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Abstract

Ray-finned fish are able to adapt the curvature of their fins through musculature at the base
of the fin. In this work we numerically investigate the effects of such leading-edge curvature ac-
tuation on the hydrodynamic performance of a heaving and pitching fin. We present a geometric
and numerical framework for constructing the shape of ray-membrane type fins with imposed
leading-edge curvatures, under the constraint of membrane inextensibility. This algorithm is
coupled with a 3D Navier-Stokes solver, enabling us to assess the hydrodynamic performance of
such fins. To determine the space of possible shapes, we present a simple model for leading-edge
curvature actuation through two coefficients that determine chordwise and spanwise curvature,
respectively. We systematically vary these two parameters through regimes that mimic both
passive elastic deformations and active curvatures against the hydrodynamic loading, and com-
pute thrust and power coefficients, as well as hydrodynamic efficiency. Our results demonstrate
that both thrust and efficiency are predominantly affected by chordwise curvature, with some
small additional benefits of spanwise curvature on efficiency. The main improvements in perfor-
mance are explained by the altered trailing-edge kinematics arising from leading-edge curvature
actuation, which can largely be reproduced by a rigid fin whose trailing-edge kinematics follow
that of the curving fin. Changes in fin camber, for fixed trailing-edge kinematics, mostly benefit
efficiency. Based on our results, we discuss the use of leading-edge curvature actuation as a
robust and versatile way to improve flapping fin performance.

1 Introduction

The potential of biologically-inspired flapping fin propulsion for practical applications lies in its
predicted ability to provide high efficiency at a range of speeds, high maneuverability, and a concealed
profile. This has spurred a tremendous scientific effort over the last few decades (Triantafyllou et al.,
2000; Smits, 2019) to understand and design bio-inspired propulsion examples that deliver on this
potential. A significant development within this design landscape is driven by recent developments in
additive manufacturing and smart structures, so that robotic swimmers increasingly incorporate soft,
flexible materials (Chu et al., 2012; Katzschmann et al., 2018; Christianson et al., 2018). This leads
to increasingly complex systems, whose behavior is characterized both by passive elastic deformation
of the structure as well as actuation degrees-of-freedom that can induce actively-controlled shape
changes. Consequently, there is a need to understand to what extent such dynamic shape changes
affect hydrodynamic performance of flapping fin propulsion.

Passively deforming elastic surfaces have been studied extensively, as their input parameters and
performance can be easily tested and controlled in experimental and numerical settings (Katz and
Weihs, 1978; Prempraneerach et al., 2003). Using 2D flat plates, Dewey et al. (2013) and Quinn
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et al. (2014, 2015) show how the largest thrust is attained when a combination of heave and pitch of
the leading edge is imposed so resonance with structural natural frequencies occurs. This conclusion
is shared by Tytell et al. (2016) and Floryan and Rowley (2018), who also show how maximum
values of hydrodynamic efficiency, defined as the ratio of thrust power extracted and power required
to actuate the fin, are obtained in a localized zone not correlated with the natural modes. In 3D,
however, Liu and Bose (1997) observed how passive spanwise deformation alone can be detrimental
for the fin efficiency. Combined elastic chordwise and spanwise deformations were studied through
potential flow simulations in Zhu (2007); Zhu and Shoele (2008). They conclude that curvature can
improve hydrodynamic efficiency and reduce the sensitivity on the flow parameters. Lin et al. (2018)
simulated rectangular plates in heaving motion imposing a chordwise flexural motion, reporting how
efficiency increases with the degree of flexibility.

All the above works rely on a structural model of the fin to model purely passive, elastic de-
formations due to the hydrodynamic loading. Natural rayed fish fins, though, are composed of
collagen-membranes supported by bony rays that can be actively curved through a set of muscles at
the base of each ray (Lauder and Drucker, 2004; Alben et al., 2007). As a result, dynamic curvature
changes of real fish fins can consist of passive bending due to hydrodynamic loading, as well as active
actuation of the individual rays against the flow (Fish and Lauder, 2006). Biological observations
show that this musculature is active even during steady swimming (Flammang and Lauder, 2008),
and how these combined effects lead to complex 3D fin shapes (Bainbridge, 1963; Lauder, 2015;
Lauder and Madden, 2007) consisting of both chordwise (along rays) and spanwise (across rays)
curvature components. This was quantified in Lauder et al. (2005) and Bozkurttas et al. (2009),
who used a proper-orthogonal decomposition to break down the fin motion into various modes, ob-
served also experimentally in real fish by Flammang and Lauder (2008, 2009). Their results show
how a discrete number of modes capture properly the fin motion gaits. Using a robotic rayed caudal
fin model, Lauder et al. (2007); Tangorra et al. (2009); Esposito et al. (2012) analyzed the contribu-
tion to the thrust production for each of the individual deformation modes. They identified active
cupping as the mode that produces the largest amount of thrust, where rays follow a parabolic shape
in phase with the pitch, and with the top and bottom rays leading the motion.

The above body of literature provides a picture that passive elastic deformations of flapping
fins can improve their efficiency and thrust production, though finding the best structural design
for a given hydrodynamic condition can be challenging. For spanwise elastic deformations the
hydrodynamic trends and structural design criteria are not yet systematically investigated. Further,
there is an indication that actively curving fins against the hydrodynamic loading can improve
hydrodynamic performance, but this needs further investigation.

Our current work is motivated by the wish to further understand the role of both passive and
active curvature changes on the hydrodynamic performance of flapping fin propulsion. However,
as opposed to the studies above, we do not explicitly consider any specific elastic model of the
fin. Instead, we parametrize the dynamic chordwise and spanwise curvature variations of the fin
geometry, and directly explore the effect of imposed curvature variations on hydrodynamic perfor-
mance. This enables us to side-step the fluid-structure interaction problem, and avoid making any
assumptions about materials, elastic properties, and actuation techniques. Instead, our approach
aims to identify hydrodynamically beneficial curvature variations of the fin, and understand the
underlying flow mechanisms. In a future step, this information can then be used as a target state for
a fluid-structure interaction design study, aided by the capability of modern actuation mechanisms
for shape-changing structures (Boley et al., 2019).

In the rest of this article we detail the proposed mathematical representation of the fin geometry
in section 2.1, showing its capability to reproduce typical swimming modes observed in nature.
The 3D Navier-Stokes solver used and its integration with the fin-shape generation algorithm is
described next in section 2.2. The particular problem definition of a deforming fin subject to heave
and pitch solid-body velocities, and the numerical setup adopted to simulate it, are then explained
in section 3. Simulation results from the parametric analysis of chordwise and spanwise curvature
effects are presented in section 4, discussing in detail the impact of each curvature type in sections 5.1
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Figure 1: Notation and conventions for the geometric representation of the fin (left), and the local
coordinate system (right).

and 5.2. Finally, we present some concluding remarks in section 6.

2 Methodology

2.1 Description of fin shape

Our description and parametrization of the fin shape builds on our earlier work (Fernández-Gutiérrez
and van Rees, 2020), though for clarity we will concisely describe here the complete shape definition
and its derivation.

2.1.1 Geometric model

We represent any fin geometry by a parametric three-dimensional mid-surface definition combined
with a thickness distribution over it. Starting with the mid-surface, we introduce parameters (u, v)
where u ∈ [0, 1] and v ∈ [−1, 1]. The undeformed mid-surface is defined as

r0(u, v) = rLE(v) + u c(v) [cos(β(v))x̂ + sin(β(v))ẑ] , (1)

where
rLE(v) = xLE(v)x̂ + vH/2ẑ ,

is the leading edge position vector and xLE(v) is the profile of the leading edge, as shown in figure 1.
Further, β(v) is the angle of the rays along the chordwise direction, c(v) is the length of the chord
as measured along a ray, and H the height of the fin at the leading edge (figure 1). The mapping
and leading-edge position vector are defined such that, in R3, the ẑ-axis corresponds to the axis of
rotation of the fin. With the mid-surface defined, the description of the rest configuration of the fin
can be completed by the thickness function, h(u, v), providing the orthogonal distance between the
outer fin surfaces at each side of the fin’s mid-surface. Throughout this work, we use the fin overall
chord C as length scale, defined as

C = max
u,v

(r0 · x̂)−min
u,v

(r0 · x̂) .

To describe the deformed configuration of the mid-surface, we establish a Darboux frame at
any location along the rays as shown on the right side of figure 1. The frame is characterized by
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the tangent unit vector along the rays, t̂, the normal unit vector to the mid-surface, n̂, and the
bi-normal unit vector b̂ = t̂× n̂. Note that our vectors b̂ and n̂ are rotated compared to the normal
and binormal vectors arising using a Frenet framing of a space curve, due to the fact that here n̂
corresponds to the mid-surface normal vector. Using the Darboux framing, we can then define three
non-dimensional curvatures corresponding to the directions of the local coordinate system, defined
as

dt̂

du
= +κnn̂ + κgb̂

dn̂

du
= −κnt̂ + κtb̂

db̂

du
= −κg t̂− κtn̂





↔

κt =
dn̂

du
· b̂ = −db̂

du
· n̂

κg =
dt̂

du
· b̂ = −db̂

du
· t̂

κn =
dt̂

du
· n̂ = −dn̂

du
· t̂





, (2)

where the curvatures are non-dimensional; the dimensionalized forms can be found when multiplying
with the local chord c(v). More precisely, the values of κt, κg, and κn, respectively, correspond to
the geodesic torsion, geodesic curvature, and normal curvature of the constant-v curve on the mid-
surface.

For the deformed configuration, we can then write the position of the mid-surface as

r(u, v) = rLE(v) + c(v)

∫ u

0

t̂(u∗, v) du∗, (3)

with rLE(v) defined as above, and u∗ an integration variable. We can in turn express t̂ in terms of
the curvatures from equation (2) as

t̂(u, v) = t̂LE(v) +

∫ u

0

[
κnn̂ + κgb̂

]
(u∗, v) du∗, (4)

where t̂LE(v) = cos(β(v))x̂ + sin(β(v))ẑ is the tangent unit vector at the undeformed LE. The
problem of finding the deformed mid-surface is then reduced to finding the functional form of the
three curvatures, or, equivalently, the basis (t̂, n̂, b̂) along each ray. Note that when κn = κg = 0,
we recover the flat configuration described in equation (1).

Mechanically, fish can actuate the rays at the LE to balance the hydrodynamic loading, acting as
control mechanism of κn for each ray (Alben et al., 2007). Thus, κn becomes a controllable degree
of freedom, allowing us to consider it as a known, user-defined input whose specific form will be
discussed further in section 3.2.

To find corresponding expressions for κg and κt, we use two assumptions. First, we treat the
membrane connecting the rays as inextensible based on its material properties (Alben et al., 2007;
Nguyen et al., 2017), so ‖dr(u, v)‖ = ‖dr0(u, v)‖ where dr and dr0 are the differential of the
deformed and undeformed mid-surface position, respectively. Second, we assume that the membrane
remains smooth, which discretely implies that the mid-surface normals as obtained from integrating
the Darboux frame along each ray are consistent with the mid-surface normals as obtained from
differentiating the position vector across rays, as further explained in the next section.

Lastly, to obtain the volumetric shape of the deformed fin, we neglect the effect of transverse
normal and shear strains, similar to the Kirchhoff-Love assumptions in plate and shell theory, so
that the thickness function remains unchanged in the deformed configuration.

2.1.2 Discrete representation and solution algorithm for the fin geometry

The exact solution to the mid-surface shape formulation described in section 2.1.1 is difficult to find,
so we propose here an iterative solution technique that maintains the discrete error in satisfying the
aforementioned constraints below a user-specified threshold.

4



We start by discretizing the mid-surface into a structured mesh with Nv rays in the spanwise
direction, each of which is represented through a set of Nu equidistant nodes. Throughout we
assume a known functional form of κn, and impose zero curvature at the tips (κgi,Nu

= κti,Nu
= 0)

and symmetric κt across the ic-th central element (ic = dNv/2e),

κtic,j/cic =

{
0 Nv odd
−κtic+1,j/cic+1 Nv even

.

We then assume initial values for the remaining values of κgi,j and κti,j , and determine the lo-
cation of the ray nodes by discretely integrating the Darboux frame along each ray, according to
equations (2)-(4). Using a finite-difference approximation of the derivatives, and noting that the re-
sulting vector after applying the transformation needs to be re-normalized, this leads to a marching
algorithm for the i-th ray:

Ki,j =




0 −κni,j −κgi,j
κni,j 0 −κti,j
κgi,j κti,j 0


 , (5)

[t∗ n∗ b∗]i,j+1 =
[
t̂ n̂ b̂

]
i,j

(
I3 +

Ki,j+1 +Ki,j

2
∆u

)
, (6)

[
t̂ n̂ b̂

]
i,j+1

=

[
t∗

‖t∗‖
n∗

‖n∗‖
b∗

‖b∗‖

]

i,j+1

, (7)

ri,j+1 = ri,j +
t̂i,j + t̂i,j+1

‖t̂i,j + t̂i,j+1‖
ci ∆u , (8)

where I3 is the 3 × 3 identity matrix and ∆u = 1/(Nu − 1). For each ray, we use as initial values

the known LE position ri,1 and direction vectors [t̂, n̂, b̂]i,1 from the rigid-body kinematics.
Given the above procedure to compute the Darboux frame and position vector for each ray, we

can then update our initial guesses for κg and κt using a Newton-Raphson algorithm. The goal of the
algorithm is to minimize deviation from the inextensibility and smoothness constraints, quantified
by the signed error metrics Edist

l and Esmth
l , respectively:

Edist
l =





‖ri+1,j − ri,j‖
di,j

− 1 i < ic : l = i+ (j − 2)(Nv − 1) ,

‖ri,j − ri−1,j‖
di−1,j

− 1 i > ic : l = (i− 1) + (j − 2)(Nv − 1) ,
(9)

Esmth
l =

(
n̂i,j × n̂

(r)
i,j

)
· t̂i,j , l = i+ (j − 2)Nv + (Nv − 1)(Nu − 1) , (10)

n̂
(r)
i,j =

ri+1,j − ri−1,j

‖ri+1,j − ri−1,j‖
× ti,j , (11)

where l is a global index to identify each unknown curvature, di,j the spanwise distance between

adjacent nodes in the undeformed configuration computed analytically from equation (1), and n̂
(r)
i,j =

[(∂r/∂v)/‖(∂r/∂v)‖ × t̂]i,j the normal direction from adjacent ray nodes based on the smoothness
constraint that analytically should match n̂i,j .

We numerically differentiate these error metrics with respect to the unknown curvature variables
to determine the Jacobian of the system:

Jl,m ≈




∆Edistl

∆κg
m

∆Edistl

∆κt
m

∆Esmth
l

∆κg
m

∆Esmth
l

∆κt
m


 ,

κg
m ≡ κg

i,j

{
i < ic : m = i+ (j − 1)(Nv − 1) ,

i > ic : m = (i− 1) + (j − 1)(Nv − 1) ,

κt
m ≡ κt

i,j m = i+ (j − 1)Nv + (Nv − 1)(Nu − 1) .

(12)

5



In each Newton-Raphson step we then invert the Jacobian matrix using an LU decomposition with
partial pivoting to update the curvature values:

[
κgm
κtm

](k+1)

=

[
κgm
κtm

](k)

−
[
J (k)
l,m

]−1
[
Edist
l

Esmth
l

](k)

. (13)

where k denotes the Newton-Raphson iteration. Given the new curvature values κg,(k+1) and κt,(k+1),
we can again evaluate equations (5)-(8) to compute the corresponding new Darboux frame and
position vectors, and evaluate the associated error metrics (9)-(10). If they are below a given
threshold,

∣∣Edist
l

∣∣ < εdist and
∣∣Esmth
l

∣∣ < εsmth ∀l, the solution has been found and we stop. Otherwise,
we start a new iteration by updating the Jacobian matrix with the new ray configuration.

2.1.3 Interpolation to reduce computational cost

We can significantly improve the algorithm’s performance by solving for the values of κt and κg

on a coarser mesh, with Nr � Nv rays and Ns � Nu nodes along them, and use interpolation to
determine the intermediate values in the finer mesh taking advantage of the smooth nature of the
mid-surface.

The interpolation scheme uses first a quadratic approximation to determine the chordwise deriva-
tives of κt and κg at each coarse grid node using 3-point stencils with values at the node and its
closest neighbors. Then, the interpolated values κti,j , κ

g
i,j are determined between each pair of nodes

using a cubic interpolation using the curvatures and its derivatives at the nodes. Using the inter-
polated curvatures along each ray, we can determine the fine-grid node locations along each ray
following equations (5)-(8). Then, we can obtain the fine-grid node locations between rays following
a similar interpolation procedure, now in the spanwise direction, determining the derivative values
using a quadratic fit and then interpolating the node coordinates ri,j with a cubic spline. Note that
under this approach, the spanwise position derivatives are computed explicitly for each node and
therefore are continuous across nodes.

With this adjustment, we still follow the iterative algorithm described in section 2.1.2, substitut-
ing (i, j)→ (p, q) where p ∈ [1, Nr] and q ∈ [1, Ns]. In addition, we can use the fine-grid interpolated
nodes to determine the distance between nodes, as well as the spanwise derivative values at the nodes
for Edist, so they are defined now as

‖rp+1,q − rp,q‖ →
ip+1−1∑

i=ip

‖ri+1,jq − ri,jq‖ , (14)

n(r)
p,q =

(
dr

dv

)

p,q

× tp,q , (15)

where ip and jq are the i and j indexes corresponding to the p-th ray and q-th chordwise location
in the coarser grid, respectively.

2.2 3D Navier-Stokes solver and integration of fin shape

We use in this work the remeshed vortex method with a penalization technique (Gazzola et al., 2011),
which solves the 3D viscous incompressible Navier-Stokes equations in vorticity-velocity form:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω + λ∇× [χ(us − u)] , (16)

where ω = ∇×u is the vorticity vector and u is the fluid velocity vector. The last term on the right-
hand side is responsible for enforcing the solid-body boundary conditions, with χ the characteristic
function representing the body (χ = 1 inside the body, χ = 0 outside, and mollified at the interface),
us the imposed velocity inside the body, and λ� 1 the penalization factor that dynamically forces
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the flow inside the body to follow the imposed body motion. As explained in Gazzola et al. (2011),
we solve the velocity from the vorticity by inverting a Poisson’s equation with free-space boundary
conditions, enabling the use of a compact domain. This framework has been validated extensively in
the past for simulations and optimizations related to self-propelled 2D and 3D swimmers (Gazzola
et al., 2011, 2012; van Rees et al., 2013, 2015). In the context of this work, we also verified our
method in appendix A in the supplementary data for flapping fin propulsion specifically.

To integrate our model, we can decompose the body velocity field at any point r inside the body
as us(r, t) = uT (t)+uR(r, t)+udef(r, t), where uT (t) is the translational velocity, uR(r, t) = θ̇(t)×r
is the rigid-body rotational velocity 1, and udef(r, t) is the deformation velocity field arising from
a time-varying curvature distribution. In this work, uT (t) and θ̇(t) are imposed through the heave
and pitch kinematics of the fin, and χ(r, t) and udef(r, t) are determined from the geometric model
characterizing the fin shape described in section 2.1.

As in Bernier et al. (2019), we compute the overall hydrodynamic force and moment acting on
the body from the projection and penalization components, such that

F =

∫

Ωb

∇ · σ dV =

Fproj︷ ︸︸ ︷
D

Dt

∫

Vb
ρu dV +

Fpenal︷ ︸︸ ︷∫

Ωb

ρλχ (u− uS) dV , (17)

M =

∫

Ω

r× (∇ · σ) dV =

Mproj︷ ︸︸ ︷
D

Dt

∫

Vb
r× (ρu) dV +

Mpenal︷ ︸︸ ︷∫

Ωb

r× [ρλ (u− uS)] dV . (18)

where Ωb and Vb and are the control and material volume of the solid body. We further identify the
horizontal component opposite to the incident flow as thrust, and the transverse component in the
direction of heave as lift,

T = −F · x̂ , (19)

L = F · ŷ . (20)

Following a similar approach, we can compute the power required to overcome the hydrodynamic
loads and actuate the fin. Starting from the general definition (Winter, 1987) applied to a control
volume coinciding with the body ,

P = −
∫

Ωb

∇ · (σu) dV = −
∫

Ωb

[(∇ · σ) · u +∇u : σ] dV , (21)

we can use the incompressible Newtonian stress tensor σ = −pI + µ
(
∇u +∇uT

)
, where p is the

fluid pressure, I the identity tensor and T the transpose operator, to express the power as

P = −
∫

Ωb

µ∇u :
(
∇u +∇uT

)
dV − D

Dt

∫

Vb

ρ

2
u · u dV −

∫

Ωb

λχ (u− uS) · u dV . (22)

3 Problem definition

In this section we will first explain our choice of flow regime and fin details, determined by Reynolds
and Strouhal number, the fin geometry, and the rigid-body fin kinematics. We will then explain
our parametrization choices for the fin curvature through κn. Finally we will discuss the numerical
settings and performance metrics used to generate the results.

1Note that the fin pitches around the z-axis, so the origin of the position vector r is always at the center of rotation.
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3.1 Flow regime and fin details

We model the fin shape as a simple trapezoidal planform pitching around the leading edge, to simplify
the large variety of fin shapes observed in nature. As discussed more in depth in our previous work
(Fernández-Gutiérrez and van Rees, 2020), we choose H = 0.6C as leading edge height and 1.35C
as trailing edge height inspired by the caudal fin of a bluegill sunfish as a representative ray-finned
fish. The fin moves with rigid-body kinematics consisting of the following harmonic heaving and
pitching motion:

y(t) = Ay sin(2πft) , (23)

θ(t) = Aθ sin(2πft+ ϕθ), (24)

where f is the flapping frequency, Ay the heaving amplitude, Aθ the pitching amplitude and ϕθ the
phase angle between heave and pitch. The rigid-body components of the body velocity us are then
imposed as

uT (t) = ẏ(t)ŷ , (25)

uR(r, t) = θ̇(t)ẑ× r . (26)

The free parameters are chosen based on a review of existing studies in this realm. Specifically, we
set Ãy = Ay/C = 0.4, consistent with the suggestion of Triantafyllou et al. (2000) of amplitudes of
heave motion comparable to the chord lengths; we use Aθ = 30◦, following the biological observations
shown by Hu et al. (2016); and we choose ϕθ = −90◦, as suggested by Read et al. (2003) for optimum
efficiency.

The flow regime, characterized by the Reynolds number Re = U∞C/ν, is limited by the com-
putational requirements of the solver. In this work we set it to Re = 1500, which is lower than
most adult fish but representative of smaller and early-stage fishes. Lastly, the flapping frequency
is non-dimensionalized through the Strouhal number St = 2fAy/U∞, where U∞ is the free-stream
velocity magnitude. We fix the Strouhal number St = 0.3, consistent with experimental observations
of real fish and theoretical scaling laws at this Reynolds number (Triantafyllou et al., 2000; Gazzola
et al., 2014a; Floryan et al., 2018).

3.2 Curvature parametrization

Though the algorithm presented in section 2.1.2 is general, we choose here a simple parametrization
of κn that enables us to investigate a representative range of curvature variations. First, we set
the curvature to a constant along each ray, so that κn(u, v, t) = κn0 (v, t), which mimics the type of
leading-edge control demonstrated in real fish (Alben et al., 2007). Second, we define the leading-edge
curvature as a linear combination of uniform and parabolic curvature profiles across the span of the
fin. Based on experimental observations (Flammang and Lauder, 2008), we further choose to apply
the uniform curvature variations in-phase with the heave, and the parabolic curvature variations
with a 90° phase-shift, so that the top and bottom rays lead the center ray. Mathematically, this
leads to the following non-dimensional normal curvature parametrization

κn0 (v, t) =
c(v)

C

[
aκ0 cos(β(v)) sin(2πft) + aκ2 v

2 cos(2πft)
]
, (27)

reducing the curvature characterization to two coefficients modulating the chordwise (aκ0 ) and
spanwise (aκ2 ) curvature variations, respectively. The inclusion of the overall chord in equation (27)
makes the the imposed LE curvature distribution independent of the chord length distribution across
rays. Further, the cos(β(v)) factor in the first term accounts for the orientation of each ray, so that
aκ0 controls purely cylindrical deformation modes of the fin (see appendix B in the supplementary
data for more details).

Combined with our choice of heaving and pitching kinematics, figure 2 demonstrates the effect
of positive and negative values of our two parameters aκ0 and aκ2 on the fin shape variations, with
aκ0 = aκ2 = 0 corresponding to a rigid fin.
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Figure 2: Horizontal cross sections taken at z/C = {0.000, 0.175, 0.350, 0.525} under various cur-
vature regimes obtained within the two-dimensional parametrization (aκ0 , aκ2 ). Shaded background
indicates the time step plotted in the 3D view on the left.
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3.3 Numerical settings

The spatial resolution throughout the simulations is set by a uniform grid spacing of ∆x = C/200,
following the grid convergence analysis presented in appendix C in the supplementary data. The
temporal resolution is fixed by a Lagrangian CFL time step constraint of LCFL = 0.1 (van Rees et al.,
2011). The computational domain increases dynamically to capture the support of the vorticity field
as the wake grows.

The imposed rigid-body kinematics are ramped-up during the first flapping period through mul-
tiplication with a quarter period of a sine function, which lets the flow reach periodic conditions
after this first cycle as shown in appendix A in the supplementary data. The time-varying thrust,
lift, and power coefficients are defined as

CT (t) =
T (t)

0.5ρAU2∞
, (28)

CL(t) =
L(t)

0.5ρAU2∞
, (29)

CP (t) =
P (t)

0.5ρAU3∞
, (30)

where T , L, and P are the thrust, lift, and power computed from the flow field at a given time
step following equations (19), (20), and (22), and A is the reference fin area taken as twice the
mid-surface area.

Since the thrust and power coefficients have periodicity of 2f , we simulate until non-dimensional
time ft = 1.5, and compute the cycle-averaged thrust and power coefficients (CT and CP , respec-
tively) over the last simulated half cycle (1 ≤ ft ≤ 1.5):

CT =

∫ 1.5/f

t=1/f

CT (t) dt , (31)

CP =

∫ 1.5/f

t=1

CP (t) dt . (32)

We can then define the propulsive efficiency as

η =
CT

CP
. (33)

In the following, we will primarily rely on CT , CP , and η, as defined above, as metrics for
hydrodynamic performance.

4 Effect of curvature variations on hydrodynamic perfor-
mance

Using the numerical framework and heave/pitch kinematics as described above, we simulated a set
of flapping fins with curvature parameter variations aκ0 ∈ [−0.4, 0.8] and aκ2 ∈ [−0.5, 0.75], with
aκ0 = aκ2 = 0 corresponding to a rigid fin. For each simulation, we recorded the mean thrust and
power coefficients, and computed the propulsive efficiency. These results are shown as contour
plots in figure 3, visualizing the effect of changing the curvature parameters on the hydrodynamic
performance metrics. A variation of these plots is provided in appendix D in the supplementary
data, highlighting the curve that maximizes efficiency for a given range of thrust coefficients.

Based on figure 3, the maximum computed thrust occurs at aκ0 = 0.3 and aκ2 = 0.1, and is about
15% larger than that for a rigid fin. Further, we can see that positive values of aκ0 generally improve
the thrust coefficient up until the maximum, after which the thrust coefficient decays. The effect of
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results from Navier-Stokes simulations (black dots), and an interpolated contour plot based on these
results, as a function of the two curvature parameters aκ0 and aκ2 .
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Figure 4: Fin shape (left), vorticity field at v = 0 (middle), and 3D vorticity field (right) for the
rigid configuration (top, aκ0 = 0.0, aκ2 = 0.0), the maximum thrust configuration (middle, aκ0 = 0.3,
aκ2 = 0.1), and the maximum efficiency configuration (bottom, aκ0 = −0.2, aκ2 = 0.5), all at ft = 1.5.
Both the 2D and 3D vorticity fields visualize, and are colored by, ωz.

spanwise curvature variations, as measured by aκ2 , is less pronounced than the chordwise curvature
effect.

For efficiency, the maximum occurs at aκ0 = −0.2 and aκ2 = 0.25, leading to about 18% im-
provement over the rigid fin. The increase in efficiency is driven by a strong decrease of the power
coefficient as aκ0 decreases. We also observe a small reduction of the power with increasing spanwise
curvature parameter, so that the maximum efficiency is achieved at positive aκ2 .

Figure 4 shows the vortical structures at ft = 1.5 for the rigid fin, and the conditions correspond-
ing to maximum computed thrust and maximum computed efficiency, respectively. We observe an
increase in the intensity of the vortices shed from the fin for the maximum thrust, whereas the
maximum efficiency case has a much weaker wake signature.

All these results are relatively invariant to the planform shape, as demonstrated in appendix E
in the supplementary data, which shows similar numbers for a square planform with H = C.

The next section provides an in-depth analysis of the effect of aκ0 and aκ2 on the thrust and
efficiency of the fin, based on the described results.

5 Analysis of the effect of curvature variations

In the following two subsections, we investigate in detail the effect of our chordwise and spanwise
curvature parameters on the hydrodynamic performance of the fin, guided by the above observations.
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Figure 5: Left : Horizontal cross sections at ft = 1.25 of the fin with aκ0 = 0.8 and aκ2 = 0. Right :
Cross sections at v = 0 of the curved and κ-pitch configurations during the down-stroke half-cycle,
visualized at seven equidistant time instances between ft = 0.25 (lightest) and ft = 0.75 (darkest).

5.1 Effect of chordwise curvature parameter aκ0

As shown in the previous section, chordwise deformation has the largest impact on both thrust and
power, which is qualitatively consistent with previous results (Zhu and Shoele, 2008; Esposito et al.,
2012). In this section we focus on the underlying mechanisms by considering only configurations
with aκ2 = 0.

Geometrically, by varying aκ0 , the mid-surface plane rolls over a vertical cylinder of radius C/aκ0 ,
as shown in appendix B in the supplementary data. As aκ0 increases, this means the curving fin is
different from the reference rigid fin in two aspects. First, the line connecting leading and trailing
edge of the fin also undergoes additional lateral trailing-edge excursions (see figure 5). Second,
on top of the modified trailing edge kinematics, the fin experiences a camber-like deformation. The
former effect can be described as an additional pitching contribution, on top of the reference pitching
kinematics (24). Based on the deformation mode considered, this additional pitching term can be
derived as θκ(t) = 0.5aκ0 sin(2πft). With this insight, we can then decompose the effect of aκ0 into
two characteristics: the first increases the pitch variations of the reference rigid fin with θκ(t), and
the second adds the chordwise curvature on top of this rigid-body motion without affecting the
leading- and trailing-edge locations.

We investigate the first effect by simulating a rigid fin undergoing altered pitch kinematics given
by

θκ-pitch(t) = −Aθ cos(2πft) + 0.5aκ0 sin(2πft) , (34)

while keeping the geometry and heave kinematics the same as the reference rigid fin. This config-
uration, which we denote as the κ-pitch case, is also parametrized by aκ0 , though the fin does not
undergo any curvature variations.

Figure 6 compares the thrust, power, and efficiency of the curved and κ-pitch configurations for
the range of aκ0 studied, where again aκ0 = 0 corresponds to the rigid fin with unaltered pitching kine-
matics. We observe that the κ-pitch case qualitatively reproduces the effect of aκ0 on the mean thrust
coefficient, leading to a decrease in thrust for negative values and the existence of a maximum at
finite aκ0 > 0. The effect of aκ0 on power and efficiency are also qualitatively comparable between the
curved and κ-pitch configurations. This provides our first insight into why the chordwise curvature
variations lead to increased thrust coefficient.

However, quantitatively there is a significant increase in the maximum thrust coefficient achieved
by the κ-pitch case over the optimally curved case. Further, the peak thrust for the κ-pitch fin occurs
at aκ0 = 0.95, versus aκ0 = 0.28 for the curved fin. Since power consumption is about equal between
the two cases, the efficiency of the κ-pitch fin at high thrust values (aκ0 > 0) is significantly higher
than for the curved fin. The optimal efficiency, on the other hand, is achieved at much lower thrust

13



-0.5 0 0.5 1 1.5
0.05

0.1

0.15

0.2

0.25

0.3

-0.5 0 0.5 1 1.5
0

1

2

3

4

5

-0.5 0 0.5 1 1.5

0.05

0.1

0.15

0.2

0.25

Figure 6: Cycle-averaged thrust coefficient (left), power coefficient (center), and efficiency (right) as
a function of the chordwise curvature parameter aκ0 , for the fin with curvature variations (in blue)
and the rigid fin with κ-pitch kinematics (in orange).

values – here the curved fin outperforms the κ-pitch one slightly, which we will discuss more at the
end of this subsection.

To understand why the κ-pitch kinematics are able to practically double the thrust coefficient
(at aκ0 = 0.8) of the reference rigid fin (aκ0 = 0), the left panel of figure 7 compares the pitch angle
variations as a function of time for the reference rigid fin (in red) and the κ-pitch fin (in orange).
Note that, by construction, the pitch angle variations of the κ-pitch configuration (in orange) are
identical to that of the curving fin (in blue) at equal values of aκ0 . The plot shows how, compared
to the reference rigid fin, the κ-pitch configuration not only achieves an increase in maximum pitch
angle, but also affects the phase shift with the heave motion. In fact, we can estimate the effective
pitch amplitude and phase values of the κ-pitch kinematics, using equation (34), as follows:

Aκ-pitch
θ ≈ max(θ) =

√
A2
θ + (0.5aκ0 )

2
, (35)

ϕκ-pitch
θ ≈ 2π

(
tmax(θ) − tmax(y)

)
=
π

2
− arctan

(
0.5aκ0
Aθ

)
. (36)

For aκ0 = 0.8, where the κ-pitch kinematics achieve maximum thrust, we then find Aκ-pitch
θ = 37.8◦

and ϕκ-pitch
θ ≈ −52.6◦.

When analyzing the isolated effect of pitch amplitude and phase angle variations on our reference
rigid fin, we see why the altered kinematics of the κ-pitch configuration are virtuous. Appendix F in
the supplementary data shows that changing the phase shift from −90° to −45° doubles the thrust
coefficient of the reference rigid fin, and an independent increase in pitch amplitude from 30° to 35°
also leads to a modest increase in thrust. The corresponding pitch angle variations are shown in
figure 7 (left) as the silver and brown lines, respectively. The κ-pitch configuration then combines
a pitch amplitude and pitch phase shift that are very close combinations of the individual optimal
values for the reference rigid fin with sinusoidal pitch variations. As a side note, we observe also in
appendix F in the supplementary data that in terms of efficiency, the −90° phase angle is optimum,
consistent with the findings of Read et al. (2003).

To summarize until here, we have observed that the original curvature variation, as dictated by
aκ0 , provides an altered pitching kinematics that increases the mean thrust coefficient achieved by
the fin. We can reproduce this effect with a rigid fin, both using a combined effective amplitude
and phase shift, as well as through independent variations of amplitude and phase shift. Both
indicate that the significant driver in thrust increase is the phase shift change from −90° to ≈ −50°.
In the remainder of this subsection we will focus on two open questions: the first asks why this
altered pitching kinematics improves performance, and the second asks why the κ-pitch fin provide
significantly larger thrust values for all aκ0 > 0 compared with the curving fin.

We answer the first question by examining the trailing edge (TE) lateral velocity as shown in the
right panel of figure 7 for all cases discussed above. We observe that the amplitude of the TE lateral
velocity increases about 1.5 fold between the reference rigid fin and the κ-pitch configuration with
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Figure 7: Pitch angle (left) and trailing edge lateral velocity (right) during a flapping cycle, for the
rigid fin with reference kinematics (red), the fin with curvature variations aκ0 = 0.8 (blue), and the
rigid fin with κ-pitch kinematics using aκ0 = 0.8 (orange). Also shown are the rigid fin results with
harmonic pitch variations with amplitude Aθ = 35° (brown) and with phase shift ϕ = −45° (gray).

aκ0 = 0.8, leading to an increase in mean thrust coefficient by a factor of 2.1. This is consistent with
the added mass effect for pitching fin propulsion (Garrick, 1936; Gazzola et al., 2014b; Smits, 2019)
which predicts that the thrust coefficient is proportional to the square of the lateral velocity. The
TE velocity amplitude does not solely predict performance: the timing of maximum TE velocity
compared to the fixed heaving kinematics also affects the thrust coefficient. This is a much more
subtle interaction, though, that would require further investigation.

The second open question concerns the difference between the fin with curvature variations and
the κ-pitch configuration, for the same value of aκ0 . To address this, we plot the time evolution of
the difference in thrust and lift coefficients between the curving fin and the κ-pitch configuration in
figure 8. For reference, the time evolution of the individual force coefficients is included in appendix G
in the supplementary data. From figure 8, we can identify two reasons for the lower thrust coefficient
of the chordwise curving fin compared to the κ-pitch fin. First, for times 1 ≤ ft ≤ 1.2, corresponding
to the second half of the upstroke just before reversal of the heave kinematics, the difference in CT
is large whereas the difference in CL is relatively small. This implies an increased drag force on the
curving fin, consistent with the curved profile in this part of the stroke where the fin becomes aligned
with the inflow. The top-right panel of figure 8 confirms that the total force vector is angled more
vertically for the curved case compared with the κ-pitch case. Second, for times 1.25 ≤ ft ≤ 1.5,
corresponding to the first part of the downstroke after the heave motion has reversed, we observe
that the κ-pitch configuration experiences both larger thrust and larger lift coefficients. This means
that the overall force vector on the fin is larger for the κ-pitch fin. We attribute the decreased force
of the chordwise curving fin to the camber, which essentially is ‘reversed’ as the cross-section slopes
upwards in the direction of the force resultant. The bottom-right panel of figure 8 corroborates this
visually. Both of these effects are repeated every ft = 0.5 times due to the symmetry of the up- and
down-strokes. These two reasons (additional profile drag and reverse camber) lead to the reduced
performance of the chordwise curving fin compared to the κ-pitch rigid fin.

So far, this subsection has focused on the regime aκ0 > 0, where significant gains in the mean
thrust coefficient are observed. However, our results also show that negative values of aκ0 monotoni-
cally decrease the power required to move the fin, and increase the efficiency η. The power reduction
is apparent from figure 9, showing the power components associated with heave and pitch, defined
as P (L) = −Lẏ and P (M) = −M · θ̇, respectively. The plot demonstrates that the power reduction
is approximately equally distributed between the heave and pitch kinematics. The deformation-
related power coefficient, Cdef

P = CP − CTP − CMP , decreases as well, but this reduction is relatively
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Figure 8: Left : Difference in thrust and lift coefficients between the curved and κ-pitch configurations
with aκ0 = 0.8. Solid and dashed lines identify the upstroke and downstroke half-cycles, respectively.
Right : Vorticity contours at the center plane. Incident velocity vector and its horizontal and vertical
components annotated at the LE (u = [U∞,−ẏ]). Fluid force vector and its horizontal and vertical
components annotated at fin centroid (F = [−T, L]).

insignificant compared to the other two components. To distinguish the effects of fin camber and
trailing edge kinematics in the regime aκ0 < 0, we can revisit figure 6. Both the κ-pitch and the
curving fins reduce their power coefficients equally, indicating that the power reduction at negative
aκ0 is due to the reduced trailing edge velocity. However, only the curving fin demonstrates a peak
in efficiency at aκ0 < 0, since the fin camber leads to a slight increase in thrust coefficient over the
κ-pitch configuration for the same values of aκ0 . Consequently, the efficiency peak of the curving fin
is higher than that of any of the rigid fins, and achieved at a negative aκ0 value.

Overall, this behavior is consistent with intuition – negative values of aκ0 correspond to curva-
ture ‘with the flow’, i.e. qualitatively similar to elastic deformation, as well as a hydrodynamically
beneficial camber induced during the thrust-generation part of the stroke.

5.2 Effect of spanwise curvature parameter aκ2

As discussed previously, spanwise curvature variations as parametrized by aκ2 predominantly affect
the cycle-averaged power coefficient, which monotonically decreases with increasing values of aκ2
within the range of curvatures simulated. Figure 9 shows that this power reduction originates
almost exclusively from the pitch kinematics. In this section we will investigate this effect further,
considering only configurations with aκ0 = 0.

Similar to the chordwise curvature in the previous section, the spanwise curvature can be de-
composed into two components: the spanwise twisting of otherwise straight rays, and the actual
curving of the rays without further affecting their trailing edge locations. We can isolate the former
component starting from a rigid fin, and adjust the pitch variation across the height of the fin to
match the LE-TE direction associated with the aκ2 curvature profile

θκ-twist(v, t) =
(
−Aθ + 0.5aκ2v

2
)

cos(2πft) . (37)

We name this configuration κ-twist, and note that we have to relax the membrane inextensibility
constraint to accomplish the resulting shape.

Figure 10 compares the behavior of the deformed fin with that of the κ-twisted fin, across the
range of aκ2 values considered. The qualitative trends are similar, with increasing aκ2 values increasing
thrust, decreasing power, and increasing efficiency for both the curving and the κ-twist fins. This
demonstrates that the spanwise twist is the predominant factor underlying these hydrodynamic
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Figure 9: Cycle-averaged power coefficient components linked to heave (left) and pitch (right)
computed from Navier-Stokes simulations (black dots), and an interpolated contour plot based on
these results, as a function of the two curvature parameters aκ0 and aκ2 .

-0.5 0 0.5 1

0.1

0.12

0.14

0.16

0.18

0.2

-0.5 0 0.5 1
0.4

0.6

0.8

1

1.2

-0.5 0 0.5 1
0.14

0.16

0.18

0.2

0.22

Figure 10: Cycle-averaged mean thrust coefficient (left), mean power coefficient (middle), and ef-
ficiency (right) as a function of the spanwise curvature parameter aκ2 , for the fin with curvature
variations (blue) and the κ-twist configuration (green).
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Figure 11: Pitch angle (left) and trailing edge lateral velocity (right) of the top ray during a flapping
cycle for the rigid fin (red), and the fin with spanwise curvature variations aκ2 = −0.5 (purple) and
aκ2 = +0.5 (yellow).

characteristics, rather than the actual curvature of the rays. We observe a slight increase in peak
efficiency of the curving fin compared with the κ-twist configuration indicating that here, again, the
camber can improve efficiency.

To understand the effect of κ-twist kinematics on the performance, we can examine equation (37)
further. For our spanwise curvature parametrization, the spanwise curvature variations are in phase
with pitch but of the opposite sign. Positive values of aκ2 then decrease the effective pitch angle,
and vice versa, with the maximum effect noticeable at the top and bottom of the fin, away from the
centerplane. This is observed in figure 11, showing that the pitch angle and TE velocity amplitude of
the top ray during a flapping cycle significantly reduces when aκ2 is increased. Consequently, since the
outer parts of the fin undergo smaller pitching amplitudes, the associated power reduction is observed
predominantly in the pitching component CMP . Further, the reduced power and increased efficiency
with increasing spanwise curvature parameter are consistent with the smaller vortical signature of
the wake, as shown in figure 12. The twisted configuration with aκ2 = 0.5 leads to significantly
smaller tip vortices shed from the outer edges of the fin, compared with both rigid and aκ2 = −0.5.
Lastly, we note that the qualitative deformation of the fin when aκ2 > 0 is intuitively consistent
with the elastic deformation of a finite-span flapping fin: the outer edges will curl inwards during
the heave reversal, lagging behind the central rays of the fin. Together with the previous results,
this provides further indication that the curvature variations of passively deforming 3D fins can lead
to higher propulsive efficiency that those of rigid fins, as measured solely through hydrodynamic
performance.

6 Concluding remarks

Our results describe and analyse the hydrodynamic effects of leading-edge actuated curvature vari-
ations on flapping fin performance. We have demonstrated that such actuation can lead to an
increase in efficiency by about 18% and mean thrust coefficient by about 15% compared to a rigid
fin. Within our parametrization, thrust is maximized when considering some degree of positive cur-
vature, both chordwise and spanwise, while efficiency benefits from negative chordwise and positive
spanwise curvature deformations. Throughout, the chordwise parameter dominates the hydrody-
namic performance, with spanwise curvature variations only providing small additional changes in
performance.

Leading-edge curvature actuation not only introduces a camber in the fin cross-section, but also
affects the trailing-edge kinematics. To investigate these two effects separately, we investigated
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Figure 12: Vorticity field of the fin for the sole spanwise curvature configuration with aκ2 = −0.5 (left)
and aκ2 = 0.5 (right), both at ft = 1.5 and with aκ0 = 0. The vorticity structures visualize, and are
colored by, ωz.

rigid fins without camber whose pitch kinematics are tuned to the trailing edge kinematics of the
curving fin. The analysis shows that the increase in thrust due to chordwise curvature against
the flow can also obtained by a rigid fin with modified pitching kinematics; in fact, the rigid fin
outperforms the curving fin, because the camber associated with the chordwise curvature variations
is hydrodynamically disadvantageous. On the other hand, the increase in efficiency due to curvature
with the flow is predominantly caused by the hydrodynamically advantageous camber in this regime,
together with a small effect of spanwise twist that reduces the intensity of the shed tip vortices.

Overall, throughout this work we have found that the performance benefits of fins with leading-
edge curvature actuation can in large part be reproduced by rigid fins with suitably adapted pitch
kinematics, ignoring the small benefits of camber changes on efficiency. This poses an interesting
question, namely to compare the benefits of these different types of actuation: the trade-off between
modulating the phase and amplitude of leading-edge curvature variations, versus those of the pitch
kinematics. In nature, the kinematics of the flapping fin are rarely as simple as the idealized case
considered here, since lateral motions and body undulations combine to give rise to what we model
here as heaving and pitching motions in a uniform inflow. A possible benefit of leading-edge curvature
actuation is then that it provides a localized approach that can be controlled independent of the body
and swimming motions. This could improve the swimmer’s versatility and responsiveness, enabling
it to use local muscle actuation to deliver more thrust or reduced power without adapting the body
undulations that give rise to the pitching kinematics. Further, specifically for the high-efficiency
curvature regimes considered here, part of our imposed deformations could be realized passively
through elastic deformations to the hydrodynamic loading, making such swimming modes simpler
to control. Taken together, a combination of the right structural design of the fin together with
leading-edge curvature actuation could provide a simple, versatile, and responsive way to achieve
the hydrodynamic benefits described in this work.

Lastly, we note two distinct other contributions of this work. First, we have presented a geomet-
ric and numerical framework to construct ray-based fin-shapes with imposed ray curvature profiles.
Second, we have demonstrated that rigid fins with modified kinematics can be used as a qualitative
and, to some extent, quantitative proxy for fins with leading-edge curvature actuation. Both contri-
butions will be used in future studies. This future work will be aimed at further separate the effect
of trailing edge kinematics from the changes in camber of the fin, and to design curvature actuation
patterns that can fully exploit the benefits of both.
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Supplementary Data:

Effect of leading-edge curvature actuation on flapping fin

performance
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A Verification

To evaluate the accuracy of the numerical scheme, we investigate the flow around an ellipsoid heaving
and pitching around its centroid, and compare our force coefficient results to those presented in
Dong et al. (2006). Rather than representing the ellipsoid directly through its continuum geometric
description, we use our algorithm as described above to the describe the shape. Specifically, twenty-
one rays are distributed along the ellipsoid height such that

vi = 0.5 cos

(
π
Nr − i
Nr − 1

)
, i = 1..Nr . (1)

The aspect ratio of the ellipse is az/ax = 4, where ax and az are the ellipsoid length and height,
respectively. We adopt the same configuration as (Dong et al., 2006) by setting Re = U∞ax/ν = 200,
St = 0.3, Ãy = 0.5, Aθ = 30◦, and ϕθ = −90◦.

Figure 1 compares the reported time-history of thrust coefficients with the values from our
computational model. We include the time-series obtained with various grid resolutions, compared
with the data taken from the reference paper.

We obtain a very similar match, although some differences appear in peak amplitude for both
thrust and lift coefficients. Our computed forces are, however, converged, as shown by the grid
resolution study. Together with the previous validations of the methodology (Gazzola et al., 2011;
Bernier et al., 2019), this validation case provides further confidence in our results.

B Chordwise curvature parametrization

We can interpret a configuration with sole chordwise curvature as a deformed shape that is purely
characterized by the cross section of the mid-surface by the x − y plane. Under the assumption
of uniform κn along each ray adopted in this work, this cross-section follows a circular trajectory
1. This implies that the deformed mid-surface must be embedded in a cylinder of radius C/aκ0 as
shown in figure 2, where aκ0 is the coefficient modulating the non-dimensional chordwise curvature
(section 3.2). However, we show here that this shape cannot be generated with constant κn across
rays when the ray angle β 6= 0, which means a correction factor is needed in the definition of κn to
account for the direction of each ray.

∗wvanrees@mit.edu
1Note that the deformed cross-section remains at the x− y plane since there is no spanwise curvature, so κt(u, v =

0, t) = κg(u, v = 0, t) = 0
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Figure 1: Comparison between our results (solid) and the results adapted from Dong et al. (2006)
(red dashed) of the thrust coefficient time-series for a heaving and pitching ellipse with aspect ratio
az/ax = 4.

Figure 2: The fin shape (in blue) follows the surface of a cylinder with radius C/aκ0 in a sole chordwise
curvature configuration as determined by aκ0 .
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Starting from equations (2.3)-(2.4), we recall that the ray shape is reconstructed starting from
the LE through integration along its chord. The LE is aligned with the z-axis, and, consistent with
the rest of this work, we consider the case where the TE is also described by a straight line parallel
to the z-axis.

Denoting ϑ as the angular coordinate over the cylinder containing the mid-surface, as shown in
figure 2, we can establish the following geometrical relation:

ϑ =
S

R
=
u c(v) cosβ(v)

C/aκ0
= u aκ0 , (2)

since, for a cylindrical deformation of a fin with straight TE, we can directly write C = c(v) cosβ(v).
Using the definition of a cylindrical surface, we can determine the desired tangent and normal vectors
for any ray at inclination angle β(v) as

t̂ = cos(β) cos(ϑ)x̂ + cos(β) sin(ϑ)ŷ + sin(β)ẑ , (3)

n̂ = − sin (ϑ) x̂ + cos (ϑ) ŷ . (4)

From this, we can determine analytically the non-dimensional normal curvature κn(v) using its
geometrical definition from equation (2.2),

κn =
dt̂

du
· n̂ = aκ0 cos(β) , (5)

In dimensional form this expression becomes,

κn

c(v)
=

aκ0
c(v)

cos(β(v)) =
aκ0
C

cos2(β(v)) , (6)

The above derivation demonstrates that for a cylindrical fin deformation, the correction factor
cos(β(v)) in equation (3.5) is required to account for the particular direction of each ray.

C Grid convergence

The trapezoidal fin described in section 3 is used here to evaluate the grid convergence of the
numerical scheme. In particular, we focus on three characteristic configurations from the range
of simulations analyzed in section 4: the rigid fin, the curved fin that yields the largest efficiency
(aκ0 = −0.2 and aκ2 = 0.25), and the curved fin that produces the larger thrust (aκ0 = 0.3 and
aκ2 = 0.1).

Table 1 summarizes the cycle-averaged thrust and power coefficients computed with four dif-
ferent grid resolutions of 100, 150, 200, and 250 points along C. We include also in table 1 the
difference each in metric with respect to the finest resolution, defined for a generic variable φ as
∆φ = |φ/φnx/C=250 − 1|. In addition, figure 3 shows the convergence of time-series of thrust and
power coefficients computed with each grid resolution for the configuration generating the maximum
thrust, which yields the largest flow perturbations.

The results show that the power coefficient is very robust to the resolution, both in terms of
its time evolution as well as the time average. The time evolution of the thrust coefficient is also
converging well within this resolution range, but the average value of a cycle is still sensitive to
resolution changes. Based on these data, we have chosen to use 200 elements per chord as a balance
between computational speed and accuracy. We emphasize that we are specifically interested in the
effect of the different parameters, and the data in this section shows that this resolution is sufficient
to predict trends in parameter variations, as well as a sufficiently close quantitative estimate of the
metrics. The fact that the power coefficient is especially insensitive to the resolution further gives us
confidence that our computed efficiency, defined as η = CT /CP , also provides sufficiently accuracy
to support the results of this work.
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rigid: max. thrust: max. efficiency:
aκ0 = 0, aκ2 = 0 aκ0 = 0.3, aκ2 = 0.1 aκ0 = −0.2, aκ2 = 0.25

nx/C CT ∆CT CP ∆CP

100 0.122 28.7% 0.832 0.7%
150 0.151 12.0% 0.829 0.3%
200 0.164 4.3% 0.827 0.1%
250 0.172 – 0.827 –

CT ∆CT CP ∆CP

0.140 29.6% 1.344 0.1%
0.174 12.7% 1.341 0.3%
0.189 4.8% 1.343 0.2%
0.199 – 1.346 –

CT ∆CT CP ∆CP

0.076 35.7% 0.479 0.2%
0.100 15.0% 0.478 0.0%
0.112 5.4% 0.477 0.0%
0.118 – 0.477 –

Table 1: Thrust and power coefficient variation with grid resolution. We report both the values
of thrust and power coefficient for each case, as well as the difference with respect to the finest
resolution simulated.
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Figure 3: Thrust (left) and power (right) coefficients of the fin with various grid resolutions for the
maximum thrust conditions (aκ0 = 0.3 and aκ2 = 0.1).
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Figure 4: Efficiency (left) and cycle-averaged power coefficient (right) contours, overlapped with
thrust contour lines, as a function of the two curvature parameters aκ0 and aκ2 . Dashed lines highlight
the thrust contour lines crossing the rigid and maximum efficiency configurations. Red lines connect
that points that, for each of the CT contours, achieve maximum efficiency (or equivalently the
minimum power), varying between the CT of maximum thrust and the CT of the maximum efficiency
solutions. Shaded red areas indicate the range where efficiency is higher than 95% of the maximum
efficiency for each thrust value along the red line.

D Constant thrust contour plot

Rather than purely maximizing thrust or efficiency, a more relevant design metric is to provide a
given thrust to maintain steady incident stream velocity U∞ with the least power consumption, i.e.
with the largest efficiency possible. Graphically, we can visualize the potential gains from curvature
under this design approach by observing the power or efficiency variations along a given thrust
contour line, as shown in figure 4. Compared to the rigid case, we can appreciate how curving the
fin provides a marginal increase in efficiency. We can attain more substantial gains if the fin shape
can be controlled, in which case we can tailor the design to yield the required thrust under the
conditions of optimum efficiency. The red lines in figure 4 indicate the conditions that maximize
the efficiency, or equivalently minimize the required power to actuate the fin, for a given thrust.
The shaded regions bound the region where, for each value of CT , the efficiency is within 95% of its
maximum value for that specific CT .

5



0.04

0.
04 0.

06

0.06

0.06

0.
08

0.08

0.08

0.1

0.
1

0.1

0.1

0.
12

0.12

0.12

0.12

0.14

0.14

0.
14

0.14

0.14

0.
16

0.16

0.16

0.1370.137

0.
13

7

0.137

0.137

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.
4

0.
4

0.
4

0.
6

0.
6

0.
6

0.
8

0.
8

0.
8

1

1

1

1.
2

1.
2

1.
2

1.
4

1.
4

1.4

1.
6

1.
6

0.
67

2

0.
67

2

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.4

0.6

0.8

1

1.2

1.4

1.6

0.06

0.
08

0.1

0.
1

0.1

0.1

0.12
0.

12

0.12

0.12

0.14
0.14

0.
14

0.14

0.16

0.16

0.
16

0.16

0.18

0.
18

0.18

0.
18

0.22

0.22

0.
22

0.22

0.
20

4

0.204

0.
20

4

0.204

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.05

0.1

0.15

0.2

Figure 5: Cycle-averaged thrust (top-left) and power (top-right) coefficients and efficiency (bottom)
results from Navier-Stokes simulations of a square fin (black dots), and an interpolated contour plot
based on these results, as a function of the two curvature parameters aκ0 and aκ2 .

E Square fin parametric analysis

The impact that the fin taper from its trapezoidal configuration has on thrust and efficiency can be
assessed by computing the flow around an square fin, characterized by β(v) = 0 and H = C, and
whose results are displayed in figures 5-6.

Overall, we observe that the same trends of the trapezoidal fin are kept, with a small decrease
in the cycle-averaged thrust magnitudes of the square fin.
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Figure 6: Square fin shape (left), vorticity field at v = 0 (middle), and 3D vorticity field (right) for the
rigid configuration (top, aκ0 = 0.0, aκ2 = 0.0), the maximum computed thrust configuration (middle,
aκ0 = 0.4, aκ2 = 0.2), and the maximum computed efficiency configuration (bottom, aκ0 = −0.2,
aκ2 = 0.25), all at ft = 1.5. Both the 2D and 3D vorticity fields visualize, and are colored by, ωz.
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Figure 7: Cycle-averaged thrust coefficient (left), power coefficient (center), and efficiency (right) of
the rigid fin as a function of the pitch angle amplitude (top) and phase angle with respect to heave
(bottom).

F Effect of pitch kinematics variations on rigid fin perfor-
mance

Figure 7 shows the effect of changing the pitch amplitude (top) or the pitch phase (bottom) on
the thrust and power coefficients, and the efficiency (left-to-right). In all cases the fin undergoes
harmonic heave and pitch motions without curvature deformations.

G Thrust and lift coefficient time series

Figure 8 shows the time evolution of thrust (left) and lift (right) coefficients for the rigid fin (in red),
the fin with curvature variations aκ0 = 0.8 and aκ2 = 0 (in blue), and the κ-pitch configuration with
aκ0 = 0.8 (in yellow).
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Figure 8: Thrust (left) and lift (right) coefficients variation during a flapping cycle of the rigid,
curved, and κ-pitch configurations with aκ0 = 0.8. Solid and dashed lines identify the upstroke and
downstroke half-cycles, respectively.
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