 with periodic domain boundaries. The problem domain is the exterior of a sphere that is radially 
perturbed by a distance proportional to a spherical harmonic. In a spherical coordinate system (𝜌, 𝜃, 𝜑) that is aligned with the 𝑥3
axis and centered on the moving point 𝐱𝑏(𝑡) = 𝐱0 + 𝐯𝑏𝑡, this region is defined by the level set

𝜙(𝜌, 𝜃,𝜑) = −(𝜌− 𝜌0) + 𝜌̃𝑌 10
5 (𝜃,𝜑),

𝑌 10
5 (𝜃,𝜑) = − 3

256

√
1001
𝜋

cos(5𝜑) sin5(𝜃)
(
323cos5(𝜃) − 170cos3(𝜃) + 15cos(𝜃)

)
.

(31)

In this section we use a uniform Cartesian grid and a body with average radius 𝜌0 = 0.25, perturbation radius 𝜌̃= 0.02, initial center 
𝐱0 = [0.355, 0.501, 0.509], and body velocity 𝐯𝑏 = 0.301𝐞̂1.

For 3D convergence tests we solve the advection-diffusion equation 𝜕𝑡𝑢 + 𝐯 ⋅∇𝑢 = 𝛽∇2𝑢, which reduces to pure diffusion if 𝐯 = 0
21

and to pure advection if 𝛽 = 0. In all cases, we use a manufactured solution
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Fig. 16. (a) Spatial convergence results for 3D diffusion with Dirichlet or Neumann boundary conditions (section 4.5). Dashed lines represent equivalent stationary 
cases. For both boundary conditions the convergence is fourth order or higher in the 𝐿∞ norm, and the error magnitudes for the moving and stationary simulations 
are nearly identical. (b) Spatial convergence for the advection-diffusion equation with varying Peclet number and Dirichlet boundary conditions. Convergence is third 
order in the 𝐿∞ norm.

𝑔(𝐱, 𝑡) = 𝑔0(𝐱 − 𝐯𝑡, 𝑡), 𝑔0(𝐱, 𝑡) = exp(−𝛽‖𝐤‖2𝑡) sin(𝑘1𝑥1) sin(𝑘2𝑥2) sin(𝑘3𝑥3). (32)

All time integration runs from 𝑡 = 0 to 𝑇 = 1, with the time step constrained by both a maximum body CFL of 𝐶𝑏 = 0.4 and a 
stability criterion chosen for each finite difference scheme. For pure diffusion we use diffusivity 𝛽 = 5.85 × 10−3 and wavenumbers 
𝑘𝑖 = 2𝜋. The time step is constrained by a maximum Fourier number of 𝑟 = 0.39 for the (4, 5) discretization and 𝑟 = 0.34 for the 
(6, 7) discretization, which ensures stability when paired with the low-storage RK4()6[2S] integrator from [63] that is optimized for 
real-line stability. For pure advection we take 𝛽 = 0 and use a constant velocity field 𝐯 = [0.31, 0.32, 0.28], integrating in time with 
LSRK(3, 3) and a maximum flow CFL number of 𝐶𝑣 = 1.0. Finally, for the advection-diffusion equation we use the same velocity and 
define the diffusivity in terms of the Peclet number Pe𝐿 = ‖𝐯‖𝐿∕𝛽 based on the domain length 𝐿 = 1. For these cases the advection 
term is computed using a boundary condition only at inflow boundaries, while both the diffusion term and the moving boundary 
extrapolations use a boundary condition at all boundary points. Time integration is performed with LSRK(5, 4) and a time step that 
is chosen to enforce a maximum flow CFL of 𝐶𝑣 = 0.8 and maximum Fourier number of 𝑟 = 0.2. For all cases we report the 𝐿∞ norm 
of the error in the final time solution.

Fig. 16a provides spatial convergence results for a (4, 5) diffusion discretization with either Dirichlet or Neumann boundary 
conditions, as well as for the equivalent stationary cases using the same manufactured solution and the final time geometry. In both 
cases the convergence rates are fourth order or better in the 𝐿∞ norm, and the magnitude of the errors is nearly identical to the 
stationary cases. Fig. 16b provides spatial convergence results for pure advection (Pe𝐿 =∞) as well as for the advection-diffusion 
equation with Pe𝐿 = 500 and Pe𝐿 = 100. All cases use a Dirichlet boundary condition, prescribed at inflows for the advection equation 
and on all boundaries for advection-diffusion. Advection terms are discretized with the (3, 4) advection scheme, while diffusion terms 
are discretized with the (4, 5) discretization, leading to a scheme which is formally third order accurate. For all three of these cases 
the dominant error comes from the advection term, and as a result the convergence is third order in the 𝐿∞ norm.

4.6. 3D multiresolution advection-diffusion

As a final test case, we consider the 3D advection-diffusion equation with moving boundaries and simulation parameters that lead 
to the formation of thin boundary layers. The fluid domain is a box with side lengths 𝐿1 = 𝐿2 = 2 and 𝐿3 = 4, with an immersed 
spherical body of radius 𝑅 = 0.51 that is initially centered at 𝐱0 = [1, 1, 3] and translates with constant velocity 𝑣𝑏𝐞̂3 with 𝑣𝑏 = −2. 
The flow field 𝐯(𝐱) is the potential flow about a moving sphere with no free stream velocity; in a spherical coordinate system (𝜌, 𝜃, 𝜑)
centered on 𝐱𝑏(𝑡) and aligned with the 𝑥3 axis,

𝐯(𝐱) = −𝑣𝑏
(
1 − 𝑅3

𝜌3

)
cos(𝜑)𝝆̂+ 𝑣𝑏

(
1 + 1

2
𝑅3

𝜌3

)
sin(𝜑)𝝋̂+ 𝑣𝑏𝐞̂3. (33)

The initial condition is a compact Gaussian

𝑢(𝐱,0) = 𝑢0 exp
(

−𝑧2

1 − 𝑧2

)
, 𝑧 ≡

‖‖‖𝐱 − 𝐱𝑔
‖‖‖

𝜎𝑔
, (34)

with center 𝐱𝑔 = [1.0, 0.8, 2.0], width 𝜎𝑔 = 0.3, and magnitude 𝑢0 = −1. In order to produce a boundary layer on the sphere surface, 
a constant Dirichlet boundary condition 𝑢𝑏 = −𝑢0 or Neumann boundary condition 𝜕𝑛𝑢 = 2.6𝑢0∕𝑅 is prescribed on the immersed 
22

solid boundary, and the simulation is run with Peclet number Pe𝐷 = 2𝑣𝑏𝑅∕𝛽 = 1000. Anticipating that the support of 𝑢(𝐱, 𝑡) will be 
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Fig. 17. A rendering of the 3D advection-diffusion test case with Neumann boundary conditions (section 4.6). The sphere surface is colored based on surface values of 
the scalar field 𝑢, while contours indicate the level sets for 𝑢 = {−0.4, −0.3, −0.2, −0.1, −0.01, 0.01, 0.1, 0.2, 0.3}. The body motion is from left to right, with a negative 
Gaussian distribution that begins to the right of the sphere and passes below the sphere as time progresses. Contours indicate the formation of a thin boundary layer 
on the sphere surface.

Fig. 18. The scalar distribution 𝑢(𝐱, 𝑡) from the 3D advection-diffusion test with Dirichlet (left) or Neumann (right) boundary conditions; see section 4.6. Samples are 
take at time 𝑡 = 0.5 from the plane 𝑥0 = 1. Gray lines indicate the multiresolution grid, with each block containing 242 points. Samples from the upper and lower 
boundary layer over the lines indicated on each slice are shown in the central plot, with each marker representing data from individual grid points that are separated 
by a distance Δ𝑥 = 1∕768.

contained within the computational domain for the duration of the simulation, we enforce domain boundary conditions by prescribing 
zero values at two layers of ghost points adjacent to the computational domain. The spatial discretization of the advection-diffusion 
equation is the same as in section 4.5, while time stepping is performed with LSRK(3, 3) and a body CFL of 𝐶𝑏 = 0.32. To increase 
the accuracy of the simulation near the immersed surface, the simulation is conducted on a block-based multiresolution grid that is 
continually adapted to both the body motion and the scalar 𝑢(𝐱, 𝑡). Both grid adaptation and ghost point reconstruction for each block 
are performed with sixth order interpolating wavelets [62], so that the fourth order accuracy of the diffusion term is maintained 
across resolution boundaries.

Fig. 17 provides renderings of the scalar field 𝑢(𝐱, 𝑡) at times 𝑡 = {0, 0.25, 0.5, 0.75} for the case of Neumann boundary conditions. 
As the spherical body translates, the Neumann boundary condition acts as a source of scalar on the body surface, which forms a thin 
boundary layer that is transported over the surface and into the domain. Simultaneously, the initial Gaussian distribution passes over 
the surface of the sphere and interacts with the boundary layer. Fig. 18 displays slices in the plane 𝑥1 = 1 taken from both the Dirichlet 
and Neumann cases at 𝑡 = 0.5, which illustrate both the solution and the multiresolution grid used to concentrate computational 
elements near the surface of the sphere. Also shown are samples taken at the same time along a line passing through the sphere center 
and perpendicular to the direction of travel. These samples indicate that the boundary layer profile is smooth and well resolved, with 
seven to eight grid points across the boundary layer thickness. While this resolution would require 768 ×768 ×1536 ≈ 9.1 ×108 points 
on a uniform grid, the total number of grid points on the multiresolution grid is on average 2.9 × 107 during the simulation, giving 
an average compression ratio of roughly 31.

5. Conclusion

We have presented a high-order sharp immersed discretization of the advection-diffusion equation for simulations with moving 
domain boundaries or material interfaces. Spatial operators are discretized with a combination of high-order dimension-split finite 
difference schemes and high-order weighted least-squares interpolants used to construct ghost values near immersed surfaces. For 
moving surfaces, the issue of freshly cleared cells is addressed by extrapolating both the state field and its time derivative beyond 
the domain boundary, which provides an artificial time history that is compatible with a wide range of explicit and diagonally-

implicit Runge-Kutta time integrators. This strategy introduces a mixed spatial-temporal error term that is first order in time and 
higher order in space, which can dominate the existing temporal error term in purely temporal convergence tests and is most easily 
observable in simulations with low spatial resolution. However, extensive numerical experiments indicate that this mixed error term 
rarely dominates the existing spatial error terms, and does not affect the convergence order of the free-space difference scheme 
when the time step is chosen to satisfy a flow CFL, Fourier number, or body CFL constraint. This allows for the construction of 
23

immersed schemes with up to third order convergence for hyperbolic PDEs and up to sixth order convergence for parabolic PDEs in 
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both 2D and 3D domains with moving boundaries and interfaces. We demonstrate that these schemes can accurately predict surface 
quantities on a moving immersed surface without oscillations even at low spatial resolutions, and that thin boundary layers on 
immersed surfaces can be effectively captured by combining a high-order immersed discretization with high-order multiresolution 
grid adaptation.

Our results present for the first time a quantitative description of the errors associated with sharply discretized moving surfaces 
that holds for multiple combinations of PDEs, boundary conditions, spatial discretizations, and time integrators. Compared to pre-

vious moving boundary treatments, our extrapolation-based approach is applicable to a wider range time integrators, both in terms 
of the type of integrator as well as the order of accuracy. The spatial accuracy of our immersed method matches the previously 
demonstrated third order convergence rate for 2D hyperbolic PDEs with moving boundaries [17], and outperforms the previously 
demonstrated fourth-order convergence rate for 2D diffusion problems with moving boundaries [4]. Finally, we extend these levels 
of accuracy for the first time to 2D diffusion simulations with moving two-sided interfaces and 3D advection-diffusion simulations 
with a moving nonconvex immersed body.

While the algorithms presented here are described and analyzed for simulations with prescribed surface motion, we expect that 
they will also be useful for interface-coupled multiphysics simulations with physics-driven surface motion such as ablation or fluid-

structure interaction. For these systems a discretization must allow for physics on both sides of an immersed interface while accurately 
estimating the surface quantities that drive interface motion, both of which are capabilities demonstrated in our results. The errors 
introduced by our treatment of freshly cleared cells are likely to appear in any simulation with surface motion, and as a result we 
view the convergence results presented in section 4 as an upper bound on what is possible when applying our sharp immersed 
method to interface-coupled multiphysics systems. However, further work is necessary to determine if the proposed freshly-cleared 
cell treatment maintains its accuracy in the presence of weakly or strongly coupled boundary motion.
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Appendix A. Additional temporal convergence data for 1D diffusion

Figs. A.19 and A.20 provide the full convergence data for the 1D diffusion test cases presented in sections 4.1.2 and 4.1.3, 
respectively, which are used to generate the spatial convergence exponents listed in Table 1.
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