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We present a finite-difference based immersed interface method for the high-order dis-
cretization of 3D advection-diffusion problems on regular Cartesian grids. Our approach
efficiently handles convex and non-convex geometries using a weighted least squares polynomial
reconstruction algorithm. We analyze the stability of the approach for 2D and 3D parabolic and
hyperbolic problems and demonstrate stable convergence results at third-order for advection
and at fourth and sixth order for diffusion problems. Our immersed interface approach
naturally handles one-sided Dirichlet or Neumann boundary conditions as well as two-sided
jump boundary conditions within the same framework, opening the door to high-order treat-
ment of 3D interface-coupled multiphysics problems. We demonstrate the capability of our
approach using a 3D conjugate heat transfer problem resolved with third-order accuracy on a
multi-resolution adaptive grid.

I. Introduction
Many fluid flow problems are strongly affected by interactions with a complex interface, such as a phase boundary

in a multi-phase flow or the fluid-solid boundary in an aeroelastic system. Often the relevant quantities in these
applications are interface quantities, particularly in an aerodynamics setting where the shear and pressure distributions
on an immersed surface directly dictate the elastic response of an aerodynamic structure. Simulating these applications
requires a numerical method that can efficiently and accurately impose boundary conditions on arbitrarily shaped
interfaces. Body-fitted grids typically offer excellent accuracy for interface quantities, but are time-consuming to
generate for complex geometries and do not generalize well to dynamically deforming boundaries. Immersed methods,
on the other hand, are designed to avoid these issues. These methods locally adapt the numerical scheme to account for
the presence of a boundary so that a structured mesh (typically Cartesian) that does not conform to the interface can be
used. This ensures that complex moving or deforming geometries are naturally incorporated, but typically comes at the
cost of reduced spatial accuracy for quantities on or near the interface.
Immersed methods generally fall into two categories: continuous forcing methods, which account for the interface by

adding fictitious forcing terms to the governing PDE; and discrete forcing methods, which leave the PDE unaltered but
modify the underlying discretization [1]. Continuous forcing methods offer simplicity of implementation, but typically
require a mollification of the interface or temporal splitting of stiff forcing terms that limits their results to first order
accuracy. Discrete forcing methods are often more complex, but by altering the interface discretization these schemes
are able to achieve higher-order accuracy in both space and time, with many established discrete forcing methods
achieving second-order spatial accuracy for elliptic [2, 3], hyperbolic [4], and parabolic [5] problems. Moreover, discrete
forcing methods are readily generalized to more complex boundary conditions, including those involving the coupling
of physical quantities on both sides of the interface.
Higher than second order convergence may be required to efficiently achieve high-fidelity simulation results,

particularly for 3D problems involving sensitivity to numerical errors such as aeroacoustics, high Reynolds number
flows, and long-time simulation results [6]. Consequently, there have been several notable efforts to increase the spatial
accuracy achievable with a discrete forcing method. Within the context of finite volume schemes, the embedded boundary
method developed in [5] provides a stable fourth order discretization of the 2D advection diffusion equation without
relying on cell merging or ad-hoc strategies to treat small cells. For finite difference methods, the summation-by-parts
scheme presented in [7] achieves up to fourth order accurate advection and eighth order accurate diffusion for 2D
interfaces that bound a convex region, and the compact finite difference schemes of [8] and [9] achieve fourth order
accuracy for the 3D Poisson equation and for the 2D Navier-Stokes equations in vorticity-velocity form. Finally, for
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hyperbolic problems the third and fifth order simplified inverse Lax Wendroff (SILW) methods developed in [4, 10] have
been successfully applied to the 2D Euler equations with moving boundaries [10] and the compressible Navier-Stokes
equations with stationary boundaries [4].
The work we propose here focuses on the development of a high-order immersed interface method (IIM), a discrete

forcing method designed for finite difference discretizations [11]. The choice of finite differences is aimed at reducing
the complexity inherent in a high-order discrete forcing method: the use of pointwise data instead of cell averages allows
for simpler implementation of both nonlinear terms and free-space discretizations with accuracy beyond second order.
The use of point quantities also allows for high-order discretizations that require less geometric information on the
interface, and we will demonstrate that the point-wise enforcement of boundary conditions leads to straightforward
coupling schemes for interface-coupled multiphysics problems.
Within this immersed interface framework, we focus primarily on addressing the challenges posed by high-order

discretizations of advection-diffusion problems around arbitrary, non-convex 3D geometries. For non-convex geometries,
existing high-order IIMs based on stability optimization of 1D stencils [7, 12] are not directly applicable, as the full
length of these stencils frequently does not fit within the problem domain when the interface bounds a non-convex
region. This is a severe limitation, as any system with physics on two sides of a non-planar interface violates the
convexity criterion on at least one side. Instead, we consider discretization schemes that rely on a weighted least-squares
polynomial reconstruction which permits non-convex interfaces. We rely on a combination of rigorous stability analysis
for 1D problems and exhaustive empirical tests to demonstrate stability in two and three dimensions. Our proposed
discretization achieves third order convergence for pure advection problems under reasonable CFL constraints, and
fourth and higher order convergence for diffusion problems. It can efficiently handle convex and non-convex geometries
and avoids the complexity of using SILW techniques and compact finite-difference stencils. We further demonstrate
that our immersed-interface approach naturally handles one-sided boundary conditions, such as standard Dirichlet or
Neumann, as well as two-sided boundary conditions, such as jump conditions in solution values or derivatives common
to multiphysics problems.
We detail our immersed interface approach in section II, focusing on the treatment of convex and non-convex

geometries followed by specific boundary treatment for parabolic and hyperbolic partial differential equations. In
section III we present stability and convergence results for the diffusion equation, advection equation, and advection-
diffusion equation in both 2D and 3D, then draw conclusions in section IV.

II. Methods
The work presented here extends the second order immersed interface methods developed in [2, 13, 14] to nonconvex

3D domains and higher orders of accuracy. These IIMs use free-space finite difference schemes that are composed of
standard explicit 1D finite difference stencils. In general these stencils retain their full order of accuracy unless they cross
a discontinuity in the the underlying PDE solution, such as a domain boundary or an immersed interface. Whenever
such an intersection occurs, special treatment is required to incorporate information from the interface and retain the
accuracy of the stencil. This section focuses on that treatment, first explaining the core ideas and then discussing our
specific approaches for parabolic and hyperbolic PDEs in 1D as well as their extensions to 2D and 3D.

A. High-Order Polynomial Interpolants
Because the immersed interface method focuses on intersections between finite difference stencils and an interface,

the minimal geometric information needed to define an interface consists of all intersections between the gridlines
and the interface, collectively known as the control points, and the surface normal vector at each control point. This
information can be obtained from either an explicit parametrization of the surface or from a sufficiently smooth level
set function. The results presented here rely on the latter strategy, and an efficient method for determining both the
intersections and normal vectors from a level set with high-order accuracy is presented in Appendix A. Once the control
points have been identified, we construct a set of polynomials that approximate the PDE solution in the neighborhood of
each control point. For derivatives or extrapolations taken along the intersecting gridline, a simple one-dimensional
interpolant is sufficient [2, 13, 14]. For derivatives along other axes, including the normal derivative, this strategy can be
extended by constructing a series of 1D interpolants in alternating coordinate directions [2] as shown in Fig. 1. Though
this strategy retains the low computational cost of purely 1D interpolants, it leads to complex policies for choosing the
series of interpolants and can fail when complex non-convex geometries are considered, especially in 3D.
To achieve high-order accurate interpolants that are robust to concavity in the interface, in this work we rely on

multidimensional polynomial interpolants constructed using a weighted least squares approach. In 𝑑 dimensions, let
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𝑥𝑐

(a) One dimensional interpolants.

�̂�
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�̂�

𝑥𝑐

(b) Multidimensional interpolants.

Fig. 1 (a) The dimension-split interpolation strategy proposed in [2] constructs inexpensive 1D interpolants
along two coordinate axes to calculate surface quantities, but can fail for non-convex geometries. (b) The
half-elliptical multidimensional interpolant developed in this work is more robust to concave or under-resolved
features.

X = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ⊂ R𝑑 be a set of 𝑛 interpolation points from a Cartesian grid with grid spacing ℎ, and let {𝜙𝑖}𝑛𝑖=1
be the corresponding set of samples from a smooth function 𝜙(𝑥). For a given set of positive weights {𝑤𝑖}𝑛𝑖=1, the least
squares interpolant 𝑝(𝑥) of degree 𝑘 is defined by the minimization

𝑝(𝑥) = arg min
𝑞 (𝑥) ∈P𝑑,𝑘

∑︁
𝑥𝑖 ∈X

𝑤𝑖 [𝑞(𝑥𝑖) − 𝜙𝑖]2, (1)

where P𝑑,𝑘 is the set of polynomials in 𝑑 variables with degree less than or equal to 𝑘 . So long as any basis for P𝑑,𝑘 is
linearly independent over the interpolation points X, this interpolant is unique and satisfies

𝜕𝜶𝑝(𝑥𝑒) = 𝜕𝜶𝜙(𝑥𝑒) + O
(
ℎ𝑘+1−|𝜶 |

)
(2)

for any evaluation point 𝑥𝑒 and multi-index 𝜶. Further, the interpolant 𝑝(𝑥) is linearly related to the input data 𝜙𝑖 , so
there exists a set of stencil coefficients {𝑠𝑖}𝑛𝑖=1 such that 𝜕

𝜶𝑝(𝑥𝑒) =
∑𝑛

𝑖=1 𝑠𝑖𝜙𝑖 . The linear algebra necessary to compute
these coefficients is discussed in the Appendix B.
While the least squares minimization is well-defined and easy to analyze, the selection of interpolation points 𝑥𝑖 and

weights 𝑤𝑖 leaves considerable room for experimentation. Here we postpone the discussion of weighting to Sections
II.C and II.D, and focus on the nontrivial task of choosing a set of interpolation points so that any basis for P𝑑,𝑘 is
linearly independent over X. This requires at minimum dim P𝑑,𝑘 =

(𝑘+𝑑
𝑑

)
points, and there exist useful constructions

for selecting such a minimal set on a regular grid [15]. However, these constructions are complex and may fail if the
available grid points are constrained by the shape of the interface. A more robust solution is to define a policy that
can successfully select an adequate (but not minimal) set of points for a variety of interface geometries. In this work
we select all available points that fall within a half ellipsoid centered on the control point 𝑥𝑐 with a major radius 𝑟𝑛
along the interface normal 𝑛𝑐 and a minor radius 𝑟𝑡 along any tangential direction, as shown in Fig. 1b. More precisely,
let G be the set of all gridpoints on a regular Cartesian grid, and let 𝜓(𝑥) be a smooth level set function defining the
immersed interface. For each control point let 𝜉𝑐 (𝑥) = 𝑥 − 𝑥𝑐, and define the distance function

𝑑𝑐 (𝑥) =
√︁
𝜉𝑐 (𝑥)𝑇Σ𝜉𝑐 (𝑥) with Σ =

1
𝑟2
𝑛

𝑛𝑐𝑛
𝑇
𝑐 + 1

𝑟2
𝑡

(𝐼 − 𝑛𝑐𝑛
𝑇
𝑐 ), (3)

which ranges from 𝑑𝑐 (𝑥) = 0 at the control point to 𝑑𝑐 (𝑥) = 1 on the boundary of the ellipsoid. Using this notation we
can associate two sets of interpolation points to each control point, corresponding to the semi-ellipsoids on either side of
the interface:

X−
𝑐 = {𝑥 ∈ G s.t. 𝜓(𝑥) ≤ 0, 𝜉𝑐 (𝑥) · 𝑛𝑐 ≤ 0, and 𝑑𝑐 (𝑥) ≤ 1}, and

X+
𝑐 = {𝑥 ∈ G s.t. 𝜓(𝑥) > 0, 𝜉𝑐 (𝑥) · 𝑛𝑐 ≥ 0, and 𝑑𝑐 (𝑥) ≤ 1}. (4)

The radii 𝑟𝑛 and 𝑟𝑡 are selected so that the resulting least-squares fit is well-posed for a variety of interface geometries.
Suggested 𝑟𝑛 and 𝑟𝑡 for a range of polynomial degrees are listed in the Appendix D; they are chosen so that the
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interpolation will succeed whenever the interface is smooth and the principal curvatures 𝜅1, 𝜅2 of the interface satisfy
|𝜅𝑖ℎ| < 1/4, indicating a radius of curvature greater than four gridpoints for any nonconvex feature. For a degree 𝑘 − 1
interpolant the choices generally correspond to 𝑟𝑛 ≈ 𝑘ℎ and 𝑟𝑡 ≈ 𝑘ℎ/2, so that the resulting interpolation stencils
resemble a one-sided stencil of order 𝑘 in the normal direction and a centered stencil of order 𝑘 in the tangential
direction.
The sets X±

𝑐 contain all grid points associated with the ellipsoids on either side of the interface. However, when
enforcing boundary conditions in a PDE discretization we often wish to exclude on each side of the interface the grid
point that lies closest to the control point 𝑥𝑐 (shown in gray in Fig. 1b). This prevents any grid point in the set of
interpolation points from lying arbitrarily close to 𝑥𝑐. Though small distances between interpolation points does not
necessarily lead to an ill-conditioned least-squares system, omitting the closest point can have a notable effect on the
stability of the resulting method when boundary conditions on 𝑥𝑐 are prescribed. To shorten the notation in the sections
below, we therefore define the sets X̄−

𝑐 and X̄+
𝑐 , where the overbar indicates that they differ from the sets defined as in

Eq. 4 by excluding the closest grid point on either side of the interface.

B. Enforcing boundary conditions
To apply this interpolation strategy to IIM-based PDE discretizations, consider a computational domain Ω with

periodic or unbounded outer boundaries, and let Γ be a closed interface immersed in Ω. We assume that Γ can be
described by a level set 𝜓(𝑥), which divides the domain into two regions

Ω+ = {𝑥 ∈ Ω | 𝜓(𝑥) > 0} and Ω− = {𝑥 ∈ Ω | 𝜓(𝑥) ≤ 0}. (5)

For 𝑠 ∈ Γ let 𝑛(𝑠) be the normal vector pointing into Ω+ and away from Ω−. Likewise, for any function 𝜙(𝑥) defined in
a neighborhood of 𝑠 ∈ Γ, let [𝜙] (𝑠) = 𝜙+ (𝑠) − 𝜙− (𝑠) indicate the jump in 𝜙 across the interface at 𝑠; here superscripts
indicate quantities defined on the side of the interface adjacent to Ω+ or Ω−. In this section we assume that Ω is
discretized using a 𝑑-dimensional Cartesian grid with grid spacing ℎ and unit vectors {𝑒𝑖}𝑑𝑖=1 in each coordinate
direction, and that there is a PDE solution 𝜙(𝑥) defined at grid points in Ω+. For now, we consider that all points in Ω−

lie outside of the problem domain and have no associated solution value — the setting will be altered when considering
multi-physics problems in the sections below.
We discretize partial derivative operators with finite difference schemes of the form

𝜕𝜙(𝑥)
𝜕𝑥𝑖

≈
𝑟∑︁

𝑗=−ℓ
𝑎𝑖 𝑗𝜙(𝑥 + 𝑗 ℎ𝑒𝑖), (6)

where {𝑎𝑖 𝑗 }𝑟𝑗=−ℓ are the 1D finite difference coefficients along the 𝑖-th dimension with ℓ points to the left of the evaluation
point and 𝑟 points to the right of the evaluation point. For grid points near the immersed interface, one or more of
these 1D finite difference stencils will intersect Γ at a control point 𝑥𝑐, so that the free-space stencil becomes unusable.
Assuming that a Dirichlet boundary condition for 𝜙(𝑥) is prescribed on the interface, a polynomial approximation 𝑝𝑐 (𝑥)
to the function 𝜙(𝑥) can be constructed using the boundary condition 𝜙(𝑥𝑐) and the domain values

{
𝜙(𝑥𝑖) | 𝑥𝑖 ∈ X̄+

𝑐

}
.

Each 1D finite difference stencil that intersects the boundary at 𝑥𝑐 can then applied to the extended function

𝜙𝑐 (𝑥) =
{
𝜙(𝑥), 𝑥 ∈ Ω+

𝑝𝑐 (𝑥), 𝑥 ∈ Ω− . (7)

Provided that 𝑝𝑐 (𝑥) is a sufficiently high order interpolant, the order of accuracy of the free space scheme in Eq. 6 will
be retained even for stencils that cross the boundary at 𝑥𝑐. Figure 2a illustrates this procedure for a 1D discretization.
In practice, this correction is done by calculating stencil coefficients that map the boundary value 𝜙(𝑥𝑐) and a set

of domain values
{
𝜙(𝑥𝑖) | 𝑥𝑖 ∈ X̄+

𝑐

}
to the value of the weighted least squares interpolant 𝑝𝑐 (𝑥) at points along the

gridline passing through 𝑥𝑐. This requires up to max(ℓ, 𝑟) stencils at each control point, one for each stencil point in
Eq. 6 that lies outside of Ω+. Throughout this work, when the free space scheme has order of accuracy 𝑁 and 𝑝𝑐 (𝑥) has
degree 𝑘 − 1 at each control point, we refer to the full IIM discretization as an (𝑁, 𝑘) scheme for brevity.

C. Boundary treatment for parabolic PDEs
As a model parabolic PDE, we consider the diffusion equation for a scalar field 𝜙(𝑥, 𝑡) defined on Ω+ with known

Dirichlet boundary condition,

𝜕𝑡𝜙 = 𝛽∇2𝜙 on Ω, 𝜙(𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) on Γ, (8)
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supplemented with an initial condition 𝜙(𝑥, 0) = 𝜙0 (𝑥). The Laplacian operator in equation (8) is discretized with
standard centered finite difference stencils, using stencil coefficients listed in Appendix C. Near the immersed interface
Γ, the correction procedure for Dirichlet boundary conditions developed in section II.B is applied to all stencils that cross
the interface. The weights for each weighted least squares interpolant are chosen to be uniform (𝑤𝑖 = 1). We note that
non-uniform weighting schemes were found to be advantageous for embedded boundary finite volume discretizations
of elliptic and parabolic equations in [5]. However, in our high-order IIM approach we have not observed improved
spectral properties for discretizations of parabolic PDEs that use analogous weighting schemes.
Let us now instead consider Eq. 8 defined on the full domain Ω = Ω+ ∪ Ω− with a diffusivity field 𝛽(𝑥) that is

piecewise constant and discontinuous across the interface. In this case the boundary condition is replaced by jump
conditions of the form

[𝜙(𝑠, 𝑡)] = 𝑔(𝑠, 𝑡) on Γ,

[𝛽𝜕𝑛𝜙(𝑠, 𝑡)] = ℎ(𝑠, 𝑡) on Γ.
(9)

These conditions arise naturally in problems involving discontinuous diffusivities and singular forcing terms: for
𝑔(𝑠, 𝑡) = ℎ(𝑠, 𝑡) = 0, Eq. 9 enforces the continuity of the solution and the diffusive flux on the interface, ensuring that
the integral of the scalar 𝜙(𝑥) over the full domain Ω is conserved. Setting 𝑔(𝑠, 𝑡) ≠ 0 or ℎ(𝑠, 𝑡) ≠ 0 corresponds to the
addition of a singular source on the interface.
For this PDE setting, the jump conditions in Eq. 9 are used to determine the value of 𝜙(𝑥) on each side of the

interface Γ and each side of Γ is then treated using the procedure outlined above for Dirichlet boundaries. To do so,
boundary values 𝜙− (𝑥𝑐) and 𝜙+ (𝑥𝑐) are defined at each control point, and two polynomial interpolants 𝑝−𝑐 (𝑥) and 𝑝+𝑐 (𝑥)
are constructed so that 𝑝±𝑐 (𝑥) interpolates the boundary value 𝜙± (𝑥𝑐) and the domain values

{
𝜙(𝑥𝑖) | 𝑥𝑖 ∈ X̄±

𝑐

}
. The

boundary values are chosen so that the full two-sided interpolant 𝑝𝑐 (𝑥) satisfies the jump conditions in Eq. 9 at 𝑥𝑐.
Once this is done, the interpolants 𝑝+𝑐 (𝑥) and 𝑝−𝑐 (𝑥) can be used in the correction procedure for Dirichlet boundaries.
This procedure is illustrated in Fig. 2b. In practice the values 𝜙± (𝑥𝑐) are computed with the aid of a set of stencils. The
first set of stencil coefficients {𝑠+𝑐 , 𝑠+𝑖 } maps the boundary value 𝜙+ (𝑥𝑐) and the domain values

{
𝜙(𝑥𝑖) | 𝑥𝑖 ∈ X̄+

𝑐

}
to the

normal derivative 𝜕𝑛𝜙+ (𝑥𝑐). The second set of coefficients {𝑠−𝑐 , 𝑠−𝑖 } is designed analogously to map data from the other
side of the interface to the normal derivative 𝜕𝑛𝜙− (𝑥𝑐). The boundary values 𝜙± (𝑥𝑐) can then be determined from the
linear system

𝜙+ (𝑥𝑐) − 𝜙− (𝑥𝑐) = 𝑔(𝑥𝑐) and 𝛽+©­«𝑠+𝑐𝜙+ (𝑥𝑐) +
∑︁
𝑥𝑖 ∈X̄+

𝑐

𝑠+𝑖 𝜙
+ (𝑥𝑖)ª®¬ − 𝛽−©­«𝑠−𝑐𝜙− (𝑥𝑐) +

∑︁
𝑥𝑖 ∈X̄−

𝑐

𝑠−𝑖 𝜙
− (𝑥𝑖)ª®¬ = ℎ(𝑥𝑐). (10)

This system has two useful special cases. When there are no singular sources on the interface, ℎ(𝑥𝑐) = 𝑔(𝑥𝑐) = 0, and
the closed-form solution to Eq. 10 is

𝜙− (𝑥𝑐) = 𝜙+ (𝑥𝑐) = −
𝛽+

∑
𝑥𝑖 ∈X̄+

𝑐
𝑠+𝑖 𝜙

+ (𝑥𝑖) − 𝛽−
∑

𝑥𝑖 ∈X̄−
𝑐
𝑠−𝑖 𝜙

− (𝑥𝑖)
𝛽+𝑠+𝑐 − 𝛽−𝑠−𝑐

. (11)

In the limiting case where 𝛽− = 0 and 𝛽+ = 1, the jump conditions in Eq. 9 are equivalent to 𝜕𝑛𝜙+ (𝑥) = ℎ(𝑥).
Specializing Eq. 10 to this case and dropping the superscripts provides a treatment for domain boundaries with a
Neumann boundary condition,

𝜙(𝑥𝑐) = 1
𝑠𝑐

©­«ℎ(𝑥𝑐) −
∑︁
𝑥𝑖 ∈X̄𝑐

𝑠𝑖𝜙(𝑥𝑖)ª®¬. (12)

Following the development above, this is equivalent to selecting 𝜙(𝑥𝑐) so that the resulting polynomial interpolant
𝑝𝑐 (𝑥) exactly satisfies the Neumann boundary condition. On surfaces where a Neumann condition is prescribed, Eq. 12
is therefore used to compute the interface value 𝜙(𝑥𝑐) so that the IIM correction procedure can be performed as if 𝜙(𝑥𝑐)
were a prescribed Dirichlet boundary condition.

D. Boundary treatment for hyperbolic PDEs
As a model hyperbolic PDE we consider the linear advection equation with a Dirichlet boundary condition on inflow

boundaries,
𝜕𝑡𝜙 + 𝑢(𝑥) · ∇𝜙 = 0 on Ω+,

𝜙(𝑠, 𝑡) = 𝑔(𝑠, 𝑡) for 𝑠 ∈ Γ, 𝑢(𝑠) · 𝑛(𝑠) > 0.
(13)
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𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1
𝑥𝑐

𝑝𝑐 (𝑥𝑖+1)
𝜙(𝑥𝑐)

𝜙𝑖−2 𝜙𝑖−1

(a) Extrapolation or Dirichlet conditions.

𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 𝑥𝑖+3
𝑥𝑐

𝑝−𝑐 (𝑥𝑖+1)
𝜙− (𝑥𝑐)

𝑝+𝑐 (𝑥𝑖)
𝜙+ (𝑥𝑐)

[𝜙], [𝛽𝜕𝑥𝜙]

(b) Boundary treatment for jump conditions.

Fig. 2 (a) Boundary treatment for a Dirichlet boundary condition (green): a quadratic polynomial 𝑝𝑐 (𝑥)
interpolates a solution 𝜙(𝑥) at X̄𝑐 = {𝑥𝑖−2, 𝑥𝑖−1} and at 𝑥𝑐, and the value 𝑝(𝑥𝑖+1) is used when applying a three-point
centered finite difference (black). When no boundary condition is prescribed (blue), 𝑝𝑐 (𝑥) interpolates the
solution at X𝑐 = {𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖} instead. (b) Boundary treatment for an immersed interface with jump conditions.
Two interpolants 𝑝+𝑐 (𝑥) and 𝑝−𝑐 (𝑥) interpolate 𝜙(𝑥) at X̄+

𝑐 and X̄−
𝑐 , respectively, as well at the control point 𝑥𝑐. The

boundary values 𝜙+ (𝑥𝑐) and 𝜙− (𝑥𝑐) are chosen so that 𝑝+𝑐 (𝑥) and 𝑝−𝑐 (𝑥) satisfy the prescribed jump conditions.
In multiple dimensions the interpolants pictured in (a) and (b) are replaced with weighted least-squares fits, but
the principles behind the boundary treatments remain the same.

Stability is a major concern for IIM discretizations of the advection equation, and our primary focus in this section is
achieving a stable discretization with at least third order accuracy. Away from the interface Eq. 13 can be discretized
with an 𝑁-th order upwind finite difference scheme, which adds a slight amount of numerical dissipation and leads
to a stable free-space discretization. At control points 𝑥𝑐 that lie on the outflow boundary (𝑢(𝑥𝑐) · 𝑛(𝑥𝑐) < 0) there
is no prescribed boundary condition, so the IIM correction procedure from section II.B is applied using 𝑘-th order
polynomial interpolants that interpolate solution values at the points in X+

𝑐 . This is equivalent to applying the free-space
scheme to an extrapolated field, a strategy that is known to be stable when used with upwind difference schemes [16].
Consequently, the stability of the IIM discretization schemes presented here is determined by the treatment of inflow
boundary conditions on the interface.
Generally, applying our standard approach for Dirichlet boundaries to an (𝑁, 𝑘) advection discretization results in

an unstable inflow boundary treatment. This phenomena is not unique to our method: many other authors have found
that special considerations are necessary to maintain stability in IIM advection discretizations. One successful strategy
has been local stability optimization, which relies on boundary stencils are constructed with enough interpolation points
to allow for extra degrees of freedom beyond those necessary to satisfy accuracy conditions. These additional degrees of
freedom are optimized to achieve a stable discretization, typically by minimizing an objective function on each stencil
that serves as heuristic indicator of stability. This approach is used in [12] to develop a stable second order immersed
interface method for the 2D advection-diffusion equation, and in [7] to develop a fourth order discretization of the
2D advection equation that satisfies a summation-by-parts property. Unfortunately these optimizations are difficult to
generalize beyond 1D stencils, and are not immediately applicable to interface geometries with concavity that require
the use of a multidimensional interpolant.
Another successful strategy for hyperbolic boundary treatments is the simplified inverse Lax-Wendroff (SILW)

boundary treatment developed in [17] and further refined in [18]. In these schemes the PDE is applied to the boundary in
order to express the normal derivative of the field in terms of tangential derivatives and a prescribed boundary condition.
Ghost points are then constructed near the immersed interface using a 1D polynomial extrapolation normal to the
interface, and the construction of the polynomial interpolant incorporates both the boundary condition and the normal
derivative. Using the stability theory of Gustafsson, Kreiss, and Sundström (GKS) [19], the authors of [20] have shown
rigorously that the resulting 1D boundary treatment is conditionally stable when applied to conservative finite difference
schemes of order up to thirteen, provided that the PDE and boundary condition can be differentiated a sufficiently large
number of times. The analogous 2D schemes of order three and five are also shown to be stable using only one round of
differentiation [18]. Unfortunately the SILW boundary treatment becomes considerably more complex in 3D and for
PDEs with diffusive terms or moving interfaces, and can require extensive algebraic manipulations of the underlying
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PDE.
In the following section we build off the work of Li et al. [20], using a GKS stability analysis to search for a

high-order inflow boundary treatment for the 1D linear advection equation that does not rely on the SILW procedure.
We further limit the search to schemes that rely on ghost points constructed with a polynomial interpolant, so that the
1D results might serve as an upper bound for what orders of accuracy are possible with multidimensional interpolants in
2D and 3D.

1. 1D Stability Analysis
To determine the stability of a given inflow boundary condition, consider a 1D linear advection equation with a

Dirichlet inflow boundary
𝜕𝑥𝜙 + 𝜕𝑡𝜙 = 0 for 𝑥 ∈ [−𝛿,∞),
𝜙(−𝛿, 𝑡) = 𝑔(𝑡). (14)

Here 𝛿 ∈ [0, 1] is an offset that describes the position of the boundary. The problem is discretized on a Cartesian mesh
with unit spacing, so that with 𝑥 𝑗 = 𝑗 for 𝑗 ∈ Z. For the free space finite difference scheme, we consider standard
upwind stencils with ℓ points to the left of the evaluation point and 𝑟 = ℓ − 1 points to the right of the evaluation
point, which have order 2ℓ − 1 spatial accuracy; coefficients for the third and fifth order stencils are given in Appendix
C. For an order 𝑘 boundary treatment, a degree 𝑘 − 1 polynomial interpolant is constructed using data at the points
{−𝛿, 1, 2, . . . , 𝑘 − 1}, and this interpolant is used to fill in ghost values at the points {−ℓ, . . . ,−1} before applying the
free-space scheme. As in the previous section, we refer to each of these discretizations with the tuple (2ℓ − 1, 𝑘).
After some algebraic manipulation, the full semi-discretization can be written in the form

d𝜙𝑖
d𝑡

=
𝑟∑︁

𝑗=−ℓ
𝑎 𝑗𝜙𝑖+ 𝑗 for 𝑖 ≥ ℓ,

d𝜙𝑖
d𝑡

=
∑︁
𝑗

𝑏𝑖 𝑗𝜙 𝑗 + 𝑐𝑖𝑔(𝑡) for 0 < 𝑖 < ℓ,

(15)

where the 𝑎 𝑗 are the coefficients of the free-space scheme and the 𝑏𝑖 𝑗 and 𝑐𝑖 are boundary coefficients that depend on
the interface position 𝛿. The stability of the semi-discretization depends on the existence of eigensolution-eigenvalue
pairs (𝜙, 𝑠) which satisfy

𝑠𝜙𝑖 =
𝑟∑︁

𝑗=−ℓ
𝑎 𝑗𝜙𝑖+ 𝑗 for 𝑖 ≥ ℓ, (16)

𝑠𝜙𝑖 =
∑︁
𝑗

𝑏𝑖 𝑗𝜙 𝑗 for 0 < 𝑖 < ℓ, (17)

lim
𝑗→∞

𝜙 𝑗 = 0. (18)

We limit our attention to eigenvalues 𝑠 that lie outside the spectrum of the free-space scheme, which have a direct
effect on the stability of the discretization. For Re 𝑠 > 0 the semidiscretization in Eq. 15 is unstable, and for a fully
explicit method all eigenvalues 𝑠 must lie within the stability region of the chosen time integrator. To calculate these
eigenvalues we note that Equation 16 is a linear recurrence relation, with solutions of the form 𝜙 𝑗 ∝ 𝜅 𝑗 for 𝜅 a root of
the characteristic equation

𝑞(𝜅, 𝑠) = 𝑠𝜅ℓ −
𝑟+ℓ∑︁
𝑗=0

𝑎 𝑗𝜅
𝑗 = 0. (19)

For 𝜙 𝑗 to decay as 𝑗 → ∞, we must have |𝜅 | ≤ 1. When 𝑠 is strictly outside of the free-space stability region there are
no roots satisfying |𝜅 | = 1 and ℓ roots satisfying 𝜅 < 1, so that the general solution to the linear recurrence is

𝜙 𝑗 =
ℓ∑︁
𝑖=1

𝜎𝑖𝜅
𝑗
𝑖 . (20)
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Substituting Eq. 20 into the boundary discretization in Eq. 17 yields an ℓ × ℓ linear system that determines the values of
the 𝜎𝑖 ,

ℓ∑︁
𝑗=1

𝑚𝑖 (𝑠, 𝜅 𝑗 )𝜎𝑗 = 0 with 𝑚𝑖 (𝑠, 𝜅) = 𝑠𝜅𝑖 −
∑︁
𝑗

𝑏𝑖 𝑗𝜅
𝑗 . (21)

This system has nontrivial solutions whenever the matrix 𝑀 with entries 𝑚𝑖 (𝑠, 𝜅 𝑗 ) has zero determinant. Thus the
discretization has an eigenvalue 𝑠 lying outside the stability region if there is a solution to the polynomial system of
equations

det 𝑀 (𝑠, 𝜅1, . . . , 𝜅ℓ) = 0,
𝑞(𝜅𝑖 , 𝑠) = 0 for 𝑖 = 1, . . . , ℓ,

|𝜅𝑖 | < 1 for 𝑖 = 1, . . . , ℓ.
(22)

From here the eigenvalues can be obtained numerically. We calculate the full set of solutions to the polynomial system in
Eq. 22 using the software package HomotopyContinuation.jl [21], and discard any solutions that do not satisfy |𝜅𝑖 | < 1.
As 𝛿 is varied within the interval [0, 1], the resulting eigenvalues trace out curves in the complex plane which can be
plotted alongside the spectrum of the free-space difference scheme (see Fig. 3 for examples). For an IIM discretization
to be stable for all interface positions 𝛿, both the free-space spectrum and these additional eigenvalues must be contained
within the stability region of the chosen time integrator.
We note that this procedure is essentially a normal mode analysis for the difference scheme, as developed in the

stability theory of Godunov and Ryabenkii; Trefethen [22] provides an excellent overview of the distinction between
this approach and a full GKS stability analysis. The latter is considerably richer, and treats the additional complexities
that arise when there are eigenvalues satisfying Re 𝑠 = 0. For our purposes, the Re 𝑠 = 0 case rarely decides if an
IIM discretizations is stable for all 𝛿: if there is an 𝛿 for which Re 𝑠 = 0, then there is a nearby 𝛿 with Re 𝑠 > 0, and
the scheme undoubtedly unstable for some interface configuration. We have also omitted the case when 𝑞(𝜅, 𝑠) has a
repeated root, which is considered fully in the SILW stability study in [20]. In generating the results below we did not
find any distinct eigenvalues that correspond to a solution with repeated roots, which is consistent with the remark in
[22] that repeated roots are “rarely relevant in practice”.

2. 1D stability results
Figure 3a plots the augmented spectrum of two different 1D IIM discretizations based on a third-order upwind

stencil: a (3, 3) discretization which is second-order accurate at the boundary, and a (3, 4) discretization which is
third-order accurate at the boundary. Both schemes are stable for any interface position 𝛿. Figure 3b plots the augmented
spectrum for 1D discretizations of order (5, 𝑘) for 𝑘 between three and six. Of these schemes, only (5, 3) and (5, 4) are
stable, giving second-order or third-order accuracy at the inflow boundary and fifth-order accuracy elsewhere. We note
that these results are a departure from those in [20], which found no stable schemes of order three or higher that did
not require an SILW boundary treatment. The difference can be attributed to the specific polynomial extrapolation
procedures used by the authors, which differs slightly from the one presented here.
Based on the augmented spectra, Table 1 provides the maximum stable CFL number for each stable discretization

when integrated with low-storage Runge-Kutta schemes of order three [23] and four [24]. For all schemes except (5,
3) with fourth order time integration there is some reduction in the stability limit compared to the free-space finite
difference scheme. The effect is more severe for the third order time integrator than for the fourth order time integrator.
For the (3, 4) scheme, which we focus on in later sections, the reduction is roughly 34% with third order integration and
25% with fourth order time integration.

Table 1 Maximum stable CFL for each stable IIM advection discretization when integrated with low storage
Runge-Kutta methods of order three or four. The (3, F) and (5, F) entries indicate the maximum stable CFL for
the free-space finite difference schemes.

Integrator (3, F) (3, 3) (3, 4) (5, F) (5, 3) (5, 4)
LSRK(3, 3) 1.62 1.43 1.07 1.43 1.22 0.89
LSRK(5, 4) 2.12 2.02 1.69 1.99 1.99 1.63
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−2 −1.5 −1 −0.5 0 0.5
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[𝜆
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(3, 4)
(3, 3)

(a) Third-order upwind scheme.

−3 −2.5 −2 −1.5 −1 −0.5 0

0

1

2

3

Re[𝜆]

Im
[𝜆
]

(5, 6)
(5, 5)
(5, 4)
(5, 3)

(b) Fifth-order upwind scheme.

Fig. 3 1D stability regions for IIM discretizations based on (a) a the third order upwind stencil and (b) a fifth
order upwind stencil, all using the 1D IIM boundary treatment outlined in section II.D.1. Shaded regions indicate
the stability region of the free-space finite difference scheme, while the solid lines indicate additional eigenvalues
beyond this region introduced by the boundary treatment.

3. Extension to 2D and 3D discretizations
Unlike in one dimension, there is no simple way to enumerate all possible configurations of a 2D or 3D interface,

making a rigorous stability analysis extremely difficult. However, the 1D stability analysis provides a useful guide for
what is and is not achievable in the multidimensional setting. Here we focus on adapting the (3, 4) discretization that
is provably stable in 1D to advection discretizations in 2D and 3D. The free-space scheme is a third-order upwind
discretization applied dimension-by-dimension, with each dimension using the 1D stencil

𝜕𝜙

𝜕𝑥

����
𝑖

=

{
1
6 (𝜙𝑖−2 − 6𝜙𝑖−1 + 3𝜙𝑖 + 2𝜙𝑖+1), 𝑢𝑖 ≥ 0,
1
6 (−2𝜙𝑖−1 − 3𝜙𝑖 + 6𝜙𝑖+1 + 𝜙𝑖+2), 𝑢𝑖 < 0.

(23)

At inflow control points satisfying 𝑢(𝑥𝑐) · 𝑛(𝑥𝑐) > 0 we construct fourth order polynomial interpolants using data from
the points in X̄𝑐 and the prescribed boundary condition at 𝑥𝑐. At outflow control points satisfying 𝑢(𝑥𝑐) · 𝑛(𝑥𝑐) ≤ 0
there is no prescribed boundary condition, so the interpolants are constructed using data from the set X𝑐 only.
The procedure above allows for a third order accurate evaluation of 𝑢 · ∇𝜙, but generally leads to unstable

discretizations. To ensure stability, the set of weights used in each weighted least squares interpolation (Eq. 1) must
be carefully chosen. Following the work of Devendran et al. [25], we choose weights that decay rapidly with their
distance from the control point, using the elliptical distance measure 𝑑𝑐 (𝑥) defined in Eq. 3. A weight function of the
form 𝑤𝑖 = max(𝛾, 𝑑𝑐 (𝑥𝑖))−𝑘 heavily de-weights interpolation points that fall outside of the region 𝑑𝑐 (𝑥) < 𝛾, which is
shown in [25] to improve the spectrum of a similar high-order embedded boundary finite volume scheme. Numerical
experiments indicate that the (3, 4) advection scheme is stable and third-order accurate for 𝛾 = 0.7 and 𝑘 = −6 in both
two and three dimensions, and we use these parameters for the results presented below. All simulations in section III.C
are performed with the LSRK(5, 4) time integrator from [24] and a CFL of 1.5, indicating that the stability limit in
multiple dimensions is comparable to the 1D stability limit of 𝐶max = 1.69 for the (3, 4) scheme.

III. Results

A. Geometry and parameters for numerical tests
For all 2D stability and convergence results, we consider the square domain Ω = [0, 1]2 with periodic boundary

conditions and an immersed interface Γ defined by a level set 𝜓(𝑥). In a polar coordinate system centered on the point
(𝑥0, 𝑦0), we choose

𝜓(𝑟, 𝜃) = −(𝑟 − 𝑟0) − 𝑟 cos [5(𝜃 − 𝜃0)], (24)
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which describes a smooth five-pointed star with center (𝑥0, 𝑦0), average radius 𝑟0, perturbation radius 𝑟 , and an angular
offset of 𝜃0. The results presented here correspond to 𝑥0 = 0.502, 𝑦0 = 0.503, 𝑟0 = 0.36, 𝑟 = 0.056, and 𝜃0 = 0.1, which
produces an interface with curvature satisfying |𝜅ℎ | < 1/4 whenever the grid spacing is ℎ = 1/48 or finer. For 2D
diffusion tests we consider constant diffusivities 𝛽+ = 2.2× 10−3 and 𝛽− = 1.1× 10−3 on either side of the interface, and
for 2D advection convergence tests we consider both a constant velocity field 𝑢(𝑥) = [2,−1.5] and a rotating velocity
field 𝑢(𝑥) = [−𝜔(𝑦 − 𝑦𝑐), 𝜔(𝑥 − 𝑥𝑐)] with angular velocity 𝜔 = 2𝜋. The full 2D setup is illustrated in Fig. 4a.
For all 3D convergence tests we consider the cubic domain Ω = [0, 1]3 with periodic boundary conditions and a

nonconvex interface consisting of a sphere that is radially perturbed by a distance proportional to a spherical harmonic:

𝜓(𝜌, 𝜃, 𝜑) = −(𝜌 − 𝜌0) + �̃�𝑌10
5 (𝜃, 𝜑),

𝑌10
5 (𝜃, 𝜑) = − 3

256

√︂
1001
𝜋

cos(5𝜑) sin5 (𝜃)
(
323 cos5 (𝜃) − 170 cos3 (𝜃) + 15 cos(𝜃)

)
.

(25)

Here (𝜌, 𝜃, 𝜑) is a spherical coordinate system centered at 𝑥0 = [0.505, 0.501, 0.509] with azimuthal angle 𝜃 and
polar angle 𝜑. We take 𝜌0 = 0.36 and �̃� = 0.045 for all tests. Diffusion tests are performed with constant diffusivities
𝛽+ = 1.463 × 10−3 and 𝛽− = 7.315 × 10−4 in each region, and for advection tests we consider both a constant
velocity field 𝑢(𝑥) = [0.62, 0.63, 0.57] and a rotating velocity field 𝑢(𝑥) = 𝜔 × 𝑥 with constant angular velocity
𝜔 = [𝜋/√3, 𝜋/√3, 𝜋/√3]. Figure 4b illustrates the full 3D setup.
For convergence tests in 𝑑 = 2, 3 dimensions we use the method of manufactured solutions with the sinusoidal field

𝜙(𝑥, 𝑡) =
{

exp(−𝛽+𝑑 (4𝜋)2𝑡)∏𝑑
𝑖=1 sin(4𝜋𝑥𝑖), 𝜓(𝑥) > 0,

exp(−𝛽−𝑑 (2𝜋)2𝑡)∏𝑑
𝑖=1 sin(2𝜋𝑥𝑖) + 1, 𝜓(𝑥) ≤ 0,

(26)

which satisfies the diffusion equation separately on either side of the immersed interface. For advection or advection-
diffusion cases we use the same solution expressed in a coordinate system that translates or rotates with the flow. For
cases with Dirichlet or Neumann boundary conditions we ignore the region with 𝜓(𝑥) < 0 and prescribe either Eq. 26
or its normal derivative on the interface, and for cases with prescribed jump conditions we use the full domain and
prescribe the jumps [𝜙] and [𝛽𝜕𝑛𝜙] on the interface. All errors are measured in the 𝐿∞ norm over the entire problem
domain, so that for a numerical solution 𝜙 and exact solution 𝜙𝑒 the error measure is 𝜖∞ = max𝑥𝑖 ∈Ω |𝜙(𝑥𝑖) − 𝜙𝑒 (𝑥𝑖) |.
For time-dependent cases we integrate from 𝑡 = 0 to 𝑡 = 1 using a five-stage fourth-order Runge-Kutta method [24]. The
choice of time step varies in each test case and is discussed in the sections below.
All 3D results are generated with an implementation based on MURPHY [26], an open-source scalable software

framework for PDE discretizations on 3D multiresolution grids. MURPHY provides adaptive refinement and coarsening
of a block-structured grid via a wavelet-based multiresolution analysis, which is used both for generating high-order
ghost points at resolution boundaries and for evaluating the adaptation criteria within each block. For convergence
results we maintain uniform resolution throughout the computational domain, and only use adaptive grid refinement for
the results in section III.E.

B. Stability and convergence results for the diffusion equation
Figure 5a provides convergence results for the evaluation of the Laplacian operator ∇2𝜙 using Dirichlet or Neumann

boundary conditions for the (2, 4), (4, 6), and (6, 8) IIM discretizations developed in section II.C. For this convergence
test, pairing a free space scheme of order 𝑘 with a polynomial interpolants of order 𝑘 + 2 ensures that the accuracy
of the free-space scheme is preserved at points near the boundary. Figure 5b provides convergence results for the
time-dependent diffusion equation with Dirichlet or Neumann boundary conditions, which are calculated with a small
time step of Δ𝑡 = 1/600 to ensure that the spatial discretization error is dominant. For the time-dependent problem,
accuracy on the interface is less crucial to achieving high-order global 𝐿∞ norm convergence: pairs of the form (𝑘, 𝑘)
are sufficient for 𝑘-th order convergence when Dirichlet conditions are prescribed, and pairs of the form (𝑘, 𝑘 + 1)
are sufficient for 𝑘-th order convergence when Neumann conditions are prescribed. The gain of one or two orders of
accuracy is common for immersed discretizations of the diffusion equation; see [27] for a complete discussion. Figures
5c and 5d provide the eigenvalues of the (6, 7) discretization at a resolution of ℎ = 1/48 for Dirichlet and Neumann
boundary conditions, respectively. All eigenvalues have negative real part, and the eigenvalue with the largest negative
real part differs only slightly from the expected value for the free-space discretization. This indicates that the immersed
interface discretization as described in this work does not suffer from small-cell issues.
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(a) 2D setup. (b) 3D setup.

Fig. 4 (a) Geometry, initial condition, and velocity field for 2D convergence tests with Dirichlet or Neumann
boundary conditions. The rotating velocity field is shown, with solid outlines indicating an inflow boundary and
dashed outlines indicating an outflow boundary. (b) Geometry used for 3D convergence tests with Dirichlet or
Neumann boundaries, clipped by the plane 𝑥1 = 0.735 to show the initial condition.

Figure 6a provides convergence results for the evaluation of the Laplacian operator with prescribed jump conditions
of the form given in Eq. 9. As with the Dirichlet and Neumann boundary conditions, discretizations of the form
(𝑘, 𝑘 + 2) converge at the order 𝑘 . Figure 6b provide convergence results for the time-dependent diffusion problem,
which indicate that pairs of the form (𝑘, 𝑘 + 1) are sufficient for 𝑘-th order convergence when jump conditions are given
on the interface. Figures 6c and 6d illustrate the spectrum the discretization with ℎ = 1/48 for diffusivities of 𝛽− = 1
and 𝛽+ = 0.5 or 10−4, respectively. In both cases the eigenvalues have negative real part and their magnitude closely
matches that of the free-space scheme, indicating that the sixth order IIM discretization remains stable despite a jump in
the diffusivity spanning four orders of magnitude. The spectrum with the larger diffusivity ratio corresponds closely to
the spectrum of the Neumann discretization shown in Fig. 5d, consistent with the observation from section II.C that our
treatment of Neumann boundaries is equivalent to our treatment of jump conditions when one side of the interface has
zero diffusivity.
Convergence results for the 3D diffusion equation are shown in Fig. 7a for Dirichlet or Neumann boundary conditions

and in Fig. 7b for interface jump conditions. Calculating the full spectrum of each 3D discretization is infeasible
due to the problem size, so we verify stability by integrating each test case with explicit time integration and a time
step that is 80% as large as the maximum stable time step for the free-space finite difference scheme. For these 3D
diffusion cases we use the RK4()6[2S] integrator from [28], a six-stage fourth-order Runge-Kutta method optimized for
real-line stability. Consistent with the 2D results, the (𝑘, 𝑘) discretizations with a Dirichlet boundary and the (𝑘, 𝑘 + 1)
discretizations with a Neumann boundary condition or jump condition are stable and converge at the same rate as their
free-space scheme.
Finally, we note that for all results presented here the higher-order schemes outperform their lower-order counterparts

at the same spatial resolution. Using Fig. 6b as an example, for 2D diffusion with jump conditions a sixth order scheme
on a grid with 482 points is more accurate by an order of magnitude than a second order scheme that uses sixteen times
as many grid points. This suggests that the use of higher-order immersed interface discretizations can lead to drastically
reduced memory requirements in larger simulations and likely to a decrease in total computational cost as well.

C. Stability and convergence results for the advection equation
Figures 8a and 8b provides convergence results for the advection equation in 2D and 3D, respectively. The spatial

discretization is the (3, 4) multidimensional advection scheme developed in section II.D.3. Time integration is performed
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482 962 1922
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(6, 8) Dir
(6, 8) Neu

(a) Laplacian operator with Dirichlet or Neumann BCs.

482 962 1922
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𝜖 ∞

(4, 4) Dir
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(b) Scalar diffusion with Dirichlet or Neumann condition.

−12 −10 −8 −6 −4 −2 0

−2

0

2

Re[ℎ2𝜆]

Im
[ℎ
2 𝜆
]

(c) Spectrum of the (6, 6) Dirichlet discretization

−12 −10 −8 −6 −4 −2 0
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Re[ℎ2𝜆]

Im
[ℎ
2 𝜆
]

(d) Spectrum of the (6, 7) Neumann discretization

Fig. 5 (a) Convergence results for the evaluation of the Laplacian operator with Dirichlet or Neumann boundary
condition. (b) Convergence results for the scalar diffusion equation with Dirichlet or Neumann boundary
conditions. Dashed lines indicate the expected order of convergence for the free-space finite difference scheme.
The eigenvalues of the corresponding 6th order discretizations at resolution ℎ = 1/48 are shown in (c) for the
Dirichlet condition and (d) for the Neumann condition, with the solid colored line indicating the spectrum of the
free-space discretization.
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(a) Laplacian with jump conditions.
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(b) Diffusion with jump conditions.
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(c) Spectrum of the (6, 7) discretization, 𝛽+/𝛽− = 2
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[ℎ
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(d) Spectrum of the (6, 7) discretization, 𝛽+/𝛽− = 104

Fig. 6 Convergence results for (a) the evaluation of the Laplacian operator with interface jump conditions and
(b) time-dependent diffusion with interface jump conditions. Dashed lines indicate the order of the free-space
scheme. The spectrum of the (6, 7) discretization with ℎ = 1/48 is shown for diffusivity ratios (c) 𝛽+/𝛽− = 2 and
(d) 𝛽+/𝛽− = 104, with the spectrum of the free-space scheme superimposed as a solid line.
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323 643 1283
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(a) Convergence with Dirichlet or Neumann boundaries.
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(b) Convergence with prescribed jump conditions.

Fig. 7 Convergence results for the 3D diffusion equation with (a) Dirichlet or Neumann boundary conditions
and (b) prescribed jump conditions. Dashed lines indicate the order of the free-space scheme.

with a CFL number of 𝐶 = max ∥𝑢∥1Δ𝑡/ℎ = 1.5, which is comparable to the 1D stability limit of 𝐶max = 1.69
established in section II.D.2 for this scheme and time integrator. For both constant and rotating velocity fields the
discretization remains stable with no added dissipation and we observe clean third order convergence in the 𝐿∞ norm.
The spectrum of the 2D discretization with ℎ = 1/48 is given in Fig. 8c for a constant velocity field and in Fig. 8d for a
rotating velocity field. In both cases there are no eigenvalues with negative real part, further confirming that the 2D
discretization is conditionally stable with no added dissipation.

D. Stability and convergence for the advection-diffusion equation
For the advection diffusion equation the relative importance of the advection term and the diffusive term is determined

by the Peclet number, which we define as Pe = 𝜔𝑟2
0/𝛽+ in 2D and Pe = ∥𝜔∥2𝜌

2
0/𝛽+ in 3D. We consider cases with

Pe = 50 and Pe = 500 using the same geometry and rotating velocity field described in section III.A. The advection term
is discretized with the (3, 4) multidimensional advection scheme that uses the prescribed Dirichlet boundary condition
only at inflow boundaries, while the diffusion term is discretized with a (4, 5) scheme that uses the Dirichlet boundary
condition at all points on the interface. Time integration is performed with a maximum CFL of 1.0 and maximum
Fourier number of Δ𝑡𝛽+/ℎ2 = 0.2; in each test case the time step is chosen according to the more restrictive constraint.
Figures 9a and 9b show clean third order convergence for Pe = 50 and Pe = 500 in 2D and in 3D, consistent with the
third order truncation error of both the boundary and free-space schemes.

E. Conjugate heat transfer
As a final test case, we consider a model of 3D conjugate heat transfer for a solid sphere immersed in an exterior

potential flow. This test case poses a number of challenges for an immersed method, which must enforce coupling
conditions on the fluid-solid interface, discretize the concave interior surface of the sphere, and accurately resolve the
thin thermal boundary layer that forms on the exterior surface of the sphere. For a temperature field 𝑇 (𝑥, 𝑡) defined in a
solid domain Ω𝑠 and fluid domain Ω 𝑓 , we solve

𝜕𝑡𝑇 = 𝛽𝑠∇2𝑇 in Ω𝑠 ,

𝜕𝑡𝑇 + 𝑢 · ∇𝑇 = 𝛽 𝑓∇2𝑇 in Ω 𝑓 ,

[𝑇] = [𝛽𝜕𝑛𝑇] = 0 on Γ.

(27)

The velocity field is divergence-free and satisfies 𝑢 · 𝑛 = 0 on the interface, so that the jump conditions in Eq. 27
represent the continuity of the temperature field and the conservation of thermal energy at the interface. The solid
region is a sphere with radius 𝑟 = 0.251 centered at 𝑥𝑐 = [0.5, 0.5, 0.5], immersed in the computational domain
Ω = [0, 1] × [0, 1] × [0, 4]. In the fluid domain Ω 𝑓 = Ω \Ω𝑠 we define a velocity field 𝑢(𝑥) using the potential flow
solution for the flow external to a sphere, with a free stream of magnitude 𝑈∞ = 1 aligned with the 𝑥3 axis. The
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(a) 2D advection convergence.
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(b) 3D advection convergence.
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(c) Spectrum of the 2D constant velocity discretization.
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(d) Spectrum of the 2D rotating velocity discretization.

Fig. 8 Convergence results for the advection equation with constant velocity field and rotating velocity field in
(a) 2D and (b) 3D. The spectrum of the 2D discretization with ℎ = 1/48 is shown in (c) for the constant velocity
field and in (d) for the rotating velocity field.

diffusivities in each region are 𝛽𝑠 = 0.003 and 𝛽 𝑓 = 0.001, giving a Peclet number of Pe𝐷 = 502 in the fluid region and
a diffusivity ratio of 𝛽𝑠/𝛽 𝑓 = 3. At time 𝑡 = 0 the initial temperature field is set to 𝑇 = 𝑇0 = 1 inside the solid region
and 𝑇 = 0 in the fluid region.
Numerically, the discretization of the advection and diffusion terms is the same as in the previous section. Zero

Dirichlet boundary conditions are imposed on all exterior boundaries of Ω except for the outflow plane at 𝑥3 = 4, where
the field is extrapolated at sixth order in the 𝑥3 direction before the finite difference scheme is applied. Exploiting the
adaptivity in MURPHY [26], we use a sixth-order interpolating wavelet-based grid adaptation with refinement and
compression tolerances of 10−2 and 10−4 in the free-space. The grid around the interface is kept at a fixed resolution of
ℎ = 1/192. The time step is chosen to maintain a maximum CFL number of 1.0 and a maximum Fourier number of 0.1
based on the local mesh spacing.
Figure 10a illustrates the evolution of the temperature field using evenly-spaced contours at 𝑡 = {1.0, 2.0, 3.0, 4.0}.

As the simulation proceeds, heat diffuses from the solid domain into the fluid domain, forming a warmer wake behind
the sphere and a thin thermal boundary layer on the sphere surface. The boundary layer and the discontinuity in the
temperature gradient on the fluid-solid interface are illustrated in Fig. 10b, which provides instantaneous samples of the
temperature field along a line through the sphere center that is perpendicular to the flow. Our high-order IIM boundary
treatment is able to sharply resolve the discontinuity, and the use of local mesh refinement provides enough spatial
resolution to capture the large temperature gradients that occurs within the thin boundary layer.
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(a) 2D advection-diffusion convergence.

323 643 1283
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(b) 3D advection-diffusion convergence.

Fig. 9 Convergence results for the advection-diffusion equation with a rotating velocity field in (a) 2D and (b)
3D. Results are shown for Pe = 50 and Pe = 500.

(a) Temperature contours.
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0.2

0.4
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𝑡 = 2.0
𝑡 = 3.0
𝑡 = 4.0

(b) Temperature samples.

Fig. 10 (a) Temperature distribution for the conjugate heat transfer case 𝑡 = {1.0, 2.0, 3.0, 4.0} (top to bottom).
Contours represent values of 𝑇/𝑇0 between 0.1 and 0.9 in increments of 0.1, and are clipped by the plane
𝑥1 = 0.5. A slice of the block-based mesh is shown in gray, with each block representing 243 grid points. (b) The
temperature distribution over a line perpendicular to the free stream flow passing through the sphere center at
times 𝑡 = {0.2, 1.0, 2.0, 3.0, 4.0} .

IV. Conclusion
We have developed a high-order immersed interface method for the 3D advection-diffusion equation with a focus on

simplicity of implementation, compatibility with multiphysics coupling, and accurate interface quantities. The method
is based on point values and finite differences, allowing for simple implementation of high-order free-space schemes
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and nonlinear terms. Boundary conditions or jump conditions can be enforced pointwise on one or both sides of a
nonconvex interface, and numerical results indicate that the treatment of jump conditions is robust to large jumps in
material properties. Convergence results demonstrate up to sixth order spatial accuracy for diffusion terms, and for
advection terms the method achieves third order accuracy while allowing stable explicit time integration at CFL numbers
only slightly smaller than those that determine stability for the free-space scheme.
While we have focused on the advection-diffusion equation in this work, our primary interest is a high-order

immersed interface method for the incompressible Navier-Stokes equations with moving immersed bodies. This requires
both an efficient 3D elliptic solver and a high-order treatment of moving boundaries. The former has been achieved
with compact finite differences and preconditioned BiCGStab [9], and with high-order finite volumes and an algebraic
multigrid solver [29]; these successes indicate that a similar solver should be feasible with our current approach based on
explicit finite differences. High-order treatment of moving boundaries is an active research area, and some preliminary
results are available in [30]. We hope to present a more comprehensive treatment in the near future.

Appendix

A. High order calculation of gridline intersections and surface geometry
The geometry processing method described here is designed for surfaces defined by a level set 𝜓(𝑥) that is expensive

to evaluate. Consequently we assume that 𝜓(𝑥) is sampled on a regular Cartesian grid, and that values of 𝜓 away from
the gridpoints are unavailable. Assuming that the interface is well-resolved, an intersection exists wherever two adjacent
grid points have level set values with opposite signs. To locate the intersection with O (

ℎ2𝑘 ) accuracy, let 𝑥0 and 𝑥1 be
the neighboring points, and let 𝑥𝑖 be the 𝑖-th consecutive grid point along the gridline in question. Define �̄�(𝑥) to be the
polynomial of order 2𝑘 − 1 that interpolates 𝜓(𝑥) at the 2𝑘 points {𝑥−𝑘+1, . . . , 𝑥𝑘}. Since �̄�(𝑥) has opposite signs at 𝑥0
and 𝑥1, it is guaranteed to have at least one root on the interval [𝑥0, 𝑥1], which is taken to be location of the intersection.
To find this root numerically, the interpolant is constructed using a Barycentric Lagrange interpolation scheme [31],
which is numerically stable and allows for repeated evaluations of the interpolant and its derivative with O(𝑘) operations.
The root is located with a hybrid bracketing-Newton method similar to the rtsafe algorithm described in [32], which
typically provides quadratic convergence and guarantees that the resulting root lies in the bracketing interval.
To calculate the normal vector at a given control point, 𝜓(𝑥) is approximated by a multidimensional polynomial

interpolant. Without loss of generality, assume the intersection occurs along a gridline parallel to the 𝑥 axis between
points (𝑥0, 𝑦0, 𝑧0) and (𝑥1, 𝑦0, 𝑧0). The set of interpolation points chosen for an O

(
ℎ2𝑘−1) approximation of the normal

vector is X = {𝑥−𝑘+1, . . . , 𝑥𝑘} × {𝑦−𝑘 , . . . , 𝑦𝑘} × {𝑧−𝑘 , . . . , 𝑧𝑘}. Let �̃�(𝑥) be the multidimensional interpolant of
order 2𝑘 − 1 that approximates 𝜓(𝑥) on X in the unweighted least squares sense defined in section II.A; the normal
vector is taken to be 𝑛 = ∇�̃�/

��∇�̃���. Because the shape of the interpolation region X is identical for each control point,
the same matrix factorization can be reused when repeatedly computing these least-squares interpolants.
If information on the surface curvature is also required, it can be computed with O (

ℎ2𝑘−2) accuracy using the
same multidimensional interpolant. Define the surface projection matrix 𝑃 = 𝐼 − 𝑛𝑛𝑇 , and let H be the Hessian of the
interpolant �̃� on the interface with entries 𝐻𝑖 𝑗 = 𝜕𝑥𝑖𝜕𝑥 𝑗

�̃�. Taking the eigendecomposition of the projected Hessian
�̃� = 𝑃𝑇𝐻𝑃/|∇𝜓 | gives three eigenvectors and their associated eigenvalues: the normal vector with associated eigenvalue
0, and the principal curvature vectors 𝑡1 and 𝑡2 with associated eigenvalues equal to the principal curvatures 𝜅1 and 𝜅2.
If only the mean curvature is desired (as is the case for fluid interfaces with surface tension), the eigendecomposition
can be dropped by noting that 𝜅1 + 𝜅2 = tr

(
�̃�
)
.

B. Calculation of stencil coefficients via least squares fitting
Section II.A outlines a weighted least squares framework for generating high-order interpolation stencils based

on point values; the linear algebra required to calculate these stencil coefficients is developed here. For embedded
boundary finite volume schemes, an equivalent calculation for high-order interpolants based on cell averages is presented
in [25]. Let {𝑥𝑖}𝑛𝑖=1 be a set of interpolation points, let 𝑥𝑒 be a given evaluation point, and for any function 𝜙(𝑥) let
𝜙 = {𝜙𝑖}𝑛𝑖=1 be a vector containing samples taken at those points. For a stencil that uses polynomial interpolants of
degree 𝑘 to evaluate 𝜕𝜶𝜙(𝑥𝑒), let 𝑚 = dim P𝑑,𝑘 =

(𝑘+𝑑
𝑑

)
, and let

{
𝑏 𝑗 (𝑥)

}𝑚
𝑗=1 be a linearly independent basis for P𝑑,𝑘 .

Any polynomial 𝑝(𝑥) in P𝑑,𝑘 can then be written as 𝑝(𝑥) =
∑𝑚

𝑗=1 𝑐 𝑗𝑏 𝑗 (𝑥) for some vector of coefficients 𝑐 𝑗 . Define
the 𝑛 by 𝑚 matrix 𝐵 with entries 𝐵𝑖 𝑗 = 𝑏 𝑗 (𝑥𝑖), the 𝑛 by 𝑛 diagonal weight matrix 𝑊 with entries 𝑊𝑖 𝑗 = 𝑤𝑖𝛿𝑖 𝑗 , the
𝑚-vector ℓ with entries ℓ 𝑗 = 𝜕𝜶𝑏 𝑗 (𝑥𝑒), and an 𝑛-vector 𝑠 containing the unknown stencil coefficients 𝑠𝑖 . With this
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nomenclature, the least-squares interpolant 𝑝(𝑥) is determined by the vector of coefficients satisfying the least-squares
system 𝑐 = arg min ∥𝐵𝑐 − 𝜙∥2

𝑊 . Provided the columns of 𝑉 are linearly independent, this minimization has the unique
solution

𝑐 =
(
𝐵𝑇𝑊𝐵

)−1
𝐵𝑇𝑊𝜙. (28)

This is considerably simplified by introducing the decomposition
√
𝑊𝐵 = 𝑄𝑅 for an 𝑛 by 𝑚 orthogonal matrix 𝑄 and an

𝑚 by 𝑚 upper-triangular matrix 𝑅, which leads to the simpler expression 𝑐 = 𝑅−1𝑄𝑇
√
𝑊𝜙. The quantity of interest can

then be approximated by evaluating

𝜕𝜶𝑝(𝑥𝑒) =
𝑚∑︁
𝑗=1

𝑐 𝑗𝜕
𝜶𝑞 𝑗 (𝑥𝑒) = ℓ𝑇𝑐 = ℓ𝑇𝑅−1𝑄𝑇

√
𝑊𝜙. (29)

The application of the stencil 𝑠 to function values 𝜙 is given by 𝑠𝑇𝜙, so Eq. 29 implies that

𝑠 =
√
𝑊𝑄𝑅−𝑇ℓ. (30)

Eq. 29 can be alternatively simplified by introducing a singular value decomposition, which may offer increased
numerical stability in some situations. Let

√
𝑊𝐵 = 𝑈Σ𝑉𝑇 , where𝑈 is an orthogonal 𝑛 by 𝑚 matrix, Σ is a diagonal 𝑚

by 𝑚 matrix, and 𝑉 is an orthogonal 𝑚 by 𝑚 matrix. When Φ has full column rank both Σ and 𝑉 are invertible, and the
coefficient vector can be simplified to 𝑐 = 𝑉Σ−1𝑈𝑇

√
𝑊 𝑓 . The resulting stencil values are given by 𝑠 =

√
𝑊𝑈Σ−1𝑉𝑇 𝑓 .

C. Common finite difference stencils
Table 2 provides coefficients for a centered discretization of the second derivative. Likewise, Table 3 provides 1D

finite difference coefficients for an upwind discretization of the first derivative. For each stencil the eigenfunctions
of the associated free-space finite difference operator are the complex exponentials 𝑒𝑖𝑘𝑥 with associated eigenvalues
𝜆(𝑘). For the standard centered schemes of even orders the eigenvalues are purely real with −𝜆max ≤ 𝜆(𝑘) ≤ 0 for a
stencil-dependent constant 𝜆max given in the table below. For the upwind finite difference schemes, the eigenvalues
satisfy Re𝜆(𝑘) < 0 for 𝑘 ≠ 0. A useful characterization of their magnitude is the largest constant 𝐶 for which 𝐶ℎ𝜆(𝑘)
is contained within the stability region of a particular time integrator; these values are listed for two low-storage
Runge-Kutta schemes, a three-stage third-order method [23] and a four-stage fifth-order method [24].

Table 2 Standard finite difference stencils of even order for the second derivative.

Order Coefficients ℎ2𝜆max

2 [1,−2, 1] 4
4

[− 1
12 ,

4
3 ,− 5

12 ,
4
3 ,− 1

12
]

16/3 ≈ 5.33
6

[ 1
90 ,− 3

20 ,
3
2 ,− 49

18 ,
3
2 ,− 3

20 ,
1
90
]

272/45 ≈ 6.04
8

[− 1
560 ,

8
315 ,− 1

5 ,
8
5 ,− 205

72 ,
8
5 ,− 1

5 ,
8

315 ,− 1
560

]
2048/315 ≈ 6.50

Table 3 Standard upwind finite difference stencils of odd order for the first derivative.

Order Coefficients 𝐶max, LSRK(3,3) 𝐶max, LSRK(5,4)
3

[ 1
6 ,−1, 1

2 ,
1
3
]

1.62 2.12
5

[− 1
30 ,

1
4 ,−1, 1

3 ,
1
2 ,− 1

20
]

1.43 1.99

D. Radii for ellipsoidal stencil search regions
Table 4 contains the normal and tangential radii of the elliptical or ellipsoidal stencil search regions developed

in section II.A. They are listed by polynomial order for both 2D and 3D geometries, and designed to guarantee an
overdetermined fit on smooth surfaces satisfying the curvature constraint |𝜅ℎ | < 1/4, where in 2D 𝜅 is the curvature and
in 3D it is the largest absolute principal curvature.
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To confirm that these radii lead to an over-determined polynomial fit, each set has been tested on randomly generated
2D or 3D nonconvex surface geometries with the maximum allowable curvature. Each geometry is characterized by an
intersection point with a random offset 𝛿 that is uniformly distributed over [0, 1]. In 2D the domain is the interior of
circle with radius 4ℎ, with a center chosen so that the surface normal vector at the intersection has a uniform random
distribution over the unit circle. In 3D, two types of surfaces are tested: the interior of a sphere with radius 1/4ℎ, giving
𝜅1ℎ = 𝜅2ℎ = 1/4 for any intersection point, and a torus with major radius 8ℎ and minor radius 4ℎ, giving 𝜅1ℎ = 1/4 and
𝜅2ℎ = −1/4 for an intersection point on the inner equator. Each 3D geometry is given a random surface frame at the
intersection (defined by the normal vector and principal curvature directions) that is uniformly distributed over the space
of 3D rotations. For a given polynomial order, a set of radii are deemed successful if they lead to an overdetermined
polynomial fit in 105 random trials for each type of trial surface.
For the 2D diffusion results in section III.B we also consider interpolation stencils of order 8, which generally cannot

be guaranteed to fit within a circle of constant curvature 1/4ℎ. However, for geometries where the maximum curvature
1/4ℎ is not sustained across the entire surface, radii of 𝑟𝑛/ℎ = 8.5 and 𝑟𝑡/4ℎ = 4.5 work well. Finally, note that the cost
of interpolation on any set of points is linear in the number of points, so smaller stencils are preferred for computational
cost. These radii have been chosen by trial and error to be close to optimal for 3D stencils, but there is room for a more
rigorous optimization.

Table 4 Elliptical search radii for 2D or 3D polynomial interpolants of order three to seven with a surface
curvature constraint |𝜅𝑖ℎ| < 1/4.

Order 𝑟𝑛/ℎ 𝑟𝑡/ℎ
3 3.4 1.7
4 4.5 2.25
5 5.5 2.75
6 6.5 3.3
7 7.6 3.95
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