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We present an immersed interface method for the vorticity-velocity form of the 2D 
Navier Stokes equations that directly addresses challenges posed by nonconvex immersed 
bodies, multiply connected domains, and the calculation of force distributions on immersed 
surfaces. The immersed interface method is re-interpreted as a polynomial extrapolation 
of flow quantities and boundary conditions into the immersed solid bodies, reducing 
computational cost and enabling simulations with nonconvex bodies that could not be 
discretized with previous immersed interface methods. In the flow, the vorticity transport 
equation is discretized using a conservative finite difference scheme and explicit Runge-
Kutta time integration. The velocity reconstruction problem is transformed to a scalar 
Poisson equation that is discretized with conservative finite differences, and solved using 
an FFT-accelerated iterative algorithm. The use of conservative differencing throughout 
leads to exact enforcement of a discrete Kelvin’s theorem, allowing for simulations with 
multiply connected domains and outflow boundaries that have challenged other immersed 
interface vortex methods. We also explore novel methods for recovering time-dependent 
pressure distributions on immersed bodies within a vorticity-based method and present 
a novel control volume formulation for recovering aerodynamic moments from only the 
vorticity and velocity fields. The method achieves second order spatial accuracy and third 
order temporal accuracy, and is validated on a variety of 2D flows in internal and free-
space domains.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Immersed methods solve partial differential equations inside or outside of irregular domains, while using a regular 
structured grid (typically Cartesian). The benefit of not having to adapt the underlying mesh to the domain boundaries 
provides simplicity and computational efficiency in handling complex domain geometries, arbitrary topologies (e.g. multi-
ple immersed bodies), and dynamically moving domain boundaries. These characteristics are especially of interest when 
combined with the Navier-Stokes equations to solve flow problems such as biologically-inspired locomotion. Broadly, there 
are two classes of immersed methods for incompressible Navier-Stokes simulations [1]. Continuous forcing methods include 
traditional immersed boundary methods [2,1,3], and Brinkmann penalization [4–6]. These methods add a singular forcing 
term to the continuous Navier Stokes equations within solid regions, which approximately enforces a no-slip condition on 
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solid boundaries. To maintain regularity after discretization, the forcing term is either smoothed on the object boundary 
and its value is resolved dynamically [6], or an iterative process is used to enforce the boundary condition [7]. This lim-
its many such methods to first-order spatial and temporal accuracy. Discrete forcing methods, on the other hand, include 
sharp immersed boundary methods [8,9], immersed interface methods [10,11], and other relatives such as Ghost Fluid [12], 
Ghost Cell [13], and cut cell finite volume methods [14]. These approaches use a modified discretization near solid objects 
that sharply resolves the location of immersed boundaries and enforces corresponding boundary conditions. Although these 
modifications are more challenging to derive and implement, they allow for increased spatial and temporal accuracy, as well 
as accurate resolution of local flow quantities such as traction forces on immersed solid boundaries.

Here we focus on the immersed interface method (IIM), a term that in itself covers a broad collection of discrete forcing 
methods. Early Navier-Stokes simulations used the IIM to discretize singular sources such as forcing terms representing in-
terfaces with surface tension, or elastic membranes [15–17]. With the introduction of the explicit jump immersed interface 
method (EJIIM) [18], the IIM was extended from discretizing singular source terms to handle directly imposed boundary 
conditions such as Dirichlet or Neumann conditions. The EJIIM relies on the use of jump-corrected Taylor series within 
standard finite difference schemes, keeping the solution a linear combination of grid values while incorporating boundary 
conditions. Further, the method uses a dimensionally-split approach, simplifying its extension to 2D and 3D. Combined, the 
EJIIM and its newest iterations (including our work) overlap significantly with sharp immersed boundary methods, and have 
much in common with other methods (such as the Ghost Cell, Cut Cell, and Ghost Fluid Methods). Since the development 
of the EJIIM, immersed interface methods have expanded to allow more complex PDEs, higher-order discretizations, and 
provably stable boundary treatments. In particular, we highlight recent developments in GKS-stable high-order boundary 
treatments for hyperbolic PDEs [19,20], parabolic PDEs [21,22], and advection-diffusion equations [23] with irregular do-
main boundaries; local stability optimizations for advection-dominant PDEs with immersed boundaries [24–26]; and several 
treatments of moving immersed boundaries that allow for at least second order accuracy [17,27,28].

Around the early 2000s, the IIM was combined for the first time with vorticity-based formulations of the 2D Navier-
Stokes equations [29,30], which used similar jump-corrected finite difference schemes as the EJIIM. These works are 
characterized by a temporal splitting approach to solve the Stokes problem with appropriate global vorticity boundary 
conditions, providing consistent second-order spatial accuracy and first-order temporal accuracy. In Linnick and Fasel [31], 
the authors employ the EJIIM to provide a 2D vorticity-velocity Navier-Stokes solver with compact difference schemes and 
a Thom-like, local vorticity boundary condition that enabled fourth-order spatial and temporal accuracy. This approach was 
recently extended using a more efficient multigrid solver in [32], and implemented in 3D in [33]. Recently, the IIM has 
also been integrated within vortex particle-mesh methods, which rely on a combined Lagrangian-Eulerian approach to inte-
grate the incompressible Navier-Stokes equations. In [34] a traditional Lighthill splitting approach was introduced to handle 
the vorticity boundary condition, leading to first-order temporal and second-order spatial accuracy. Subsequently, the same 
group employed a Thom-like finite difference boundary condition to achieve high-order accuracy in time [35] and an ex-
tension to 3D [36]. These latter results used a Lattice Green’s Functions FFT-accelerated Poisson solver, together with a 
Schur-complement boundary approach, solved using recycling GMRes [37,38].

The majority of the approaches above handle the external flow around a single, stationary, and typically convex object. 
A major challenge in extending towards multiple bodies is the need to enforce circulation conservation on each body inde-
pendently. Here we build off the approaches in [34,35] to develop a vorticity-based 2D finite-difference IIM that addresses 
this issue, extending these methods to simulations with multiple immersed bodies, nonconvex immersed bodies, and out-
flow boundary conditions. To do so we use a conservative finite-difference discretization of the Navier-Stokes equations 
that allows us to explicitly enforce circulation conservation in the presence of multiple bodies and outflows. This method 
is shown to be second-order accurate in space and third-order accurate in time, and it achieves excellent computational 
efficiency through the use of a fast IIM elliptic solver developed in [38]. Further, we consider novel methods for the cal-
culation of time-dependent pressure and shear distributions on immersed surfaces within a vorticity-velocity based IIM. 
More broadly, we provide a novel interpretation of the EJIIM through the lens of ghost points reconstructed with a polyno-
mial extrapolation, which greatly simplifies implementation details and exposes how the EJIIM is related to sharp-interface 
immersed-boundary and finite-volume methods.

The rest of this work is structured as follows. Section 2 introduces the EJIIM and its relation to ghost point reconstruction, 
as well as its application to nonconvex bodies in 2D. Sections 3 and 4 discuss IIM discretizations of the vorticity transport 
equation and the elliptic velocity reconstruction problem, respectively. In section 5 these two discretizations are combined 
into a full Navier-Stokes discretization which enforces a discrete form of Kelvin’s theorem. Section 5.4 introduces techniques 
for calculating forces and surface tractions acting on immersed bodies, which are applied to a variety of flows in section 6
to illustrate the accuracy and effectiveness of the methods presented here. We conclude in section 7 with a summary of our 
contributions and a discussion of future directions for this work.

2. The immersed interface method

In this section we briefly review the explicit jump immersed interface method (EJIIM) in a 1D setting and discuss a spe-
cialization of the method which reduces complexity and enhances numerical stability. This specialization is then extended 
to 2D problems.
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Fig. 1. Two use cases for the Explicit Jump IIM. (a) For a physical interface, the solution f (x) has nontrivial dynamics on both sides of a discontinuity. 
The jump in f (x) and its derivatives are known a priori from physical principles. (b) For a domain boundary, the solution is trivial on one side of the 
discontinuity, and a Dirichlet boundary condition is prescribed. However, there is no information on the jump in the derivatives.

2.1. Specializing the explicit jump IIM

The explicit jump immersed interface method (EJIIM), introduced by Wiegmann and Bube [18], is a method of adapting 
regular finite difference schemes for equations with discontinuous solutions. At its center is the construction of modified 
Taylor series expansions which correctly approximate functions with jump discontinuities. To illustrate, consider a function 
f (x) that is smooth except at a point xα , where there is a jump singularity in f (x) and its derivatives f (k)(x). Let ( f (k))−
and ( f (k))+ denote the value of f (k) on the left and right sides of the discontinuity, respectively, and let [ f (k)]α = ( f (k))+ −
( f (k))− denote the magnitude of the jump in f (k) at xα . Finally, consider a regular grid of points xi = ih, with the point 
xα contained in the interval [xi, xi+1] (Fig. 1a). Given the values of f (k)(xi) and [ f (k)]α , the function f can be extrapolated 
from xi to xi+1 using the modified Taylor series

f (xi+1) =
n∑

k=0

hk

k! f (k)(xi) + Jα(xi+1) + O (hn+1), with Jα(xi+1) =
n∑

k=0

(xi+1 − xα)k

k! [ f (k)]α. (1)

The first half of (1) is a standard Taylor expansion of f about xi ; the second is a jump correction that must be added 
to any expansion that crosses the discontinuity. In the EJIIM, these generalized Taylor series are used to construct jump-
corrected finite difference stencils which retain their high-order accuracy across the jump discontinuity at xα . This method 
is well suited to physical interfaces where the jumps [ f (k)]α are determined by the geometry of the interface or a known 
discontinuity in a prescribed source field.

Since its original publication, the EJIIM has been repeatedly re-purposed to discretize problems with smooth solutions 
that are posed on irregular domains. To tackle such problems, a common approach is to prescribe the solution outside of 
the problem domain (typically to zero value), and then treat the irregular domain boundary as a jump discontinuity. In 
this case the jump discontinuity is no longer physically constrained, and the value of the jump in each derivative f (k)(xα)

must be calculated directly from the function f (x) by evaluating a one-sided finite difference stencil [31,35]. To illustrate 
this procedure, consider the same function f discussed above, now with f (x) = 0 for x > xα to model a domain boundary 
(Fig. 1b). Given the value of f (x) on the regular grid and a Dirichlet boundary condition f (xα), the interface derivatives 
( f (k))− are approximated by the n + 1 point one-sided finite differences

( f (k))−F D = Sk
α f (xα) +

n∑
j=1

Sk
j f (xi− j) = ( f (k))− +O

(
hn+1−k

)
. (2)

Here the point xi has been excluded from the stencil to avoid ill conditioning when |xα − xi | is small. The optimal order 
of accuracy in (2) is achieved by taking S(k)

j = �
(k)
j (xα), where the � j(x) are the degree n Lagrange polynomials satisfying 

�i(x j) = δi j for x j ∈ {xα, xi−1, xi−2, ..., xi−n}. Using the approximation of ( f (k))− given in (2) and taking ( f (k))+ = 0 leads 
to the approximate jump correction

Jα(xi+1) = −
n∑

k=0

(xi+1 − xα)k

k! ( f (k))−F D +O(
hn+1), (3)

which is the expression used in [39,38,35].
In this work we simplify the procedure for evaluating of Jα(xi+1) used in [39,38,35] by casting the jump correction as 

the result of a polynomial extrapolation. To do so we define the degree n interpolating polynomial pn(x) = ∑
j f (x j)� j(x)
3
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and note that ( f (k))−F D = p(k)
n (xα). Making this substitution in (3) reveals that Jα(xi+1) is an (n + 1) term Taylor expansion 

of −pn(x) about the point xα , which is equivalent to the evaluation

Jα(xi+1) = −pn(xi+1). (4)

Thus the evaluation of n one-sided finite differences can be replaced with a single evaluation of the interpolating polynomial 
via Neville’s algorithm [40]. This implies that at domain boundaries the jump-corrected finite differences of the EJIIM are 
equivalent to a polynomial extrapolation of f (x) followed by the evaluation of a standard finite difference stencil, which 
closely links our specialization of the EJIIM to other extrapolation-based procedures such as sharp immersed boundary 
methods [8,9] and the Ghost Fluid method [12].

This result generalizes to a variety of situations beyond the one described above. If f (x) is nonzero for x > xα due to an 
uncoupled physical process occurring on the other side of the interface, then the contributions to Jα(xi+1) from ( f (k))+ can 
be approximated by an evaluation of f (x):

Jα(xi+1) = f (xi+1) − pn(xi+1) +O(
hn+1). (5)

If a Neumann condition is present at xα instead of a Dirichlet condition, then pn(x) is replaced by the unique interpolating 
polynomial satisfying p(1)(xα) = f (1)(xα) and interpolating f (x) at the n neighboring points {xi−1, ..., xi−n}. If no boundary 
condition is available, then the boundary point xα is replaced by xi in the interpolation stencil. All of these specializations 
of the EJIIM reduce complexity and computational cost. They also improve numerical stability, by eliminating the need to 
invert a Vandermonde matrix when calculating one-sided stencil coefficients. We view this simplification as an advantage 
over prior one-sided IIM formulations based on the EJIIM [34,35] and use this procedure continually in the remainder of 
this work.

2.2. Extending the IIM to 2D and nonconvex geometries

The sharp-interface method inspired by the EJIIM, as described above, extends readily to multidimensional problems, 
where the polynomial extrapolation perspective further helps address the challenges associated with concave geometry. 
To discuss multidimensional immersed interface methods, we define some convenient terminology and notation. Let X =
{ih, 0 ≤ i ≤ Nx} and Y= {

jh, 0 ≤ j ≤ N y
}

represent the sets of x and y coordinate values for a uniform Cartesian grid, and 
let G = X ×Y be the set of all grid points. Further, let � be an irregular two-dimensional domain immersed in this grid. 
Following the lines of Gillis et al. [38], we define two additional sets of points:

• The set of Control points (denoted by C) contains all intersections between the grid lines of the Cartesian grid and 
the immersed boundary ∂�. Specifically, C = Cx ∪ Cy , where Cx = {(x, y) : (x, y) ∈ ∂� and x ∈X} is the set of intersec-
tions between ∂� and grid lines with constant x coordinate, while Cy = {(x, y) : (x, y) ∈ ∂� and y ∈Y} is the set of 
intersections between ∂� and grid lines with constant y coordinate.

• The set of Affected points (denoted by A) are regular grid points that are adjacent to a control point. A can be 
subdivided into two disjoint sets A+ and A− , which represent points that are inside and outside �, respectively.

The sets C, A− , and A+ are labeled in Fig. 2 for a typical domain. Section S1 of the supplementary material provides a 
method for efficiently calculating the set of control points C for smooth geometries represented by a level set. With the 
control points found, our 2D immersed interface method precedes each finite-difference evaluation by a polynomial extrap-
olation which gives nonzero values to the inner affected points A− . For inner affected points with only one neighboring 
control point, this value is determined using a one-dimensional polynomial extrapolation along the associated grid line (as 
discussed in section 2.1). This is equivalent to the dimension-splitting techniques implemented in [38,35]. For inner affected 
points with multiple neighboring control points, we follow Marichal et al. [39] by averaging the results of the 1D extrapo-
lations along associated grid lines. Both of these cases are illustrated in Fig. 2. The averaging procedure preserves the order 
of accuracy of the extension, and provides a minimal way to reconcile 1D extrapolations taken from different directions.

For nonconvex geometries, some control points may not have enough immediate neighbors to form an interpolating 
polynomial of the correct degree. This challenge does not disappear as the grid is refined: any amount of concavity, no 
matter how slight, can lead to control points with as few as one immediate neighbor (Fig. 2). One way to avoid this is to rely 
on extrapolations taken from multiple coordinate directions, as discussed above. This strategy is suggested and successfully 
implemented by Hosseinverdi and Fasel [32] for an immersed interface method based on compact finite differences. In the 
method presented here, control points with too few neighbors are simply ignored, and the associated points in A− are filled 
using an extrapolation along a different coordinate direction. For smooth geometries, this extrapolation method allows every 
point in A− to be filled given sufficient resolution. Nonsmooth geometries present additional challenges, including cusps 
and acute interior corners, which are left for future work. Overall this extension along multiple coordinate axes allows the 
IIM to operate on nonconvex geometries that could not be successfully discretized with previous one-sided IIM formulations 
[34,35], without requiring the use of complex multidimensional interpolants.
4
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Fig. 2. (left) The control points C and affected points A for a typical IIM discretization. The gray region represents points lying outside the problem 
domain. (right) Stencils used to fill the affected points A− with a third order extrapolation. Point (a) has only one neighbor in the problem domain, and 
consequently receives an extrapolation along only one coordinate direction. Point (b) has two neighbors, so its value is the average of two separate one-
dimensional extrapolations. Points (c) and (d) have two neighbors in the problem domain, but there are not enough points in the domain to allow for a 
third-order horizontal extrapolation stencil; consequently, each is filled from a vertical extrapolation only.

3. Vorticity transport

We now proceed with combining our IIM with the discretization of transport equations in 1D and 2D. Specifically, we 
focus on the vorticity evolution equation governing the 2D incompressible Navier-Stokes equation, written here in conser-
vative form:

∂ω

∂t
+ ∇ · (uω − ν∇ω) = 0. (6)

Integrating this differential conservation law over a 2D region R leads to the integral form

d

dt

∫
R

ω dA +
∮
∂ R

(uω − ν∇ω) · n̂ ds = 0. (7)

In this section, we discretize (6) with a conservative finite difference scheme, using numerical fluxes as described in 
Shu [41]. While Lagrangian advection schemes are common in vorticity-based discretizations of the 2D Navier-Stokes equa-
tions [5,7,42,43], including other immersed interface methods [39,35], we have chosen a conservative Eulerian transport 
scheme because it offers an explicit notion of the flux of a conserved quantity through a surface. This leads to a discrete 
form of the integral conservation law (7), which is essential to the discretization of Kelvin’s theorem presented in section 5.1. 
We also develop an immersed interface boundary treatment that respects the mixed hyperbolic-parabolic character of (6), 
and show that it does not degrade the stability or accuracy of the free-space scheme.

3.1. Free space discretization

For illustration, we begin with the one-dimensional advection-diffusion equation

∂ω

∂t
+ ∂

∂x

(
uω − ν

∂ω

∂x

)
= 0, (8)

with a spatially varying velocity u and constant diffusivity ν . Let f = uω be the advective flux, and q = −νωx be the 
diffusive flux, so that ωt + ( f + q)x = 0. To discretize this equation, consider a one-dimensional grid of points xi with 
regular spacing h, along with a discrete vorticity field ωi and velocity field ui . If numerical fluxes f i+ 1

2
and qi+ 1

2
are defined 

at the flux points xi+ 1
2

= 1
2 (xi + xi+1), then (8) can be approximated with centered differences:

dωi

dt
+

f i+ 1
2

− f i− 1
2

h
+

qi+ 1
2

− qi− 1
2

h
= 0. (9)

The spatial accuracy of the conservative discretization depends on the interpolation procedure used to construct f i+ 1
2

and 
qi+ 1

2
. Here we choose a third-order upwind advective flux using the stencils [41]

f i+ 1
2

=
{− 1

6 f i−1 + 5
6 f i + 1

3 f i+1, ui+ 1
2

≥ 0
1
3 f i + 5

6 f i+1 − 1
6 f i+2, ui+ 1

2
< 0

, (10)

where f i = uiωi , and the local upwind direction is determined by ui+ 1
2

= (ui + ui+1)/2. Compared to the standard second-

order centered advective flux, the choice of a third order upwind scheme eliminates a dispersive truncation error of order 
5
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h3 and produces a leading truncation error that is proportional to the fourth derivative of the flux. This hyper-diffusive 
truncation error provides a slight amount of numerical dissipation that is beneficial for the stability of the method. The 
diffusive flux qi+ 1

2
is discretized with the centered difference

qi+ 1
2

= −ν
ωi+1 − ωi

h
, (11)

which leads to overall second order accuracy for the diffusion term.
The 1D conservative transport discretization developed above is readily extended to two dimensions. For a 2D transport 

equation with velocity field u = (ux, u y), define the x-direction fluxes fx = uxω and qx = −ν dω
dx at the x-direction flux 

points xi+1/2, j = (xi+1/2, y j), and the y-direction fluxes f y = u yω and qy = −ν dω
dy at the y-direction flux points xi, j+1/2 =

(xi, y j+1/2). Each of these fluxes is calculated by applying the one-dimensional schemes along the corresponding grid line, 
and the full transport equation is discretized using the differencing scheme

dωi, j

dt
+ f i+1/2, j − f i−1/2, j

h
+ f i, j+1/2 − f i, j−1/2

h
+ qi+1/2, j − qi−1/2, j

h
+ qi, j+1/2 − qi, j−1/2

h
= 0. (12)

This 2D transport scheme obeys a discrete form of the integral conservation law (7). Because a similar discrete conser-
vation property appears in the velocity reconstruction problem (section 4.2) and in the enforcement of Kelvin’s theorem 
(section 5.1), we define notation for it here. Let R be a 2D rectangular region with boundaries passing through the flux 
points, enclosing the set of grid points {xi j : �x ≤ i ≤ rx, �y ≤ j ≤ ry}. The total vorticity in R can be approximated with the 
second-order quadrature

∫
R

ω dA ≈ h2
rx∑

i=�x

ry∑
j=�y

ωi, j ≡ h2
∑

R

ω, (13)

where we define the discrete operator 
∑

R(·) as the sum over grid values within the region R . Similarly, a numerical flux f
can be integrated over the boundary of R with the second-order discrete contour integral

∮
∂ R

f · n̂ ds ≈ h

ry∑
j=�y

frx+1/2, j + h
rx∑

i=�x

f i,ry+1/2 − h

ry∑
j=�y

f�x−1/2, j − h
rx∑

i=�x

f i,�y−1/2 ≡ h
∑
∂ R

f · n̂, (14)

where the four single summations represent the flux across the right, top, left, and bottom faces respectively, and 
∑

∂ R is 
shorthand for the sum over all these faces. Using this notation, the telescoping sum property of (12) leads to the discrete 
conservation law satisfied by our numerical scheme

d

dt

(
h2

∑
R

ω

)
+ h

∑
∂ R

(f + q) · n̂ = 0, (15)

which approximates the continuous integral conservation law to second order. This relation could be easily extended to 
more complex grid-aligned regions if needed, by noting that any such region can be written as a union of grid-aligned 
rectangles.

The stability of this free-space transport discretization is discussed in section S2 of the supplementary material; the 
scheme is conditionally stable when integrated with a second or third order Runge-Kutta scheme.

3.2. Immersed interface boundary treatment

For finite domains, the advection-diffusion equation (6) requires a single boundary condition for ω on each boundary. 
Here we consider the case where a Dirichlet boundary condition ωb and the boundary velocity ub are known in advance, 
which will be most relevant for a discretization of the full Navier-Stokes equations. Because of the distinct parabolic and 
hyperbolic nature of the diffusion and advection terms, the Dirichlet boundary condition is handled differently when dis-
cretizing each term.

We begin with the diffusive term. Let the grid points x1 to xN form a finite computational domain, with immersed 
boundaries at x� ∈ [x0, x1] and xr ∈ [xN , xN+1]. To calculate the diffusive flux on a domain with immersed boundaries, the 
scalar field ω is extrapolated to x0 and xN+1 using fourth-order polynomial extrapolations that depends on the Dirichlet 
boundary conditions ωb , as described in section 2.1. Once this is done, the calculation of diffusive fluxes proceeds as usual 
for all flux points between x1/2 and xN+1/2. The use of a fourth-order extension leads to second-order accuracy for the 
diffusive term right up to the immersed boundary. This process is extended to 2D domains in a completely analogous way: 
the vorticity field is extrapolated to the inner affected points A− at fourth order, using the Dirichlet boundary condition, 
and afterwards the diffusive fluxes are calculated normally.
6
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Fig. 3. Boundary treatment for the third-order upwind advective flux in 2D with a constant velocity field, as indicated in the upper right corner. Here the 
upwind direction for x-direction fluxes is to the left. Flux points with two neighbors in the domain are biased in the upwind direction (b), while fluxes 
with only one neighbor in the domain are biased towards that neighbor (a, c, d, e). For fluxes adjacent to an inflow boundary this amounts to the choice 
of a downwind stencil (c, d), while fluxes adjacent to an outflow boundary retain the upwind stencil (a, e). In all cases, whenever a stencil crosses the 
boundary, an extension with boundary condition is used on the upwind side (a, b, c, d), while an extension without boundary condition is used on the 
downwind side (a, d, e).

The calculation of the advection term requires a different procedure that addresses its hyperbolic nature. For a purely 
hyperbolic equation, boundary conditions are only necessary on regions of the boundary which act as an inflow. The use of 
a boundary condition on outflow boundaries leads to ill-posed continuous problems and instability in numerical discretiza-
tions. Consistent with this, we extrapolate the vorticity field past each domain boundary at third order, using the Dirichlet 
condition at inflow boundaries and ignoring the Dirichlet condition at outflow boundaries. The width of the third-order up-
wind advection stencil, which extends two points beyond each inflow boundary, presents an additional challenge. To avoid 
extra extrapolation, we force the choice of a downwind stencil at inflow boundaries, which extends only one point beyond 
the boundary. This strategy maintains the overall second-order accuracy of the transport discretization and does not affect 
the observed stability of the method.

The 1D boundary treatment described above is readily extended to 2D domains. As in section 3.1, we continue to use 
a dimension split scheme, so that all advective fluxes are calculated using values from a single grid line and the upwind 
direction at each flux point is determined by the velocity component along that grid line. In two dimensions we require 
an advective flux value at each flux point which has at least one neighboring grid point in the fluid domain �. To obtain 
these values, the velocity field is extended to A− at third order using the boundary velocity ub . This extended velocity 
field is used to determine the upwind direction at each flux point and to calculate the value of the advective flux at each 
grid point. From there on our treatment of the advective flux is determined by two separate policies, one governing the 
upwind or downwind bias of the third-order advection stencil and one governing the choice of boundary condition used in 
the extended vorticity field.

• Stencil bias. At flux points with two neighboring grid points in �, an upwind-biased stencil is used. At flux points with 
one neighboring grid point in � and one neighboring grid point in A−1, the stencil is biased away from the neighbor 
in A− .

• Choice of vorticity extension. The vorticity field is extended to A− twice at third order, once with the Dirichlet condi-
tion ωb and once without, so that both sets of values are available for flux calculations. All flux values along the grid 
line that are upwind of a given flux point are computed using the extension with boundary condition, while all flux 
values along the grid line that are downwind from the flux point are computed using the extension without boundary 
condition.

Fig. 3 illustrates the boundary stencils that are generated by this policy for several different inflow and outflow configu-
rations, including for degenerate situations that arise with nonconvex geometries. Away from the domain boundaries, this 
policy coincides with the free space scheme described in section 3.1. Our choice of stencil bias alleviates the need to extend 
the vorticity field to additional points beyond A− , but reduces the accuracy of the advection scheme to second order at 
points adjacent to an inflow boundary. The choice of extension removes the influence of the Dirichlet boundary condition 
at outflow boundaries to respect the hyperbolic nature of the advection term.

3.3. Numerical results

To demonstrate that our immersed interface discretization of 2D the advection diffusion equation (6) is stable, second 
order accurate, and robust to concave geometry, we measure the convergence of our method on a 2D test case with a known 
analytical solution in both advection-dominant and diffusion-dominant regimes. A non-convex solid body is superimposed 
on the spatially periodic vorticity field
7
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Fig. 4. Geometry and parameters used in the transport convergence study.

Fig. 5. Convergence behavior of the 2D transport scheme. L2 and L∞ error norms are plotted against the grid resolution, listed in terms of grid points N
and cell Reynolds number Reh = hU/ν . In advection dominant regimes with Reh > 1 the spatial convergence is third order (left), falling to second order in 
diffusion dominant regimes with Reh < 1 (right).

ωex(x, t) = cos[kx(x − uxt)] cos[ky(y − u yt)]e−νk2t, (16)

which is an exact solution to the vorticity transport equation for constant velocity u = (ux, u y), viscosity ν , and wavenumber 
k = (kx, ky). The boundary conditions ωb and ub on the solid body are set to match this solution, and a periodic boundary 
condition is prescribed on the edge of the computational domain. The flow is discretized on a square grid with N points 
along each side, and integrated from t = 0 to t = T using a third order Runge-Kutta method. The time step 	t is chosen to 
be 0.9	tmax , where 	tmax is the maximum stable time step for the transport scheme (as determined by the procedure in 
section S2 of the supplementary material). Fig. 4 defines the geometry of the solid body and lists the exact discretization 
parameters used in this test case.

The convergence of the numerical solution is measured with the L2 and L∞ error norms

ε2 =
√

h2
∑

xi j /∈B

(
ωi j(T ) − ωex(xi j, T )

)2
, (17)

ε∞ = max
xi j /∈B

(
ωi j(T ) − ωex(xi j, T )

)
. (18)

Stability constraints require that the maximum time step 	tmax is O(h) in advection-dominant regimes (Reh = (|ux| +
|u y|)h/ν � 1) and O(h2) in diffusion-dominant regimes (Reh � 1). Consequently, both the spatial and temporal truncation 
errors should be O(h3) in advection-dominant regimes, and the O(h2) spatial error should dominate in diffusion-dominant 
regimes. Fig. 5 plots the L2 and L∞ error norms against spatial resolution for parameter sets in both regimes, demonstrating 
the expected rate of convergence in each one.
8
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Fig. 6. Three exterior boundary conditions considered for the velocity reconstruction problem: an unbounded fluid domain (left), a bounded fluid domain 
with solid boundaries (center), and a periodic domain with the top/bottom and left/right boundaries identified (right). Arrows indicate the direction of the 
tangential unit vector along each boundary.

4. Velocity reconstruction

The vorticity-velocity formulation relies on a kinematic equivalence between the vorticity and velocity field. Obtaining 
the vorticity from the velocity is local and inexpensive; obtaining the velocity from the vorticity, as discussed here, requires 
the solution of an elliptic PDE. This reconstruction procedure has been widely discussed, but rarely with a focus on 2D 
domains with multiple immersed bodies. In this section we review the continuous theory, and discuss the conditions under 
which the velocity reconstruction problem has a unique solution in multiply connected domains. This continuous formula-
tion is then discretized using a generalization of the immersed interface Poisson solver developed by Gillis et al. [38], and 
the resulting algorithm is shown to achieve second order accuracy in reconstructing a velocity field on a multiply connected 
domain.

4.1. Continuous formulation

Given a scalar vorticity field ω with compact support on a two-dimensional fluid domain �, the objective of the veloc-
ity reconstruction problem is to find a divergence-free velocity field u satisfying ∇ × u = ω, along with no through-flow 
boundary conditions on solid bodies. Collecting all of these requirements yields the boundary value problem

∇ · u = 0 on �,

∇ × u = ω on �,

n̂ · u = n̂ · ub on solid boundaries.

(19)

In general, this is not enough to specify a unique velocity field. The question of existence and uniqueness of solutions to 
(19) is deeply tied to the topology of � — see Cantarella et al. [44] for a complete exposition. The discussion here is limited 
to three cases that are common in 2D fluid simulations: unbounded domains, bounded domains, and periodic domains.

In 2D, it is simplest to analyze the reconstruction problem by re-writing the velocity field in terms of a stream function. 
For concreteness, assume that the fluid domain � is connected, that it contains distinct solid bodies Bk , 1 ≤ k ≤ Nb , and 
that it is bounded in one of three ways: by a free-space boundary condition, by a solid exterior boundary B0, or by a 
periodicity constraint (Fig. 6). On solid boundaries, let n̂ be a unit normal vector that points into the fluid, and define the 
unit tangential vector ŝ so that n̂ × ŝ = k̂. A velocity field u(x) which solves (19) can be written in terms of a stream 
function whenever ub satisfies∮

∂ Bk

ub · n ds = 0 for 0 ≤ k ≤ Nb. (20)

This is the case whenever ub is derived from the motion of solid bodies with constant area, and specifically holds throughout 
this work since we only consider stationary bodies and rotating cylinders. When (20) holds, let u = ∇ × ψ , so that ∇ · u = 0
automatically. Making this substitution in (19) yields a scalar Poisson equation for the stream function,

−∇2ψ = ω on �. (21)

In terms of the stream function, the no through-flow boundary condition becomes ∂sψ = ub · n̂. Under condition (20), ∂sψ

can be integrated around the boundary of each body to obtain a single-valued function
9
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Fig. 7. The circulation around the boundary of a region Rk is directly related to the circulation on an enclosed object Bk , through the vorticity field and 
Stokes’ theorem.

ψb(s) =
s∫

s0

ub · n̂ ds . (22)

The no through-flow boundary condition can then be expressed as the Dirichlet boundary condition

ψ = ψb + ψ̄k on Bk, (23)

where each ψ̄k is an unknown constant associated with body Bk .
The presence of the unknown constants ψ̄k indicates that (19) has multiple solutions: different choices of the constants 

ψ̄k lead to different velocity fields, all of which are valid solutions. An effective way to single out a particular velocity field 
is to specify the circulation of the velocity around each solid body,∮

∂ Bk

u · ds = −
∮

∂ Bk

∂nψ ds = �k for 1 ≤ k ≤ Nb. (24)

This provides Nb scalar constraints on the stream function, which fix the Nb arbitrary constants in the boundary condition. 
The circulation on body Bk can be specified directly, or by specifying the circulation around the boundary of a region Rk

that contains Bk (Fig. 7). The equivalence follows immediately from Stokes’ theorem, since∮
∂ Rk

u · ds =
∮

∂ Bk

u · ds +
∫

Rk\Bk

ω dA . (25)

While this is enough to specify a unique velocity field, it still leaves some ambiguity in the stream function, which is only 
defined up to a global additive constant. Fixing this gauge degree of freedom, as well as enforcing an exterior boundary 
condition, can be handled by a method specific to each type of domain topology (Fig. 6):

• If � is a bounded domain, the gauge degree of freedom can be fixed by specifying a value for the arbitrary constant 
ψ̄0 on the exterior boundary B0. Here this is fixed at ψ̄0 = 0, essentially removing this variable from the reconstruction 
problem and leaving a degree of freedom only on each of the Nb interior solid bodies.

• If � is an unbounded domain, the stream function can be split into a free stream component ψ∞ = u∞ × x and a 
perturbation ψ̃ satisfying lim|x|→∞

∣∣∣∇ψ̃

∣∣∣ = 0. In practice, the perturbation ψ̃ is calculated by a convolution between a 
source field and a Green’s function, and the gauge degree of freedom is fixed by the choice of an arbitrary constant in 
the Green’s function.

• If � is a rectangular domain periodic in both directions, the notion of a free stream velocity is replaced by specifying 
the average velocity on the horizontal periodic boundary Cx and vertical periodic boundary C y :

ūx = 1∣∣C y
∣∣
∫
C y

u · n̂ ds , ū y = 1

|Cx|
∫
Cx

u · n̂ ds . (26)

The stream function can then be split into a periodic component ψ̃ and a non-periodic free stream component ψ∞ =
ū×x. The gauge degree of freedom can be fixed by specifying that ψ̃ has zero mean (

∫
�

ψ̃ dA = 0), which is convenient 
for solution methods that involve a Fourier transform. Finally, in periodic domains the Nb circulation constraints must 
satisfy the solvability condition
10
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∫
�

ω dA = −
Nb∑

i=1

�k, (27)

which follows immediately from Stokes theorem. For Nb = 0 this reduces to 
∫
�

ω dA = 0.

These topology-specific exterior boundary conditions and gauge conditions, together with equations (19), (23), and (24), 
fully specify the stream function, and allow a unique velocity field to be reconstructed from the vorticity field, velocity 
boundary conditions, and body circulations. Here we will assume that the circulations are known in advance, and focus on 
discretizing the resulting elliptic equation; section 5.1 will address the issue of determining the body circulations.

4.2. Immersed interface velocity reconstruction

Because the primary component of the velocity reconstruction problem is a scalar Poisson equation, this section closely 
follows the 3D unbounded IIM Poisson Solver developed by Gillis et al. [38] and applied to 2D exterior flows in Gillis 
et al. [35]. The variation presented here allows for concave objects, and includes a novel discretization of the circulation 
constraints which allows for problems with multiple immersed bodies.

Consider functions ψ and ω defined on a Cartesian grid. The discrete Laplacian operator ∇2
h is discretized with the 

standard second-order five-point finite difference stencil, so that

∇2
h ψi, j = 1

h2
(ψi+1, j + ψi−1, j + ψi, j+1 + ψi, j−1 − 4ψi, j). (28)

In a rectangular computational domain, the discretized Poisson equation −∇2
h ψ = ω can be solved efficiently with Fast 

Fourier Transforms (FFTs) when subject to unbounded, symmetric, or periodic boundary conditions [45]. This FFT-based 
solution procedure will be denoted by (∇2

h )−1, so that ψ = −(∇2
h )−1ω satisfies the discretized Poisson equation with the 

desired boundary treatment on the edge of the computational domain. The development in this section is agnostic to 
the particular choice of boundary conditions or gauge-fixing, so long as the resulting Poisson problem is well-posed and 
the operator (∇2

h )−1 assigns a unique solution to each source field ω. Any set of boundary condition for the velocity 
reconstruction problem discussed in section 4.1 is also a valid set of boundary conditions for the operator (∇2

h )−1 when 
specialized to the case of no immersed bodies (Nb = 0).

To extend this methodology to domains with immersed boundaries, we will consider a scalar Poisson equation −∇2ψ =
ω with the Dirichlet boundary condition ψb(s) defined in (22) prescribed on solid boundaries. For now, we ignore the 
unknowns ψ̄k which appear in the boundary condition for the full velocity reconstruction problem. We continue to view 
the solution ψ and source field ω as functions defined on the entire Cartesian grid, now with ψ = 0 and ω = 0 prescribed 
on the interior of each solid body. Thus for points that are not adjacent to the boundary, −∇2

h ψ = ω continues to hold 
in both the solid and fluid domains. For points in A (the set of points adjacent to the solid boundary ∂�), the five-point 
Laplacian stencil crosses the solid boundary, and the IIM must be used to account for this.

To proceed, we define some convenient notation. Consider the vector spaces

• V G , the space of functions defined on the entire Cartesian grid G;
• V A ⊂ V G , the subspace of functions defined on the affected points A;
• V C , the space of functions defined on the control points C, which occur at intersections between the grid lines and the 

solid boundary ∂�.

It is also helpful to define the inclusion operator E A : V A → V G , which reinterprets a function with support on A as a 
function defined on all of G by assigning zero values to G \A. In this framework, ψ and ω are elements of V G , while the 
Dirichlet boundary condition ψb resides in V C . Using this notation, a Poisson equation discretized with the IIM takes the 
form

−∇2
h ψ + E Aγ = ω, (29)

where γ ∈ V A represents corrections to the standard finite difference stencil on solid boundaries. These corrections come 
from the polynomial extrapolation procedure outlined in section 2.2, here a fourth order extrapolation that uses the Dirichlet 
condition ψb . Consequently, γ is a linear function of both the boundary condition ψb and the unknown solution ψ , and can 
be written as

γ = Aψ + Bψb. (30)

Here A : V G → V A and B : V C → V A are known linear operators. Together equations (29) and (30) form a system of lin-
ear equations for the unknown solution ψ and the unknown IIM corrections γ . This system can be reduced via a Schur 
complement to a smaller system involving only γ ,
11
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(
I A + A(∇2

h )−1 E A

)
γ = −A(∇2

h )−1ω + Bψb, (31)

where I A is the identity operator on V A . The use of the solution operator (∇2
h )−1 leads to a dense linear system. However, 

because this solution operator can be applied efficiently using FFTs, (31) can be solved efficiently with an iterative method. 
After solving for γ , the full solution ψ is determined by

ψ = −(∇2
h )−1(ω − E Aγ ). (32)

The accuracy and computational efficiency of this Schur complement approach has been demonstrated extensively [38,
35] and similar Schur-complement approaches have been used in other immersed interface Poisson solvers [30,46]. An 
analogous immersed boundary formulation for the 3D velocity reconstruction problem is developed in [47], which also 
explores the spectral characteristics of such systems.

To extend the above methodology to the full velocity reconstruction problem, the unknown constants ψ̄k must be added 
as additional unknowns, and the circulation constraints must be discretized to determine their values. Instead of imposing 
these constraints directly on immersed solid bodies, we choose to follow (25) and specify the circulation around the bound-
ary of a rectangular region Rk that encloses each solid body Bk . This avoids integration over any immersed surfaces, and 
allows us to take advantage of a conservation property inherent in the standard 5-point Laplacian. Defining the x-direction 
numerical flux (∇hψ)i+ 1

2 , j = (ψi+1, j − ψi, j)/h and y-direction numerical flux (∇hψ)i, j+ 1
2

= (ψi, j+1 − ψi, j)/h, the operator 
∇2

h can be written as a conservative finite difference:

∇2
h ψ =

(∇hψ)i+ 1
2 , j − (∇hψ)i− 1

2 , j

h
+

(∇hψ)i, j+ 1
2

− (∇hψ)i, j− 1
2

h
. (33)

Summing (33) over the points in Rk yields the discrete Gauss’ theorem

−h2
∑
Rk

∇2
h ψ = −h

∑
∂ Rk

(∇hψ) · n̂. (34)

The right hand side of this relation is a second order approximation of the circulation around ∂ Rk , which allows us to write 
a discrete circulation constraint

−h
∑
∂ Rk

(∇hψ) · n̂ = �k. (35)

Making the substitution ∇2
h ψ = −ω + E Aγ in (34) leads to equivalent constraint on the unknown IIM corrections γ ,

h2
∑
Rk

ω − h2
∑
Rk

E Aγ = �k. (36)

To incorporate this constraint into an immersed interface Poisson solver, consider the following notation:

• ∑
Bk

: V A →R sums all function values at affected points associated with Bk .
• ∑

Rk
: V G →R sums all function values which fall within a region Rk .

• 1k ∈ V C is the vector with ones at control points associated with Bk and zeros otherwise.

Introducing the circulation constraints as additional equations and the boundary constants ψ̄k as unknowns, the discretized 
reconstruction problem becomes

(
I A + A(∇2

h )−1 E A

)
γ − B

Nb∑
k=1

ψ̄k1k = −A(∇2
h )−1ω + Bψb, (37)

�Bkγ = −�Rk + �Rkω for 1 ≤ k ≤ Nb. (38)

These equations are solved iteratively with the GMRes algorithm to find the values of the unknowns (γ , ψ̄k), and the full 
solution ψ is recovered using (32).

Once the stream function has been determined, the velocity field u = ∇ × ψ can be recovered. To do so in the presence 
of immersed bodies, the stream function is extrapolated beyond the solid boundaries using the boundary condition ψb + ψ̄k . 
The extrapolation used here is the same fourth-order procedure calculated by the operators A and B in the discretized 
reconstruction problem. The velocity at grid points within the domain is then calculated with the second-order centered 
difference

ui, j =
(

ψi, j+1 − ψi, j−1
,−ψi+1, j − ψi−1, j

)T

. (39)

2h 2h
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Fig. 8. (a and c) Geometry and parameter values used in the convergence study. (b) L2 and L∞ error norms for the velocity field as a function of grid 
resolution, showing second order convergence in both.

While a third-order extrapolation would be sufficient to maintain second order accuracy in the velocity field, we observed 
that the fourth-order extrapolation leads to a significantly reduced truncation error in the velocity field near solid bound-
aries, where velocity gradients tend to be the largest.

4.3. Numerical results

To demonstrate the accuracy and flexibility of our velocity reconstruction procedure, we consider a test case with non-
convex solid bodies, a multiply connected domain, and free-space boundary conditions (Fig. 8a). Two bodies with geometry 
described in Fig. 4 are superimposed on the vorticity field of a Lamb-Oseen vortex,

ωL O (x) = �

4πνt
exp

(
−‖x − x0‖2

4νt

)
, (40)

and the velocity ub on their boundaries is prescribed to match the corresponding velocity field

uL O (x) = �

2πr2

(
1 − exp

(
−‖x − x0‖2

4νt

))
k̂ × (x − x0). (41)

The reconstruction procedure described in the previous section is then used to recover the full velocity field, which is 
compared to the exact solution uL O (x). This is done on a square Cartesian grid with N points along each side. To prescribe 
the circulations on solid bodies, each body is enclosed in a bounding region Rk , and the circulation on ∂ Rk is estimated to 
second order from the original vorticity field:

�Rk = h2
∑

xi j∈Rk

ωL O (xi j). (42)

The full details of the geometry, flow parameters, and bounding regions are provided in Fig. 8c. Fig. 8b plots the L2 and L∞
norms of the velocity error ‖u − uexact‖ against the spatial resolution N , demonstrating second order convergence in both 
error norms.

5. Navier-Stokes

In this section we introduce the components of our full Navier-Stokes discretization that do not fit neatly within the 
vorticity transport or velocity reconstruction problems. This includes a method for enforcing Kelvin’s theorem, which is key 
13
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to simulations with multiple bodies; an outflow boundary condition for external flows; the vorticity boundary condition 
for the transport equation; and the calculation of forces and surface tractions. These are then combined with the transport 
scheme developed in section 3 and reconstruction scheme developed in section 4 to create an algorithm that solves the full 
Navier-Stokes equations.

5.1. Circulation in multiply connected domains

Section 4 outlined an algorithm that reconstructs the velocity field from the vorticity field, provided that the circulation 
around each solid body is known in advance. Continuously, the circulation around any body satisfying a no-slip condition 
can be determined by integrating the tangential component of the prescribed boundary velocity. However, for numerical 
algorithms that enforces the no-slip condition only approximately, including ours, a different strategy is needed to specify 
these circulations. Here we outline a method based on the enforcement of a discrete form of Kelvin’s theorem.

For a 2D viscous flow, Kelvin’s theorem states that the circulation around any material contour C(t) evolves according to

d

dt

∮
C(t)

u · ds = −ν

∮
C(t)

∂ω

∂n
ds . (43)

If C is a stationary contour, then an application of Reynolds transport theorem gives the equivalent expression

d

dt

∮
C

u · ds = −
∮
C

(uω − ν∇ω) · n̂ ds , (44)

which is an ordinary differential equation that governs the evolution of the circulation around C . If C is the boundary of a 
simply connected fluid region R , then (44) can be derived directly from the vorticity transport equation and Stokes’ theorem. 
However, if C is not the boundary of a simply connected fluid region, then Kelvin’s theorem is a separate constraint from 
the vorticity transport equation that ensures the existence of single-valued pressure field [48].

For immersed interface methods, enforcing Kelvin’s theorem has been challenging. In [34], Marichal observes that pre-
scribing �∂ B = �Bγ = 0 on a stationary solid body during velocity reconstruction leads to an unstable numerical scheme. 
The total circulation of the flow — as measured by the sum of all vorticity values on the grid — increases rapidly with time. 
The author avoids this instability by instead prescribing zero far-field circulation, through the condition

�∂ B + h2
∑
R∞

ω = 0. (45)

Here the vorticity field is defined to be zero inside solid bodies, R∞ is a rectangular grid-aligned region containing the full 
support of the vorticity field, and we use the summation notation defined in equation (13). This condition directly enforces 
Kelvin’s theorem by linking the circulation around a solid boundary to the vorticity created on that boundary. However, it 
does not generalize to flows in which vorticity is allowed to leave the computational domain at outflow boundaries, and it 
can only uniquely determine the circulation of one immersed body.

To generalize this condition, we note here that when both the vorticity transport equation and the velocity reconstruction 
problem are discretized with conservative finite differences, as we have done in sections 3 and 4, a discrete form of Kelvin’s 
theorem holds automatically on the boundary of any rectangular grid-aligned fluid region. For any such region R , combining 
the conservation property of the transport equation (15) with the discrete Stokes theorem enforced by the reconstruction 
procedure (34) leads to the expression

−h
d

dt

∑
∂ Rk

(∇hψ) · n̂ = −h
∑
∂ R

(uω − ν∇hω) · n̂, (46)

which is analogous to (44). This discrete form of Kelvin’s theorem immediately extends to any region which can be built by 
adding or removing a series of grid-aligned rectangles, each satisfying (46). If the region R is not purely fluid, but encloses a 
single immersed body B , then (46) no longer holds automatically. To remedy this, we begin by selecting R as the bounding 
region enclosing B in the velocity reconstruction procedure. We then treat Kelvin’s theorem as an ODE which defines the 
evolution of the circulation �R associated with R:

d�R

dt
= −h

∑
∂ R

(uω − ν∇hω) · n̂. (47)

This ODE is integrated with the same Runge-Kutta method as used in the transport equation, so that (46) holds automatically 
on ∂ R . Condition (47) also enforces a discrete Kelvin’s theorem on the boundary of every other grid-aligned region enclosing 
B , since any such region can be built from R by adding or removing rectangular fluid regions satisfying (46). Thus any choice 
of the region R on which we enforce (47) is equivalent to any other, and the dynamics of the discretized fluid system are 
independent of our choice of bounding regions.
14
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Fig. 9. Outflow boundaries are approximated by an even symmetry condition for the vorticity field on the outflow plane.

Taking R to be a contour R∞ which encloses the entire vorticity field, we immediately find that condition (47) is 
equivalent to the far-field condition (45) proposed by Marichal for flows with a single immersed body. However, condition 
(47) does not require a contour which encloses the entire vorticity field, allowing for simulations with outflow boundary 
conditions. It can be also generalized to flows with multiple bodies by choosing a separate bounding region Rk for each 
body Bk . Here again, the specific choice of each bounding region Rk does not affect the discrete dynamics.

5.2. Outflow boundaries

The previous section introduced a circulation tracking scheme for vorticity-based immersed interface methods that does 
not require the computational domain to contain the entire vorticity field. This allows for the use of outflow boundary 
conditions, which are essential for long-time simulations of external flows. The outflow condition used here is a 2D analogue 
of the condition used for simulations of 3D wake dynamics in [49]. For a purely horizontal free stream, a vertical outflow 
plane is specified downstream of all immersed bodies, and the vorticity field is mirrored across this outflow plane as shown 
in Fig. 9. This leads to a reconstructed velocity field that satisfies

∂ux

∂x
= 0,

u y = 0
(48)

on the outflow plane. The portion of the mirrored vorticity field adjacent to the outflow plane is used when calculating 
the vorticity flux in the vorticity transport equation. The rest of this mirror distribution is never constructed explicitly; it 
enters the velocity reconstruction problem through the use of a symmetry boundary condition in the operator (∇2

h )−1, as 
described by Caprace et al. [45].

5.3. Vorticity boundary conditions and vorticity flux

The vorticity-velocity form of the Navier-Stokes equations requires a no-slip velocity boundary condition on immersed 
surfaces. However, because the velocity field is reconstructed from the vorticity field through an elliptic equation, it is diffi-
cult to translate the no-slip velocity boundary condition into a boundary condition for the vorticity transport equation. The 
approach taken here is a minor variation on the method used by Gillis et al. [35], which allows for high order explicit time 
integration and nonconvex immersed bodies. It is similar in spirit to the immersed interface vorticity boundary condition 
used by Linnick and Fasel [31], and falls into the class of local vorticity boundary conditions originated by Thom [50] and 
catalogued by E and Liu [51]. Other notable strategies are the vorticity integral constraints developed by Quartapelle [52], 
and the Lighthill splitting approach (which was investigated extensively in the context of immersed interface methods by 
Marichal [34]). However, neither the integral constraints nor Lighthill splitting allow for the use of a high order explicit 
time integration scheme; Quartapelle’s integral constraints require implicit integration, while Lighthill’s splitting method is 
limited to first order temporal accuracy.

In the current method, the velocity reconstruction process yields a velocity field u that is defined on the Cartesian grid 
points. The velocity field at control points xc ∈ C is known from the velocity boundary condition ub . Using this information, 
both components of the velocity field are extended past the domain boundary using a third order polynomial extrapolation. 
The boundary vorticity ωb is taken to be the curl of the extended velocity field evaluated on the boundary, and is evaluated 
using the second-order stencils shown in Fig. 10. This is a more compact scheme than the stencils used by Gillis et al. [35], 
intended to better accommodate concave geometries.
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Fig. 10. Stencils used to calculate the vorticity boundary condition at second order. The blue points define a three-point stencil for the x-direction velocity 
derivative on the boundary, which uses three neighboring velocity values defined on the Cartesian grid. The y-direction velocity derivative is more involved; 
the value of ux at the red crosses is interpolated using three-point stencils, and these values are then used along with the velocity boundary condition 
to calculate the y-direction velocity derivative at the boundary. This same set of stencils is also used to calculate the boundary vorticity gradient. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

5.4. Force calculations

The total lift force and drag force acting on an immersed body can be calculated using the control volume formulations 
derived by Noca [53], and the total torque acting on the body can be calculated using an analogous control volume formu-
lation which we derive in sections S3 and S5 of the supplementary material. The shear stress distribution on a stationary 
immersed surface can be derived directly from the surface vorticity: τ (s) = νω(s), where s is a surface coordinate.

Recovering the surface pressure distribution is more involved, and relies on the relation between the surface pressure 
gradient and surface vorticity gradient. On stationary solid boundaries with a no-slip condition, as considered here, this is

0 = −∇p − ν∇ × ω. (49)

To evaluate the vorticity gradient, the vorticity field is extended past the domain boundary using a third order extrapolation, 
taking into account the vorticity boundary condition ωb computed as in section 5.3. The derivative of this extended field 
along the coordinate directions is calculated using the same stencils points as the vorticity boundary condition (Fig. 10), and 
then projected onto the local normal and tangential unit vectors. With this gradient known, we can consider two distinct 
methods of pressure recovery. In the first, the tangential pressure gradient is calculated from the normal vorticity flux, and 
then integrated over the immersed surface. Beginning the integration at an arbitrary point with surface coordinate s0 leads 
to the expression

p(s) − p(s0) =
s∫

s0

ν
∂ω

∂n
ds . (50)

Because the fluid adjacent to the boundary forms a material contour, Kelvin’s theorem (43) guarantees that this integral is 
single-valued. The additive constant p(s0) cannot be determined from boundary information alone, but this procedure is 
still useful for measuring relative pressure differences over the immersed surface. To avoid the unknown additive constant 
p(s0), we also consider a second and more expensive method of pressure recovery. Following Lee et al. [54], we define the 
total pressure

H = (p − p∞) + 1

2

(
|u|2 − |u∞|2

)
, (51)

which satisfies the far-field condition H → 0 as x → ∞ and the scalar Poisson equation

∇2 H = ∇ · (u × ωk̂). (52)

A Neumann boundary condition for the equation can be constructed from the definition of H and the normal component 
of (49):

∂ H

∂n

∣∣∣∣
S
= ∂ p

∂n
− ∂

∂n

(
|u|2

2

)
= −ν

∂ω

∂s
− ∂

∂n

(
|u|2

2

)
. (53)

Discretely, the tangential vorticity gradient and the normal gradient of |u|2/2 are calculated using the boundary stencils 
described in section 5.3. The pressure Poisson equation (52) is then solved using the IIM Poisson solver outlined in sec-
tion 4.2. To handle the Neumann boundary condition, we use the compatible extrapolation procedure developed by Marichal 
et al. [39]. The resulting pressure field is interpolated back to the immersed solid boundaries using a third order polynomial 
extrapolation to obtain the surface pressure p(s).
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5.5. Full algorithm for flow simulations

Having established a transport scheme, a velocity reconstruction scheme, a method for enforcing Kelvin’s theorem, and a 
vorticity boundary condition, we can lay out a complete algorithm for solving the 2D incompressible Navier-Stokes equations 
in vorticity form. The dynamic variables are the discretized vorticity field ω(x, t) and the Nb bounding box circulations 
�k(t), both of which require an initial conditions ω0(x) and 

{
�k,0

}
. These can be specified directly, or inferred from an 

initial velocity field u0(x). Together the discretized vorticity field and circulation are determined by a large system of ODEs,

∂ω

∂t
,

{
d�k

dt

}
= f (ω, {�k}), (54)

defined by the following sequence:

• Velocity Reconstruction. Given the vorticity field ω, circulations {�k}, and velocity boundary condition ub , the stream 
function ψ is recovered by solving the scalar Poisson equation

−∇2ψ = ω on �,

ψ = ψb + ψ̄k on ∂ Bk,

−
∮
Rk

∂nψ ds = �k for 1 ≤ k ≤ Nb.

This is done with the reconstruction procedure outlined in section 4. The velocity field u is calculated by differentiating 
the stream function.

• Vorticity Transport. The Dirichlet boundary condition ωb for the vorticity transport equation is calculated using the 
local method outlined in section 5.3. The transport equation

∂ω

∂t
= −∇ · (uω − ν∇ω)

then determines the time derivative of the vorticity field, through the conservative spatial discretization developed in 
section 3.

• Kelvin’s Theorem. As outlined in section 5.1, the time derivative of the circulations is determined by Kelvin’s theorem,

d�k

dt
= −

∮
∂ Rk

(uω − ν∇ω).

The spatial integration is performed with the same vorticity flux used in the transport scheme.

This system of ODEs is integrated in time with a low storage third-order Runge-Kutta scheme [55]. The size of each time step 
is chosen to be a fixed fraction 0 < Cstab < 1 of the maximum stable time step for the transport scheme, calculated using 
the procedure outlined in section S2 of the supplementary material. All force and pressure calculations are performed after 
the first velocity reconstruction of each time step, when the vorticity and circulations have third-order temporal accuracy.

The algorithm described above has been implemented in C++ using Cubism [56], a library for block-based parallelism 
on uniform resolution Cartesian grids. The velocity reconstruction problem is solved with FFT-accelerated convolutions per-
formed by FLUPS [45], which allows for fast solutions of scalar Poisson equations on rectangular domains with arbitrary 
combinations of unbounded, symmetric, and periodic boundary conditions.

6. Results

The Navier-Stokes discretization developed in the previous sections is applicable to a broad class of 2D incompress-
ible flows. Here we first demonstrate the convergence of the method for a simple test case with an analytical solution, 
and then illustrate the effectiveness of this discretization in calculating vorticity fields, velocity fields, and surface traction 
distributions for a variety of external and internal flows.

6.1. Convergence: Lamb-Oseen vortex

To demonstrate the convergence of the 2D Navier-Stokes discretization developed here, we consider an external flow test 
case with a solid body and an analytical solution, as done in Gillis et al. [35]. A rotating cylinder with radius R and center 
xc is immersed in a uniform Cartesian grid with grid spacing h. The initial vorticity field outside of cylinder is set to match 
the vorticity field of a Lamb-Oseen vortex centered at xc , and the cylinder’s time-dependent rotation rate is set so that at 
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Fig. 11. Convergence of the error in the (a) vorticity field and (b) velocity field with spatial resolution for the full Navier-Stokes discretization, as well as 
the parameter values used in the convergence study (c).

each point on the solid boundary ub(t) = uL O (R, t). This ensures that the Lamb-Oseen vortex is an analytical solution to the 
flow outside of the cylinder which satisfies the no-slip boundary condition for all time. The flow is integrated from time 
t0 to time t f using a third-order Runge-Kutta scheme, and the numerical vorticity and velocity fields are compared to the 
analytical vorticity and velocity fields using the L2 and L∞ error norms defined in sections 3.3 and 4.3. The full details of 
the grid, cylinder, vortex, and time integration are provided in Fig. 11c.

Fig. 11 plots the L2 and L∞ error norms of the velocity and vorticity fields against the spatial resolution h, demonstrating 
second order convergence in both norms for both fields. We emphasize that the convergence rate of the L∞ error norms 
indicates that the full Navier-Stokes algorithm achieves second-order spatial accuracy right up to the immersed boundary.

6.2. Impulsively rotated cylinder

The flow around an impulsively rotated cylinder is another viscous exterior flow with an analytical solution, and an 
excellent test case for the enforcement of Kelvin’s theorem. Consider a cylinder of radius R immersed in a quiescent fluid 
with viscosity ν , which begins rotating with constant angular velocity � at time t = 0. The impulsive start releases a 
singular vortex sheet into the flow, which then diffuses radially outward. Any mismatch between the magnitude of this thin 
vortex sheet and the rotation rate of the object leads to a violation of Kelvin’s theorem, and can cause significant errors in 
the vorticity field and the resulting viscous moment acting on the cylinder.

For simplicity, the flow around the cylinder is assumed to remain axisymmetric. Using a non-dimensional time t∗ =
νt/R2 and radial coordinate r∗ = r/R , the non-dimensional vorticity distribution ω∗ = ω/� is given by

ω∗(r∗, t∗) = − 2

π

∞∫
0

�
{

K0(ir∗x)

K1(ix)

}
e−x2t∗ dx , (55)

while the non-dimensional velocity distribution u∗ = uθ /R� is given by

u∗(r∗, t∗) = 1

r∗ − 2

π

∞∫
0

�
{

K1(ir∗x)

K1(ix)

}
e−x2t∗

x
dx . (56)

Here K0(x) and K1(x) are modified Bessel functions of the second kind, while � and � denote the real and imaginary parts 
respectively. These analytical expressions are derived in section S4 of the supplementary material and provide a more easily 
evaluated result for the velocity field compared to the expressions provided by Lagerstrom [57]. The integrands in (55) and 
(56) are non-singular at x = 0 and decay rapidly as x → ∞, so that the improper integrals can be evaluated numerically with 
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Fig. 12. Numerical and semi-analytical results for the impulsively rotated cylinder, including (a) the time history of the total moment, (b) the vorticity field 
at selected times, and (c) the velocity field at selected times.

good accuracy. The total non-dimensional moment M∗ = M/2π R2ν� acting on the cylinder can be calculated by integrating 
the resulting shear stress distribution, giving M∗(t∗) = ω∗(1, t∗) − 2.

These analytical results are independent of the Reynolds number Re� = R2�/ν . For the simulations discussed here, we 
have chosen Re� = 50 to avoid any high Reynolds number instabilities that may disrupt the axisymmetric flow. Fig. 12
shows the time evolution of the moment acting on the impulsively rotated cylinder for t∗ ≤ 0.045, along with velocity and 
vorticity profiles at selected times. At the resolution shown here (D/h = 104.2), the numerical and semi-analytical results 
are in excellent agreement.

6.3. Impulsively translated cylinder

The impulsively translated cylinder is a widely used test case in two-dimensional incompressible flow [42,54,58,35,59]. 
Consider a cylinder of diameter D and center xc = (xc, yc) immersed in an unbounded fluid with kinematic viscosity 
ν . At time t = 0, the cylinder begins translating with constant velocity, which produces a free-stream velocity of u∞ =
(u∞,x, u∞,y) in a reference frame attached to the cylinder. The dynamics of the resulting flow depend only on the Reynolds 
number ReD = u∞D/ν . This section focuses on the short-time evolution of the flow-field, which takes place before the 
symmetry of the problem is broken and the commonly-observed vortex shedding behavior begins. In this symmetric regime 
there is no lift and no net moment acting on the cylinder, so that the drag force is the only relevant load.

Following Gillis et al. [35], the quality of the spatial discretization is measured with the two parameters

Nδ = 1√
ReD

(
D

h

)
, Q = Re3/2

D

(
h

D

)2

= Re1/2
D

N2
δ

. (57)

The parameter Nδ estimates the number of grid points contained within the characteristic boundary layer thickness, while 
the parameter Q estimates the mesh Reynold’s number based on the boundary vorticity. Gillis’ results indicate that Nδ ∼ 8
or higher represents a well-resolved flow-field and is generally sufficient for obtaining accurate drag forces, while Q ∼ 1
or lower allows for accurate wall vorticity values. Fig. 13 plots the drag coefficient C D = 2F/u2∞D as a function of the 
non-dimensional time t∗ = u∞t/D at two Reynolds numbers, Re = 550 and Re = 3000, for spatial resolutions Nδ = 8.73
(Q = 0.31) and Nδ = 7.48 (Q = 0.98) respectively. The drag coefficients are calculated using a control volume approach, 
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Fig. 13. Drag history and surface vorticity profiles for the impulsively started cylinder at Re = 550, Nδ = 8.73, Q = 0.31 (left column) and Re = 3000, 
Nδ = 7.48, Q = 0.98 (right column).

and are in close agreement with results from the immersed interface method of Gillis et al. [35] and the vortex method of 
Koumoutsakos and Leonard [42].

Also shown are instantaneous profiles of the non-dimensional surface vorticity ω∗ = ωD/U as a function of the angular 
coordinate θ on the cylinder surface (θ = 0 corresponds to the leading stagnation point.) These distributions are taken from 
the vorticity boundary condition prescribed during the transport step of the discretization. The present vorticity profiles 
follow closely the results of Marichal [34] at Re = 550 and Wu et al. [59] at Re = 3000. In both cases the profiles also agree 
well with Gillis et al. [35].

As described in section 5.4, the pressure distribution on the cylinder can be calculated either by integrating the surface 
vorticity flux (a procedure local to each immersed body) or by solving a pressure Poisson equation (a global elliptic solve). 
Figs. 14a and 14b show the relative pressure coefficient C p(θ) = 2(p(θ) − p(0))/u2∞ resulting from both methods at several 
spatial resolutions, for Re = 500 and Re = 3000 at t∗ = 2.5. At comparable values of the Nδ parameter, the convergence 
of both the local and global pressure calculations at Re = 3000 is slower than at Re = 550. The convergence is more con-
sistent across Reynolds numbers when evaluated with the Q parameter: for both Reynolds numbers, Q ∼ 0.3 is sufficient 
for a well-converged local pressure calculation. Similar convergence in the global pressure calculation requires even more 
resolution, and is only achieved in the finest resolution at Re = 550 (Q = 0.08). Figs. 14c and 14d demonstrate that the 
converged global pressure at Re = 550 and local pressure at Re = 3000 agree well with reference data from the vorticity-
based Brinkmann penalization method of Lee et al. [54] and the vorticity-based body-fitted finite volume method of Wu 
et al. [59].

6.4. Semicircular lid-driven cavity

While the method developed here has several computational advantages for exterior flows, it is equally capable of simu-
lating internal flows with concave boundaries. Consider a semicircular cavity with diameter D filled with a stationary fluid 
of viscosity ν (Fig. 15). At t = 0 the top wall of the cavity begins moving rightward with velocity U . The resulting flow 
is characterized by the Reynolds number Re = U D/ν , and has been shown to reach a steady state for Re ≤ 6600 [60]. To 
simulate this flow numerically, the semicircular flow domain is embedded in a rectangular computational domain, and the 
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Fig. 14. Surface pressure calculations for the impulsively started cylinder at Re = 550 (left column) and Re = 3000 (right column).

Fig. 15. Steady-state streamlines for the flow in a semicircular lid-driven cavity, colored by stream function (ReD = 3000). Contours indicate ψ/U D =
(−6 × 10−3, −5 × 10−3, −4 × 10−3, −3 × 10−3, −2 × 10−3, −1 × 10−3, −1 × 10−6, 1 × 10−6, 5 × 10−3, 1 × 10−2, 1.5 × 10−2, 2 × 10−2, 3 ×
10−2, 4 × 10−2, 5 × 10−2, 6 × 10−2, 7 × 10−2).

center of the semicircle offset from the grid to break symmetry. The resulting flow is integrated in time until it reaches an 
approximate steady state. Velocity profiles taken from this steady flow are shown in Fig. 16, and show excellent agreement 
with those provided by Glowinski et al. [60] for Re = 500, 1000, and 3000.

For internal flows, the boundary of the computational domain lies outside of the fluid domain. As a result, the convo-
lution operator (∇2

h )−1 used to solve the velocity reconstruction problem need not satisfy a particular far-field boundary 
condition. Here we choose the Dirichlet boundary condition ψ = 0, which is the most convenient and least computationally 
expensive option [45].

6.5. Side-by-side cylinder pairs

To validate the ability of our method to simulate flow past multiple bodies, we consider a side-by-side cylinder pair. 
In this test case, two cylinders of diameter D are placed side-by-side in a free stream flow of velocity U , with centers 
21



J. Gabbard, T. Gillis, P. Chatelain et al. Journal of Computational Physics 464 (2022) 111339
Fig. 16. Steady-state velocity profiles from the interior of a lid-driven semicircular cavity. Data are offset for readability. Both the (a) vertical and (b) 
horizontal profiles show excellent agreement with reference data from Glowinski et al. [60] for Reynolds numbers between 500 and 3000.

Fig. 17. Two distinct shedding patterns for a side-by-side cylinder pair at Re = 100 and L/D = 3: antiphase shedding (top) and in-phase shedding (bottom).

separated by a distance L. The flow is characterized by two non-dimensional parameters, the Reynolds number Re = U D/ν
and the non-dimensional gap-width L/D . For certain combinations of these two numerical parameters, multiple stable 
vortex-shedding modes exist [61]; here we consider in-phase and antiphase shedding, illustrated in Fig. 17. Both patterns 
can be reached from a null initial vorticity field, with antiphase shedding coming from a constant free stream and in-phase 
shedding coming from a free stream which is initially perturbed to break symmetry.

To simulate this test case, we place the center of each cylinder a distance 1D from the inflow boundary. The lack of 
padding at the inflow is enabled by the true free-space boundary conditions implemented in the velocity reconstruction 
procedure [45]. At t = 0 the flow starts from a null vorticity field, and is integrated in time until a steady-state shed-
ding pattern is reached. The outflow boundary condition described in section 5.2 is prescribed on the downstream domain 
boundary to allow for long-time integration. An appropriate location for the outflow boundary can be determined by cal-
culating the lift and drag forces resulting from a single set of parameters (Re = 100, L/D = 3) and a varied domain length. 
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Fig. 18. Time history of the (a) lift coefficient and (b) drag coefficient of the lower cylinder in a cylinder pair at Re = 100 and L/D = 3, for different domain 
lengths. The calculations performed on domains of length 30D and 40D agree well; shorter domains lead to slight shifts in the amplitude and phase of the 
lift coefficient, and large qualitative changes in the behavior of the drag coefficient.

Table 1
Long-time statistics of the lift and drag forces on a side-by-side cylinder pair, as 
calculated Kang [61] and by the present method.

Parameters Author C D,Mean CL,Mean CL,RM S

Re = 100, L/D = 3, Antiphase
Kang 1.46 0.116 0.317
Present 1.47 0.129 0.319

Re = 100, L/D = 3, In-Phase
Kang 1.44 0.129 0.190
Present 1.42 0.120 0.183

Re = 100, L/D = 4, Antiphase
Kang 1.43 0.082 0.280
Present 1.42 0.070 0.273

Re = 160, L/D = 3, Antiphase
Kang 1.45 0.100 0.510
Present 1.44 0.092 0.507

Re = 160, L/D = 4, Antiphase
Kang 1.40 0.058 0.440
Present 1.39 0.056 0.443

Fig. 19. (a) Time history of the pressure difference between the leading stagnation point and rear θ = π point for cylinder pairs undergoing antiphase 
shedding at various gap widths and Reynolds numbers. (b) The time history of the location of the leading stagnation point on the lower cylinder for the 
same set of parameters considered on the left.

The results, shown in Fig. 18, indicate that these forces are relatively insensitive to outflow location for domains longer 
than 30D , and to allow a margin of safety we adopt a domain of size 12D × 40D . For all of the simulations shown here, 
the spatial resolution has been chosen to ensure accurate pressure calculations via surface integration. Using the resolution 
parameters defined in section 6.3, this corresponds to Q = 0.17 at Re = 100 and Q = 0.34 at Re = 160.

Table 1 lists the steady-state statistics of the drag coefficient C D = 2Fx/DU 2 and lift coefficient CL = 2F y/DU 2 of each 
cylinder for a variety of Reynolds numbers, gap widths, and shedding patterns. Reference values are provided by Kang [61], 
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Fig. 20. (a) A snapshot of the vorticity field resulting from flow over a group of non-convex solid bodies inspired by a submerged offshore aquaculture 
cage structure. The snapshot is recorded at t∗ = U∞t/D = 10.0 after an initial impulsive start. (b) Time history of the total lift and drag coefficients 
for the aquaculture cage. (c) Early time history of the fraction of the total drag coefficient attributed to each panel of the cage. Panels are numbered 
counterclockwise beginning with the leftmost panel.

who uses a velocity-pressure immersed boundary method with an 80D × 100D computational domain. The two sets of 
results show good agreement, despite the fact the present method uses a domain that is sixteen times smaller in area. In 
addition to lift and drag forces, the use of a sharp immersed method allows for the calculation of time-dependent pressure 
distributions on the immersed cylinders. Fig. 19a displays the time history of C p = 2(pstag − p(π))/u2∞ , the difference 
between the pressure at the leading stagnation point and the θ = π point on the downstream side of each cylinder, for 
cylinder pairs undergoing antiphase shedding at three different sets of parameters. For these flows the leading stagnation 
point is identified as the point of zero vorticity closest to θ = 0 on each cylinder, which is calculated from the time-
dependent surface vorticity distribution. The time history of the angular location of this point on the lower cylinder of each 
pair is provided in Fig. 19b.

6.6. Multiple non-convex immersed bodies

We finally demonstrate the flexibility of this framework through a test case that combines multiple non-convex obstacles 
in an external flow. Fig. 20a provides a snapshot of the vorticity field that results from the flow over a collection of solid 
bodies inspired by a submerged offshore aquaculture cage structure. Each panel of the cage is a slice of an annulus with a 
thickness that is one tenth of the full cage diameter D , and each slice covers an angular extent of π/5 radians excluding the 
semicircular cap on each end. The simulation is impulsively started with a horizontal free stream velocity of u∞ , and the 
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Reynolds number based on the outer cage diameter is ReD = u∞D/ν = 4000. Vorticity is allowed to exit the computational 
domain via an outflow boundary condition placed a distance of 3.249D downstream from the center of the cage. Fig. 20b 
provides a time history of the lift coefficient CL = 2F y/u2∞D and drag coefficient C D = 2Fx/u2∞D over the course of the 
simulation, where Fx and F y are the total forces parallel and perpendicular to the free stream. Additionally, Fig. 20c plots 
the fraction of the total drag coefficient attributed to each of the five panels which make up the cage. The non-dimensional 
time coordinate in both figures is defined as t∗ = u∞t/D . Throughout the simulation the circulation around each body is 
automatically tracked by our solver, and our IIM is robust to the geometric issues caused by concave surfaces (as discussed 
in section 2.2).

7. Conclusion

We have presented a 2D vorticity-based immersed interface method that can simulate fluid flows in bounded and un-
bounded domains, with multiple non-convex immersed bodies, and outflow boundary conditions. Our approach relies on a 
re-interpretation of the explicit jump IIM which simplifies the implementation and addresses challenges posed by nonconvex 
bodies. We show that the use of conservative spatial discretizations allows for the discrete enforcement of Kelvin’s theorem, 
which is essential for simulations with multiple bodies and outflow boundary conditions. Lastly, we have built upon an effi-
cient FFT-accelerated elliptic solver to solve the velocity reconstruction problem with multiple immersed bodies on arbitrary 
domain topologies. On test cases with known solutions, the resulting method achieves second order spatial convergence in 
the infinite error norm over the entire domain, and third order temporal convergence. We reproduce reference results for 
a variety of internal and external flows with Reynolds numbers between 100 and 3000, and accurately recover lift forces, 
drag forces, moments, and time-dependent traction distributions on immersed solid bodies. Lastly, we have demonstrated 
that with free-space and outflow boundary conditions, our vorticity-based approach can recover accurate solutions with a 
domain size that is sixteen times smaller than that of the velocity-based reference results.

We consider several immediate future directions for this work. While this work focuses on simulations with stationary 
solid bodies, immersed interface methods are well-suited for simulations involving moving and deforming geometry, in-
cluding fluid-structure interaction problems that are often discretized with lower-order immersed boundary or penalization 
methods [62,63]. There are also promising developments in extending the IIM to non-smooth geometries with thin fea-
tures, cusps, and acute interior corners [33], which would further broaden the range of flows that can be simulated with 
the current method. The accuracy of surface pressure and shear distributions can be greatly increased through the use of 
multi-resolution adaptive grids, which allow computational elements to be concentrated around immersed surfaces. Finally, 
such multiresolution adaptive grids would pave the way for a computationally-efficient extension to 3D, building upon [36]
as well as the various improvements laid out in this work.
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