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Fig. 1. The geometry of thin materials often changes dramatically in response to heat and moisture. A plastic bunny and armadillo shrink in response to being
heated (left). Colors on the surfaces indicate temperature (redder is hotter). Moist paper annuli curl up as they dry, and the amount and shape of curling is
based on the paper’s thickness and whether or not the paper’s fibers are randomly or consistently oriented (right).

We present a physically accurate low-order elastic shell model that incor-
porates active material response to dynamically changing stimuli such as
heat, moisture, and growth. Our continuous formulation of the geometri-
cally non-linear elastic energy derives from the principles of differential
geometry, and as such naturally incorporates shell thickness, non-zero rest
curvature, and physical material properties. By modeling the environmental
stimulus as local, dynamic changes in the rest metric of the material, we
are able to solve for the corresponding shape changes by integrating the
equations of motions given this non-Euclidean rest state. We present mod-
els for differential growth and shrinking due to moisture and temperature
gradients along and across the surface, and incorporate anisotropic growth
by defining an intrinsic machine direction within the material. Comparisons
with experiments and volumetric finite elements show that our simulations
achieve excellent qualitative and quantitative agreement. By combining the
reduced-order shell theory with appropriate physical models, our approach
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accurately captures all the physical phenomena while avoiding expensive
volumetric discretization of the shell volume.
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1 INTRODUCTION
Consider the wrinkling and curling of a drying leaf. The drying
process corresponds to water evaporating from the internal cells, so
that the tissue contracts in volume. This process typically happens
differentially, due to having one side exposed to the sun, or having
boundaries farther away from the veins than interior, leading to
non-uniform curvature and curling of the leaf [Jeong et al. 2013;
Xiao and Chen 2011]. Related phenomena are the swelling and
wrinkling of paper when exposed to water, such as when coffee
is spilled on a notebook page, or the wrinkling and shrinking of
plastic when heated. Although the physical mechanisms in these
examples are different (shrinking of cells vs swelling of fibers vs
contraction of polymers) the effect on the objects is the same: the
intrinsic geometry of the thin objects change over time in response
to dynamic changes in the environment.
In addition to growth, wrinkling, and swelling, other phenom-

ena involving the same physics include burning of thin objects,
especially those made of curved or composite materials; wilting of
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flowers and dynamic response of plants to light or humidity; changes
and wrinkling in skin due to aging, moisture, creams; shrinking and
subsequent wrinkling of clothes; warping of wood due to one-sided
heating; etc. There is also increasing excitement about manufac-
turing processes based on differential or inhomogeneous growth,
that require precise control over the material’s rest geometry. Ex-
amples include water printers that induces paper bending [Guberan
2012], two-layer structures consisting of plastic printed on canvas
under tension [Perez et al. 2017], the various works of Nervous Sys-
tems [Rosenkrantz and Louis-Rosenberg 2018], and fabrication using
networks of filaments that stretch anisotropically when moistened.
Exploiting these technologies requires solving challenging inverse
problems, with reliable methods for solving forward problems an
essential first step.

Of course, one could capture all of these phenomena by modeling
elastic volumes explicitly using tetrahedral or hexahedral elements,
and tracking the change in moisture or heat within each element.
However, such a volumetric model is computationally expensive,
and unnecessary: structures that are thin relative to their surface
diameter ought to be able to benefit from a reduced elastic shell
model, augmented to track and account for dynamic changes in the
environmental stimulus throughout the shell volume. Yet previous
methods studying phenomena such as burning of paper [Liu et al.
2009], drying of leaves [Jeong et al. 2013], and cooking pasta [Wang
et al. 2017], have used either ad-hoc application-specific shell mod-
els, or volumetric finite elements, to account for intrinsic geometric
changes. Our goal instead is to provide a principled low-order simu-
lation methodology for such systems. This goal can be broken into
two connected challenges: to simulate the object’s elastic response
to changes in its intrinsic geometry, and to model its intrinsic ge-
ometry changes in response to environmental stimuli. In this work
we address both, resulting in a numerical method that allows re-
searchers studying growth and related phenomena to plug in any
realistic model and parameter set, and reap a working simulation.

Contribution. We present a unified low-order discrete shell model
tailored to simulating non-uniform, anisotropic, differential growing
and shrinking of thin shells. This model is needed for simulating real-
world thin materials whose geometry changes in response to stimuli
such as heat, moisture, and growth. In contrast to previous methods
for simulating such phenomena, our formulation builds on discrete
geometric shell theory and supports arbitrary rest curvature and
strain, and physical settings such as thickness and Lamé parameters.
We couple our shell model to a simple formulation of moisture and
temperature diffusion in both the lateral and thickness directions,
which takes into account anisotropy of the material grain. In a series
of experiments, we show that our model successfully predicts the
qualitative behavior of thin shells undergoing complex, dynamic
deformations due to material expansion or contraction, such as
occurs when paper is moistened or thin plastic melts.

1.1 Related Work
Simulating Burning/Melting/Swelling. Several papers look at re-

lated problems, such as evolving the boundary of a burning or
melting solid, without incorporating curling/wrinkling and other
elastic deformations of the solid. Melek and Keyser [2003; 2005]

simulate pyrolysis and heat diffusion of burning objects, but do not
consider their elastic deformation. Losasso et al [2006] proposed
tracking of the burning boundary of thin shells using an adaptive
level set on the shell. Some of the deformation can be qualitatively
approximated bymapping physical quantities like heat andmoisture
to cells of a coarse grid around the object, deforming the cage, and
mapping the deformation back onto the shell (as in Free Form De-
formation); this approach was proposed by Melek and Keyser [2007]
and adopted by Liu et al [2009].

Steps towards a more principled elastic model include the use of
a mass-spring network to represent the shell, with update rules for
how spring rest lengths should change due to physical processes
in the shell. Such rules are simplest to formulate in the case where
growth or shrinkage is uniform through the shell thickness, and the
shell can be represented using a single spring layer; Larboulette et
al [2013] present such a rule, which includes handling of themachine
direction of paper: a bias in the orientation of the fibers composing
the paper which causes the paper to swell anisotropically. We adopt
this parameter in our material model.

Most similar to our work is the method of Jeong et al [2011; 2013],
which uses a bilayer of springs (a triangle mesh and its circumcentric
dual, offset a distance from the primal mesh) to represent the shell.
The bilayer allows the method to capture differential growth due to
gradients in moisture concentration across the thickness of leaves,
leading to visually impressive simulations of leaves curling as they
dry. Our work is based on the same fundamental idea (representing
the shell using a rest strain that varies linearly through the thick-
ness) but couched in the machinery of differential geometry; our
formulation allows us to easily incorporate non-zero rest curvature,
machine direction, and a physical material model. Also somewhat
related are the CurveUps of Guseinov et al [2017], which induce rest
curvature in shells by embedding rigid pieces within a pre-stressed
substrate.

Mechanics of Shells. The mathematics underpinning the physics
of thin shells is a venerable topic: Ciarlet’s book [2000] on elasticity
as applied to shells offers a thorough overview. Our work is based
on the common Kirchhoff-Love assumption that the shell does not
undergo any transverse shear; i.e., that the shell volume is foliated
by normal offsets of the shell’s midsurface. The problem of studying
deformation of the 3D shell volume then reduces to that of defor-
mation of a 2D surface, and tools from Riemannian geometry can
be applied [Simo and Fox 1989].1 One key property of the shells we
want to simulate is that they are non-Euclidean: they do not have a
rest (strain-free) state that is realizable in three-dimensional space.
Non-Euclidean shells have received substantial attention recently
in the physics community [Kim et al. 2012; Klein et al. 2007], thanks
to their potential applications in fabrication and robotics, and their
connection to biological growth; physicists such as Sharon, Efrati,
and Ben Amar [Dervaux and Ben Amar 2008; Efrati et al. 2009b;

1We adopt the so-called “intrinsic” view [Neff 2004] that shells can be understood
in terms of Kirchhoff-Love and geometric principles, as this view allows us to easily
discretize shell physics by leveraging discrete differential geometry, but we note in
passing that the validity of the Kirchhoff-Love assumption, and of reduced shell models
in general, remains unsettled, and the literature documents numerous alternative shell
theories.
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Goriely and Ben Amar 2005; Sharon and Efrati 2010] pioneered the
study of shell mechanics in this setting.
For the sake of being self-contained, we briefly review the geo-

metric foundations of shell mechanics in Section 2.

Computational Modeling of Thin Shells. Thin shells first caught
the interest of the graphics community in the context of simulating
cloth [Baraff and Witkin 1998; Bridson et al. 2002]. These early
methods tended to focus on thin plates, i.e. shells that have a flat rest
configuration, and formulate shell dynamics in terms of either hinge-
based bending energies [Sullivan 2008; Tamstorf and Grinspun 2013]
or the insight that the bending energy can be written in terms of the
intrinsic Laplace-Beltrami operator applied to the shell’s embedding
function [Bergou et al. 2006; Bobenko and Schröder 2005;Wardetzky
et al. 2007].
Grinspun et al [2003] in-

troduced to graphics the sim-
ulation of shells with non-
zero rest curvature. Their for-
mulation is based on differ-
ences of squared mean cur-
vature, leading to a simple
and easy-to-discretize bend-
ing energy. This model is physically suspect, however: consider a
half-cylinder at rest when curled around the x-axis. Unbend the
shell and re-bend it around the y-axis; the deformed configuration’s
strain cannot be captured by looking at mean curvature alone, as
it is pointwise identical to the mean curvature of the rest config-
uration (see inset). Complete support for rest curvature therefore
requires a bending energy that incorporates full information about
the extrinsic deformation of the shell [Grinspun et al. 2006]. One
such discrete energy is described in Weischedel’s work on discrete
Cosserat shells [2012]; our exposition is modeled closely on hers,
though we make different modeling choices (we use an intrinsic
rather than Cosserat shell model, and require more flexible handling
of the shell rest geometry).
A popular alternative to Grinspun et al.’s bending formulation

based on the mid-edge shape operator is to use a triangle-averaged
shape operator proposed by Gingold et al. [2004], which expresses
bending energy of a triangle in terms of the hinge angles of each
of its three edges. Gingold et al. demonstrate how plasticity can
be implemented by maintaining and dynamically updating “rest”
values of the hinge angles, and also propose a simple method for
simulating thin shell fracture. Although Grinspun et al. [2006] raised
concerns about the consistency of this averaged shape operator, it is
simple to implement and has been adopted in thin shell simulation
frameworks like ArcSim [Narain et al. 2013]. We briefly discuss how
Gingold et al.’s operator might be adapted for non-Euclidean rest
geometry in Section 6.

Higher-ordermethods for simulating shells (includingwithNURBS
or subdivision elements) are common in computational mechanics
and isogeometric analysis [Bandara and Cirak 2018; Bathe et al. 1983;
Batoz et al. 1980; Benson et al. 2010; Cirak et al. 2000; Kiendl et al.
2009] and have also been proposed for computer graphics [Wawrzinek
et al. 2011] and growing shells [Vetter et al. 2013]. High-order meth-
ods have some obvious advantages (better convergence behavior in
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Fig. 2. Left: the volumetric shell is parameterized by a slab Ω × [−h/2, h/2]
around a region Ω in the plane. r maps Ω to the shell midsurface. Right: we
parameterize all triangles of discrete shells by a single canonical triangle T .
We express all face-based quantities in the face’s local barycentric coordinate
system (u1, u2), which is not consistent across faces.

the thin limit, continuous surface normals) at the cost of additional
computation and complexity, especially when handling contact.
In this paper, we ignore the problem of mesh tessellation, or of

adapting the mesh in response to either large deflections or large
amounts of growth; such remeshing is an important component of
a practical shell simulation but orthogonal to our focus on shell dy-
namics. An existing tool such as ArcSim [Narain et al. 2012], which
incorporates a method of adaptive remeshing while avoiding signif-
icant popping artifacts, could easily be adopted in our framework if
desired.

2 CONTINUOUS FORMULATION
Before describing our discretization of shells, we briefly review the
formulation in the continuous setting, as this formulation will guide
our discretization.

Shell Geometry. We can represent shells S ⊂ R3 of thickness h
by a parameter domain Ω in the plane and an embedding ϕ : Ω ×

[−h/2,h/2] → R3 with S the image ofϕ (see Figure 2). The Kirchhoff-
Love assumption allows us to represent the entire shell volume only
in terms of the shell’s midsurface r : Ω → R3. In other words,

ϕ(x ,y, z) = r(x ,y) + zn̂(x ,y)

where n̂ = (rx × ry )/∥rx × ry ∥ is the midsurface normal. The metric
g on the slab Ω×[−h/2,h/2], pulled back from R3, can be expressed
in terms of the geometry of the midsurface:

g =
[
a − 2zb + z2c 0

0 1

]
, (1)

where
a = drTdr b = −drTdn̂ c = dn̂Tdn̂

are the classical first, second, and third fundamental forms of the
surface r.
Oftentimes, the parameterization domain of a thin shell is as-

sumed to be also the rest state of the shell, so that the strain in the
material of the shell can be determined directly from looking at g.
We cannot assume this: consider for instance a piece of paper whose
center has been moistened by spilled coffee. The fibers in the coffee
stain stretch; since they are confined by the surrounding non-wet
region of the paper, the paper cannot globally stretch in such a way
that both the wet and dry regions of the paper are simultaneously
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at rest. Instead, the paper will buckle out of plane, into a shape that
compromises between relaxing the in-plane (stretching) strain and
the introduced bending strain. At this point the paper’s rest state is
non-Euclidean—it is impossible to find any embedding of the paper
into R3 that is entirely strain-free.
We therefore record the rest state of the shell using a rest met-

ric ḡ(x ,y, z) [Efrati et al. 2009b].2 Since our model is tailored to
simulating differential in-plane swelling or shrinking across the
thickness of the shell, we make the simplifying assumption that this
rest metric is linear in the thickness direction:

ḡ(x ,y, z) =
[
ā(x ,y) − 2zb̄(x ,y) 0

0 1

]
.

A shell that begins a simulation at rest will simply have ā = a0 and
b̄ = b0, where a0 and b0 are the values of a and b at the start of the
simulation, respectively; this setup is a special case of a shell which
has a rest state specified by a “rest surface” r̄ that is isometrically
embeddable in R3, in which case ā and b̄ are the first and second
fundamental forms of that rest surface. Therefore ā and b̄ can be
thought of as representing the “rest metric” and “rest curvature” of
the shell’s midsurface, respectively.3
To summarize, our parameterization of thin shells involves the

following kinematic elements:
• a thickness h and parameterization domain Ω ⊂ R2, both of
which are fixed over the course of the simulation;

• an embedding r : Ω → R3 representing the shell midsurface’s
“current” or “deformed” geometry, and which evolves over
time. From this embedding, the current midsurface normals
n̂ can be calculated, and thus r provides the embedding of the
full shell volume ϕ, as well as the midsurface fundamental
forms;

• a rest metric ḡ, parameterized by the pair of tensor fields ā, b̄
over Ω, respectively. These might also evolve over time, due
to changes in the shell rest state via expansion or contraction.

2.1 Shell Dynamics
Motivated by the common observation that a sufficiently thin shell
bends much more readily than it will stretch, we assume that the
shell’s deformation involves large rotations but only small in-plane
strain of the midsurface: ∥ā−1a − I∥∞ < h.We also assume that the
shell’s material is uniform and isotropic. The simplest constitutive
law consistent with these assumptions is the St. Venant-Kirchhoff
material model4 together with Green strain; it can be shown (see
e.g. Weischedel [2012]) that these choices yield an elastic energy
density (the Koiter shell model) that can be approximated up toO(h4)
by

W (x ,y) =

(
h

4
∥ā−1a − I∥2

SV +
h3

12
∥ā−1(b − b̄)∥2

SV

)
√

det ā (2)

2Here and throughout the paper, we use an overbar to denote quantities associated to
the shell rest state.
3We stress, though, that these labels are to provide intuition only—ā and b̄ must not,
and generally will not, satisfy usual relationships from differential geometry such as
the Gauss-Codazzi-Mainardi equations.
4The neo-Hookean material model is also popular in computer graphics and could be
used instead, although there is little benefit to doing so when simulating thin shells
since strains are typically small.

where ∥∥SV is the “St. Venant-Kirchhoff norm” [Weischedel 2012]

∥M ∥SV =
α

2
tr2 M + β tr

(
M2

)
,

for material parameters α , β . In terms of the Young’s modulus E and
Poisson’s ratio ν ,

α =
Eν

1 − ν2 , β =
E

2(1 + ν )
.

We thus have a formulation of kinetic energy and potential energy

T [Ûr] =
∫
Ω
hρ∥Ûr∥2√det ādxdy, V [r] =

∫
Ω
W (x ,y)dxdy,

for volumetric density ρ, to which additional external energies and
forces (gravity, constraint forces, etc) can be added to yield equations
of motion via the usual principle of least action.

3 DISCRETIZATION
We approximate the midsurface r with a triangle mesh (V ,E, F );
the positions of the vertices v = [v1, v2 . . .] take the place of the
embedding function r. The general strategy we will use is to assume
that a and b, as well as their rest counterparts ā and b̄, are constant
over each face of the triangle mesh; it will then be straightforward to
write down a discrete analogue of the Koiter elastic energy density
in Equation (2).

Discrete Shell Model. As in the continuous setting, the discrete
shell does not necessarily have a rest state embeddable as a mesh in
R3, making it impossible to parameterize the deformed configuration
of the shell in terms of the rest configuration; additionally we do
not want to assume (or compute) a global parameterization of the
midsurface. Instead, we independently parameterize each triangle
in its own barycentric coordinates (see Figure 2). Let fi jk be a face in
F containing the vertices vi , vj , vk , and denote by T the canonical
unit triangle with vertices (0, 0), (1, 0), (0, 1). Then locally the face
fi jk is embedded by the affine function

ri jk : T → R3, ri jk (u1,u2) = vi + u1(vj − vi ) + u2(vk − vi );

under this embedding, the Euclidean metric on face fi jk pulls back
to the first fundamental form

ai jk =
[

∥vj − vi ∥2 (vj − vi ) · (vk − vi )
(vj − vi ) · (vk − vi ) ∥vk − vi ∥2

]
on T . If we are given an explicit rest configuration v̄i of the shell,
we can compute the rest first fundamental form āi jk analogously;
or alternatively we can set āi jk to any desired symmetric positive-
definite 2 × 2 matrix. Notice that any such matrix corresponds to
some choice of “rest lengths” for the edges of face fi jk that obey the
triangle inequality, but that two faces sharing a common edge do
not necessarily agree about that length.
These discrete fundamental forms are enough to discretize the

stretching term in Equation (2): each face contributes a term∫
T

h
4
∥ā−1
i jk ai jk − I∥2

SV

√
det āi jk =

h
8
∥ā−1
i jk ai jk − I∥2

SV

√
det āi jk ,

where the division by two is due to the canonical triangle T having
area 1

2 . This energy is quartic in the positions of the mesh ver-
tices, and is exactly the energy of constant-strain triangle stretching
elements commonly used in cloth simulation.
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Fig. 3. Stereographic projection of the disk into the plane yields a conformal parameterization of one by the other (left); we set b̄ = 0 and ā to this conformal
metric, and simulate the disk dynamics as it relaxes to equilibrium by adopting a spherical shape (right).

For the bending term, we also need a discretization of the second
fundamental form. Here there is a significant departure between
the smooth theory and the discrete approximation: we would like
to apply the Kirchhoff-Love principle to extrude the mid-surface
into a shell volume, but unfortunately normal offsets of triangle
meshes are no longer guaranteed to be triangle meshes (or even
piecewise-affine). One can instead look at weaker notions of mesh
parallellity [Bobenko et al. 2010]:

• vertex offsets require choosing a normal at each mesh vertex
(itself a problem without an obvious solution), and moving
each vertex a constant distance along this normal usually
does not result in faces parallel to the original faces;

• edge offsets likewise do not guarantee parallel faces;
• face offsets are not conforming: moving each of the faces
neighboring a vertex of valence four or higher in their normal
directions yields new faces that are not guaranteed to still
intersect at a common point.

While there is no perfect choice, we use the discretization that
arises from edge parallelity, leading to the so-called “mid-edge” dis-
cretization of the second fundamental form [Grinspun et al. 2006;
Weischedel 2012]. This approach has several advantages: first, com-
puting the edge offsets of a face requires knowing only the geometry
of that face and its three edge neighbors, leading to a compact and
constant-size discrete stencil for computing the discrete second fun-
damental form. By contrast, vertex offsets lead to stencils that vary
depending on vertex valence. Moreover, the mid-edge formulation is
significantly more robust to triangle inversion artifacts. Unlike in a
face-offset-based approach, it also allows us to discretize rest second
fundamental forms in the same place as the first fundamental forms,
on the mesh faces.
Let ei denote the edge opposite vertex i on face fi jk , and define

the mid-edge normal n̂i by:

• the face normal (vj−vi )×(vk−vi )
∥(vj−vi )×(vk−vi ) ∥

, if ei is a boundary edge;
• the mean of the face normals of the two faces incident on ei ,
otherwise.

Let fϵi jk denote the triangle formed by offsetting all of fi jk ’s edges
in their mid-edge normal direction by a distance ϵ , and let aϵi jk be
the discrete first fundamental form of that offset triangle. Then the
discrete second fundamental form b can be defined, by analogy to
Equation (1), as the first-order correction aϵi jk = ai jk − 2ϵbi jk +

Fig. 4. We simulate one of Wang et al.’s [2017] shape-changing pasta de-
signs, consisting of a half-annulus decorated with concentric rings which
are both thicker (and thus more bending-resistant) and less porous than the
surronding material. Our simulation predicts qualitatively identical curling
behavior of the pasta as both the physical experiment and volumetric FEM
simulation conducted by Wang et al. Top-left: the initial geometry, showing
the thickened concentric ribs. Bottom-left: our simulated result. Right: pho-
tographs of Wang et al’s experimental results, at different stages of swelling.
Photographs reproduced with permission.

O(ϵ2), leading to the formula

bi jk =
1
2

[
(n̂i − n̂j ) · (vi − vj ) (n̂i − n̂j ) · (vi − vk )
(n̂i − n̂k ) · (vi − vj ) (n̂i − n̂k ) · (vi − vk )

]
.

(Alternatively, this formula can be derived by discretizing the rela-
tion b = −drTdn̂ using divided differences). Although it may not
appear so at first, the matrix bi jk is always symmetric (since each
mid-edge normal is orthogonal to that edge); it is not in general
positive-definite.5 We represent the rest second fundamental form
b̄i jk by an arbitrary symmetric 2 × 2 matrix assigned to each face.

5As observed by Grinspun et al [2006], the shape operator d n̂ in the continuous setting
always maps tangent vectors to tangent vectors, whereas in the discrete setting the
finite difference of mid-edge normals is not always parallel to the mesh triangle. This
discrepancy is a consequence of the failure of edge-offset meshes to also be face-offsets.
Corrections to the shape operator have been proposed to remedy this quirk, though we
found them unnecessary (and in any case, any components of d n̂ that lie orthogonal
to the face are annihilated when forming the second fundamental form −drT d n̂).

2018-05-13 20:52 page 5 (pp. 1-13) ACM Transactions on Graphics, Vol. 37, No. 4, Article 146. Publication date: August 2018.



146:6 • Hsiao-yu Chen, Arnav Sastry, Wim M. van Rees, and Etienne Vouga

Choosing Rest Fundamental Forms. Depending on the mechanism
for growth being simulated, there are several choices for how to set
and update ā and b̄:

No Growth: A classic shell, whose rest state is fixed, simply has ā =
a0 and b̄ = b0, where a0 denotes the first fundamental form induced
by v0, the positions of the midsurface vertices at the beginning of
the simulation. (And if the shell is pre-strained, ā, b̄ can be adjusted
appropriately).

Pullback Forms: In the case where the shell’s initial configuration
is flat, it is natural to align it with a region of the xy plane, and
prescribe rest fundamental forms in Euclidean (x ,y) coordinates,
instead of prescribing an āi jk in the barycentric coordinates of each
triangle. Let āxy and b̄xy be such prescribed forms; these can be
sampled on each triangle fi jk ’s centroid and pulled back to the
triangle’s parameterization domain to give

ā = TT āxy (ξ )T , b̄ = TT b̄xy (ξ )T

in barycentric coordinates, whereT =
[
v0
j − v0

i v0
k − v0

i

]
maps

from vectors in the barycentric coordinates of fi jk to Euclidean
space, and ξ = 1

3 (vi + vj + vk ) is the face centroid.

Isotropic Growth: In many cases growth is isotropic and uniform
through the thickness of the shell (for instance, when plastic shrinks
in response to heat, or biological tissue grows through cell division).
In this case ā = e2si jk a0, b̄ = b0 for a per-face conformal factor s
encoding the amount of growth (or shrinking, if negative).

Linear Differential Swelling: Porous materials like paper swell
whenmoistened, and differences in water concentration through the
thickness of a thin shell can induce metric frustration and buckling.
This mechanism is responsible for the buckling of paper when wet,
and the curling of leaves as they dry.

We model this swelling mechanism by assuming that the amount
of moisture varies linearly in the thickness direction of the shell, and
represent the percentage of additional moisture present in the ma-
terial at the top and bottom of the shell by two scalarsm+i ,m

−
i ∈ R

at each vertex vi . We average these values to compute a moisture
contentm±

i jk per face fi jk . The additional water content induces
swelling, which changes the rest geometry; assuming a linear rela-
tionship between rest length and moisture concentration [AB. 1993],
we can write the rest metric of the volumetric shell as

ḡ =

[
ḡ−

(
1
2 − z

h

)
+ ḡ+

(
1
2 +

z
h

)
0

0 1

]
.

Here ḡ+ and ḡ− are the metric on the top and bottom of the shell,

ḡ+ = (1 +m+µ)2(a0 − hb0); ḡ− = (1 +m−µ)2(a0 + hb0)

for moisture expansion coefficient µ. Then

ā =
(1 +m+µ)2 + (1 +m−µ)2

2
a0 + h

(1 +m−µ)2 − (1 +m+µ)2

2
b0

b̄ =
(1 +m−µ)2 − (1 +m+µ)2

2h
a0 +

(1 +m+µ)2 + (1 +m−µ)2

2
b0 .

Piecewise Constant Differential Swelling Instead of a linear
moisture gradient through the thickness, in some cases it is more

appropriate to model a piecewise constant moisture profile, such
as when modeling bilayers with different material properties. For
example, Wang et al [2017] fabricate exotic pasta geometries by
cooking pasta composed of two layers of different porosity. van Rees
et al [2017] showed that a bilayer of thickness h with piecewise-
constant rest metric

ḡ(z) =


{
ḡ+, z > 0
ḡ−, z < 0

0

0 1


is energetically equivalent to a shell with linearly-varying metric

ā =
g+ + g−

2
, b̄ =

3
4h

(g− − g+);

thus the desired piecewise-constant metric taking into account
moisture-induced swelling is

ḡ+ = (1+m+µ+)2
(
a0 −

2
3
hb0

)
; ḡ− = (1+m−µ−)2

(
a0 +

2
3
hb0

)
,

where µ+ and µ− encode the differing moisture-length relationship
in the two layers. Converting this piecewise-constant metric back
into the equivalent linear metric gives

ā =
(1 +m+µ+)2 + (1 +m−µ−)2

2
a0 + h

(1 +m−µ−)2 − (1 +m+µ+)2

3
b0

b̄ = 3
(1 +m−µ−)2 − (1 +m+µ+)2

4h
a0 +

(1 +m+µ+)2 + (1 +m−µ−)2

2
b0 .

Linear Differential Swelling with Machine Direction In paper,
leaves, and other materials composed of microscopic fibers, swelling
induced by moisture is anisotropic, since fibers swell more in their
circumferential than axial direction. We can model this behavior by
storing a machine direction di jk per triangle face; this direction, a
vector in the barycentric coordinates of the triangle, is the direction
in which the fibers are aligned. Given this direction, we can compute
the intrinsically orthogonal direction d⊥i jk (with dTi jka

0
i jkd

⊥
i jk = 0),

and impose different moisture-length constants µ and µ⊥ in the d
and d⊥ directions, respectively. Then the desired rest metrics at the
top and bottom of the shell are

ḡ+ = TTM+T−T (a0 − hb0)T−1M+T ,

ḡ− = TTM−T−T (a0 + hb0)T−1M−T .

whereT =
[
d d⊥

]−1 transforms from the triangle’s barycentric
coordinates to the d, d⊥ coordinate system, and

M± =

[
(1 +m±µ) 0

0 (1 +m±µ⊥)

]
anisotropically stretches in the machine direction. As in the previous
cases, the rest fundamental forms can be computed from these
metrics using the formula

ā =
ḡ+ + ḡ−

2
, b̄ =

ḡ− − ḡ+

2h
.
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Fig. 5. Time evolution of a plastic armadillo and a plastic bunny as they shrink when exposed to localized heating (red beam in the figure), where redder parts
have higher temperature.

Elastic Energy. We can now write down the full elastic energy of
the shell, in exact analogy to the Koiter energy:

Eelastic(v) =
∑

fi jk ∈F

√
det āi jk

2

(
h
4
∥ā−1
i jk ai jk − I∥2

SV +
h3

12
∥ā−1
i jk (bi jk − b̄i jk ) ∥

2
SV

)
.

It is worth making a few observations about this energy. First, the
matrices a, ā, etc. are coordinate-dependent: replacing the parameter-
ization domain T , or even cyclically permuting the order of vertices
around a face, would alter the values in the matrix. However, the
generalized eigenvalues of a − ā and b − b̄ with respect to the inner
product ā are coordinate-independent, as is the total energy. Per-
haps the easiest way to see this fact is to note that these spectra
measure the geometrically exact strain induced by an affine embed-
ding of T , and so must be independent of the coordinates chosen.
Second, the terms of the form ∥ā−1M ∥2

SV are sometimes instead
written as ∥ā−1/2M ā−1/2∥2

SV , where ā−1/2 is the unique positive-
definite square root of ā. The two expressions are equivalent, since
the spectrum of a product of matrices is invariant under cyclic per-
mutation, but the form used above is slightly more convenient for
computation.

Mass Matrix. Whether swelling or shrinking of the surface affects
the mass of the surface depends on the mechanism: changes due
to growth or moisture absorption/evaporation do change the mass,
while plastic polymers contracting when exposed to heat do not. In
cases where modeling the mass change is desired, the mass λi of
each vertex can be recomputed at a given instant in time by

λi =
∑
f∼vi

ρh

3
√

det āf/2;

here the sum is over all faces f incident to vi and yields the usual
“lumped” or barycentric mass matrix Λ.6

Viscous Damping. Since the growth and swelling phenomena we
want to simulate all take place at relatively long time scales, and
paper and plastic are viscoelastic, a damping model is needed to
dissipate the elastic waves in the material. We implement a simple
Kelvin-Voigt damping model by including a damping potential

Edamp(v, v
prev) =

η

E
∆t

∑
fi jk ∈F

√
det āi jk

2
(Ws +Wb)

Ws =
h
4

[aprev
i jk

]−1 ai jk − aprev
i jk

∆t


2

SV

, Wb =
h3

12

[aprev
i jk

]−1 bi jk − bprev
i jk

∆t


2

SV

.

where ∆t is the time step size, vprev denotes the values of v in the
previous time step (and likewise for aprev, etc), and η is a viscosity
parameter.

Table 1. Table of reasonable physical parameters for ordinary paper.

Thickness 0.1 mm Viscosity η 5 · 10−13 Pa · s
Young’s Mod. E 2 × 109 Pa Swelling const. µ 0.0025
Poisson’s Ratio ν 0.3 Swelling const. µ⊥ 0.001
Density ρ 250 kg/m3

6For absorption/evaporation, one might also want to model the fact that water has a
different density than the shell material; we do not do so in our examples.
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Summary. In the simulation we track the following variables:
• The configuration v and configurational velocity Ûv. These
vertex positions completely encode the kinematics of the
discrete shell.

• Two matrices ā and b̄ per face in F , both symmetric, and
with ā positive-definite. These matrices store information
about the rest state of the discrete shell, and may change over
the course of the simulation. In most of our simulations, the
mechanism for changes in the shell rest state is either change
in temperature or absorption/evaporation of moisture; in this
case we store two scalarsm+ andm− per vertex, indicating
temperature/moisture concentration on the top and bottom
boundary of the shell, and ā and b̄ are computed from these
scalars, as described above.

In addition, we track a machine direction d per face, which stays
constant over the course of the simulation; finally Table 1 lists the
physical parameters and constants on which the simulation depends,
as well as reasonable values of these parameters for the special case
of ordinary paper. We use these default values in all experiments
described below, unless specified otherwise.

Time Integration. We integrate the equations of motion using
implicit Euler time integration:

Λ
Ûvi+1 − Ûvi

∆t
= F

(
vi+1, vi

)
vi+1 = vi + ∆t Ûvi+1, (3)

where superscripts denote the time step index, and the total force is
given by

F
(
vi+1, vi

)
= Fext − ∇Eelastic

(
vi+1

)
− ∇Edamp

(
vi+1, vi

)
where Fext encapsulates contact forces and external forces like
gravity. Solving these equations requires computing first and sec-
ond derivatives of the elastic energy; the derivatives of a triangle’s
stretching term depend only on the vertices of that triangle, whereas
the derivatives of the bending term also depend on vertices of the
neighboring three triangles (due to the dependence of b on the
mid-edge normals). The bending term in particular is somewhat
unpleasant to differentiate due to its high degree of nonlinearity,
and special cases that arise for triangles adjacent to the mesh bound-
ary. We provide source code for calculating the derivatives on the
project webpage.

4 MOISTURE DIFFUSION
Moisture diffuses in both the thickness and in-plane directions of
the shell, and from the environment into the shell. We assume that
within the shell, moisture diffuses isotropically at a rate uniform
throughout the shell, so that the percentage of additional moisture
m(x ,y, z; t) : Ω × [−h/2,h/2] ×R→ R obeys the diffusion equation

∂m

∂t
(x ,y, z) =

{
D∆gm, −h/2 < z < h/2
s(x ,y, z), z = ±h/2,

(4)

where D is the diffusion coefficient, ∆g is the intrinsic Laplace-
Beltrami operator with respect to the volumetric metric g, and s is
a source term describing diffusion into (or out) of the shell from the
environment.

Fig. 6. A comparison between the experiment (left), simulation (middle), and
the thickened cross-section (right) as time progresses for a water-painted
paper strip. Orange and green indicate high and low moisture content,
respectively.

We discretize equation (4) with bilinear Galerkin finite elements
on the triangular prisms F × [−h/2,h/2]; the solutionm and source
term s in the prism surrounding face fi jk are approximated by linear
combinations of basis functions

m(u1,u2, z) =
∑

v ∈{i, j,k }

(
m+vψ

+
v +m

−
vψ

−
v
)

s(u1,u2, z) =
∑

v ∈{i, j,k }

(
s+vψ

+
v + s

−
vψ

−
v
)

parameterized over the prism T × [−h/2,h/2] surrounding the
canonical unit triangle. In other words

ψ ±
i =

(1 − u1 − u2)
h

(
h
2
± z

)
; ψ ±

j =
u1
h

(
h
2
± z

)
; ψ ±

k =
u2
h

(
h
2
± z

)
.

From the above equations, the moisture is updated each time step
using implicit time integration,

(MG + ∆tDKG )mi+1 = MG (mi + ∆tsi ) (5)

where si is the discretized source term. This source term s±i pre-
scribes at each vertex the rate of diffusion of moisture in or out of
the shell at both the top and bottom layer of the shell; the details of
this term depend on the problem being modeled.

When the mechanism for swelling/shrinking is heat rather than
moisture, the above diffusion formulation remains unchanged, with
m reinterpreted as temperature rather than moisture.

5 NUMERICAL ISSUES
Integrating the physics (3) requires some care, as the scale-separation
between the stretching and bending forces, along with high values
of stiffness, pose numerical challenges. (The diffusion equation in
Equation (5) poses no numerical difficulties.)

Newton’s Method. We recommend the usual technique of using
the explicit Euler step ṽ = vi +∆t Ûvi as the initial guess in Newton’s
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method each iteration; writing vi+1 = ṽ + ∆tδv, we have from
Equation 3

Λδv − ∆tF
(
ṽ + ∆tδv, vi

)
= 0 = σ (δv),

which is well-scaled for using Newton’s method to solve σ (δv) = 0.
The stiffness and nonlinearity of the elastic forces prohibit very
large time steps, though a line search allows time integration using
∆t ≈ 10−4 seconds.

The Newton gradient∇σ = Λ+∆t2∇F is symmetric and almost al-
ways positive-definite, and thus amenable to sparse Cholesky decom-
position for small-to-medium sized meshes. We use the CHOLMOD
solver of the SuiteSparse library [Chen et al. 2008] for solving the
Newton linear system. In the (rare) cases where∇σ is detected by the
solver to be indefinite, we regularize by using∇σ = (1+α)Λ+∆t2∇F
for progressively larger multiples of α , until the Cholesky decom-
position succeeds. For larger meshes, where the Cholesky factors
do not fit in main memory, we solve the equations using Alglib’s
implementation of LBFGS [Bochkanov 1999]. Iterative methods
(conjugate gradients) could also be used.

Inexact Hessian. The Hessian of the bending energy is expensive
to compute, and almost always dominated by the Hessian of the
(much stiffer) stretching term; we observed improved performance
replacing the exact bending Hessian with a partial approximation.
In particular, we can rewrite the bending energy on face fi jk as

Ebending(v) =
h3√det āi jk

24

(
r1(v)2 + r2(v)2

)
r1(v) =

√
α/2 tr

(
ā−1
i jk (b − b̄i jk )

)
; r2(v) =

√
β tr

( [
ā−1
i jk (b − b̄i jk )

]2
)

(note that the trace of the square of any real matrix is guaranteed to
be nonnegative). This allows approximation of the Hessian by the
Gauss-Newton-esque

HEbending ≈
h3√det āi jk

12

(
∇r1∇r

T
1 + ∇r2∇r

T
2

)
.

Inverted Triangles. We observed a somewhat subtle failure case
when running simulations containing neighboring triangles with
very different prescribed metrics ā: if the two triangles are exactly
coplanar, and one triangle collapses completely and inverts, then the
mid-edge normal on the common edge is undefined (as its direction
is now the mean of two anti-parallel vectors). This failure case can
be prevented by either maintaining a minimum vertex/edge/face
distance using continuous-time collision detection, by adaptively
remeshing triangles undergoing excessive deformation [Narain et al.
2012], or by adjusting the initial mesh. The usual advice of using an
intrinsic Delaunay triangulation, and avoiding adjacent triangles of
very disparate size, applies.

Symmetry-Breaking. Any rest flat (b̄ = 0) shell has an extrinsi-
cally flat equilibrium configuration, regardless of ā. In most cases
this equilibrium state is unstable and is not observed in the real
world, due to small imperfections in the shell material breaking
the symmetry of the initial and/or rest state. We apply a small ran-
dom perturbation to the rest and initial configurations of all of our
initially-flat examples with b̄ = 0, to force symmetry-breaking.

6 HINGE-BASED SHAPE OPERATOR
Gingold et al. [2004] use a hinge-based shape operator instead, mo-
tivated from the observation that on the edges, the shape operator
has rank one, and that averaging this per-edge shape operator over
an area should yield an approximation to the smooth shape operator.
The formulas as originally presented rely fundamentally on the exis-
tence of an embedded, Euclidean undeformed mesh, and so it is not
obvious how to extend the formulation to the non-Euclidean setting
where arbitrary ā and b̄ are prescribed. One possible extension of
Gingold et al.’s formula is

SH(θ ) =
3∑
i=1

√
wT
i āwi tan (θi/2)

∥wi ∥2
√

det ā
wiwT

i

where i sums over the three edges of the canonical barycentric
triangle T ; wi is the vector normal to edge i and with magnitude
equal to that of edge i , and θi is the hinge angle associated to edge i .
As defined above, SH takes into account length and area distortions
of the triangle’s rest pose due to the metric ā, while reducing to
Gingold et al.’s formula when ā = I. Given rest hinge angles θ̄i , the
difference SH(θ ) − SH(θ̄ ) can be substituted in for ā−1(b − b̄) in the
Koiter energy. In the following, we compare this formulation to the
one based on the mid-edge shape operator proposed above.

Solving for Hinge Angles. Given a desired b̄, rest angles θ̄i can be
recovered by testing the shape operator against the wi : we desire

wT
i b̄wi

wi āwi
= wT

i SH(θ̄ )wi , i ∈ {1, 2, 3},

a system of three linear equations in tan(θ̄i/2). Note that two neigh-
boring faces might disagree on the value of the rest hinge angle of
their common edge; to support non-Euclidean rest geometry, both
values must be stored and used when computing the energy density
of their respective triangles.

7 RESULTS

7.1 Analytic Benchmarks
We first test the method on examples where the equilibrium state
can be computed exactly. When an embedding r exists for which
a = ā and b = b̄, that embedding is clearly a global minimizer of the
elastic energy, regardless of material parameters. We ran all of the
following experiments using the default values in Table 1. We ran
the simulation for enough time to reach steady state.

Swelling of Square. We take Ω to be a unit square, with r(x ,y) =
(x ,y, 0), and assign static fields for both ā and b̄ to the entire shell.
Table 2 summarizes the values of ā and b̄ we used, and the expected
shape and curvatures of the exact solution. In cases where b̄ = 0
and ā is homogeneous over the surface, our method must (and does)
reproduce the exact solution. Examples with rest curvature are
affected by discretization error; we ran the simulation using three
mesh resolutions (820/2686/39210 vertices) and for each, plot the
distance of each point from the corresponding point on the exact
solution in Figure 7.

Isotropic Growth. The Riemann mapping theorem guarantees that
every surfaceM with disk topology can be parameterized by the unit
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Table 2. Didactic experiments on a unit square. Different ā and b̄ are prescribed over the square, and in each case we compare the simulated steady state to
the expected analytic solution with mesh resolution of 820 (//2686//39210) vertices.

ā b̄ Expected Shape Mean Curv. Gauss Curv. Error (one-sided Hausdorff)
4I 0 Enlarged Square 0 0 1.38 · 10−5

1
1−x2−y2

(
1 − y2 xy
xy 1 − x2

)
1

1−x2−y2

(
1 − y2 xy
xy 1 − x2

)
Spherical Cap 1 1 5.32 · 10−2 // 3.47 · 10−2 // 2.20 · 10−2(

1 + x2 −xy
−xy 1 + y2

)
1√

1+x2+y2

(
−1 0
0 1

)
Hyperboloid Cap varies < −1 1.69 · 10−2(

2 1
1 2

)
0 Rhombus 0 0 4.82 · 10−11

I
(
1 0
0 0

)
Cylindrical Patch 1 0 2.23 · 10−2 // 1.08 · 10−2 // 1.61 · 10−2

Fig. 7. Distance between our simulated solutions and analytic solutions for
the test cases in table 2. Warmer colors mean larger error.

disk, with metric conformally equivalent to the Euclidean metric.
This insight was exploited by Kim et al [2012] to grow an approxi-
mate sphere from a square. WhenM has finite thickness, however,
we do not expect the shell to grow exactly into the shapeM , since
embedding the shell as the shape M minimizes stretching energy
while ignoring bending energy. Nevertheless, we expect the steady
state geometry to closely resemble M , especially when M is con-
vex and the shell thickness h is small. Figure 3 shows the result of
swelling the unit disk into a sphere: we stereographically project the
sphere of radius 1/4 units to the plane, and take the region bounded
by the unit disk. The stereographic projection is conformal, so we
set ā on the unit disk per the conformal factor, and simulate the
damped dynamics of the disk returning to its equilibrium state. No-
tice that the disk transitions through highly deformed intermediate
states before “popping” back into a spherical shape. The rest state
is not perfectly spherical at the boundary: the shell flares outward,
as expected since the perfectly spherical configuration minimizes
stretching energy while neglecting bending. A theoretical argument
for this behavior at the boundary is given in [Efrati et al. 2009a].

Comparison to Finite Elements. We compare our method to finite
elements to validate both the discretized elastic energy, and the
equilibrium configuration, of a slab undergoing differential non-
Euclidean growth. More specifically, for different growth magni-

tudes G we prescribe the rest metric ḡxy =
[
(1+G)z

h +
(
1 − z

h

)]2
I

throughout the volume of a 20 by 10 mm slab of thickness h = 0.1

mm, and evaluate its elastic energy using three methods: (i) tetra-
hedral finite elements using a St. Venant-Kirchhoff material model,
where each tetrahedron is assigned a piecewise constant rest met-
ric by evaluating ḡ at its centroid; (ii) our method, as described
in section 3; (iii) our method, using Gingold et al.’s hinge-based
shape operator, as discussed in section 6. All finite element ener-
gies and simulations were computed using the Vega library [Barbič
et al. 2012]. We also compute two ground truth energy values: the
true elastic energy of a St. Venant-Kirchhoff material integrated
over the shell volume, and the energy of the midsurface-based thin
limit approximation in equation 2. Figure 8 shows convergence
plots of the elastic energy of the finite element and shell meth-
ods as a function of mesh resolution. For a fixed value G = 0.03,
we compute the energy of a non-equilibrium embedding of the
slab r(x ,y) = (sin[100x], 100y, cos[100x]). Our method converge
linearly to the Koiter energy (2), in agreement with previous studies
of Euclidean shells discretized using the mid-edge b [Weischedel
2012]. Our method converges to an energy slightly higher than the
exact shell energy; we believe the discrepency is due to membrane
locking, i.e. the impossibility of bending a discrete surface without
stretching any triangles [English and Bridson 2008]. Figure 10 plots
the error of both shell methods relative to the FEM solution, for
different levels of refinement; on a coarse mesh our method slightly
underestimates the curvature of the FEM solution; the formulation
using Gingold et al.’s operator overestimates it. The overall one-
sided Hausdorff distance between the simulation and ground truth
(as computed using volumetric FEM) for our method, from coarse to
fine, is 2.25 · 10−4, 8, 93 × 10−5, and 8.09 · 10−5 m. Using the hinge-
based shape operator instead, the distance is 2.9 · 10−4, 2.45 × 10−4,
and 2.34 × 10−4 m.

Table 3 compares the limit energy values of the discrete methods
to the ground truths, for different values of G (the meshes used
for this experiment contain 22881 tetrahedra/ 5538 triangles). Our
method shows good agreement with the Koiter energy. Notice that
for high values of G, even the exact Koiter energy does not agree
with the true volumetric elastic energy; this is because as G grows
large, the modeling assumption that strain is small relative to the
thickness of the shell no longer holds for this imposed embedding.

7.2 Comparisons to Experiments
Curling of Paper. Ordinary paper, when moistened on one side (by

painting water, or placing the paper on a damp sponge), undergoes
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Table 3. Comparison of the elastic energy of a thin slab, simulated using tetrahedral finite elements, our method using the mid-edge shape operator, and
using Gingold’s hinge-based shape operator. Higher G induces more differential growth.

Method G = 0.005 0.03 0.05 0.08 0.1 0.3 0.5
True Volumetric Energy 1.60 · 10−6 5.64 · 10−5 1.55 · 10−4 3.87 · 10−4 5.97 · 10−4 4.77 · 10−3 1.20 · 10−2

Thin Limit Approximation 1.60 · 10−6 5.77 · 10−5 1.60 · 10−4 4.10 · 10−4 6.40 · 10−4 5.67 · 10−3 1.54 · 10−2

Our Energy 1.60 · 10−6 5.77 · 10−5 1.60 · 10−4 4.10 · 10−4 6.40 · 10−4 5.67 · 10−3 1.54 · 10−2

Hinge-based Formulation 2.20 · 10−6 8.01 · 10−5 2.29 · 10−4 6.11 · 10−4 9.83 · 10−4 1.23 · 10−2 5.01 · 10−2

Volumetric Finite Elements 1.60 · 10−6 5.60 · 10−5 1.53 · 10−4 3.85 · 10−4 5.93 · 10−4 4.74 · 10−3 1.19 · 10−2

101 102 103 104 105

Number of computational elements

10 1

100

101

Re
la

tiv
e 
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shell: our method
shell: hinge-based
FEM
slope -1

Fig. 8. Comparison of energy convergence rate as a function of resolution of
our method, the alternative hinge-based formulation, and volumetric FEM.
The FEM energy was compared to the analytic volumetric elastic energy.
For both shell methods, the computed energy was compared to the analytic
thin-limit energy in equation (2). Both our method and FEM show linear
convergence to their respective exact energies.

complex dynamic behavior.Water diffuses into the wet side, and that
side swells, causing global curling due to this differential material
growth. Over time, water penetrates the entire thickness of the
paper and the water concentration becomes uniform; the paper
flattens again. This process plays out over about ten seconds. We
compare experiment and simulation of this behavior: we use a brush
to moisten a piece of real paper, and compare the video of the
curling and uncurling of the paper to a simulation of the same
phenomenon. Figure 6 shows the experiment, the simulation, and a
stylized, thickened cross-section of the paper showing the difference
in moisture concentration through the paper thickness over time.

Radial Swelling of Disk. Sharon and Efrati [2010], in their pio-
neering work on the geometry of non-Euclidean plates, induced
non-uniform growth in a punctured disk of NIPA polymer by vary-
ing the cross-linking ratio as a function of the radius away from the
disk’s center. We compare simulation and experiment in figure 9.

7.3 Effects of Parameters
One advantage of our formulation of swelling thin shells is that
it supports physical material parameters. In this section, we show

Fig. 9. We compare the experiments of Sharon and Efrati [2010] using
polymer disks (top) with our simulation (bottom) for two prescribed radially-
varying rest metrics. Blue regions correspond to higher growth rates.

results highlighting the importance of these parameters and their
effects on the behavior of swelling and shrinking thin objects.

Thickness. Since it controls the relative importance of stretching
and bending, the thickness of a shell is its most important physical
parameter. Changing the thickness will often dramatically change
how a shell deforms. For example, when a moist paper annulus
dries, it rolls up. Depending on its thickness, the annulus transitions
through several intermediate shapes before rolling up completely:
the outer boundary of the annulus lifts to form an n-sided polygon,
with n decreasing over time as one metastable configuration cas-
cades into the next. Figure 12 shows the range of behavior for an
annulus of inner radius 1 cm and outer radius 2 cm, and several
paper thicknesses (0.05, 0.1, 0.2 and 0.5 mm).

Machine Direction. As mentioned above, when paper is manu-
factured, its fibers arrange in a preferential direction, leading to
anisotropic growth when the paper is moistened. In figure 12 (right)
we repeat the annulus experiment with paper whose fibers are
aligned to the x direction (left to right in the figure). Notice the
dramatic change in the annulus dynamics, compared to figure 12
(left).

7.4 Qualitative Experiments
We end with several experiments that demonstrate the flexibility of
the method to simulate complex geometries undergoing nonlinear
deformations due to differential swelling.
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Fig. 10. Visualization of distance
between solutions using thin shell
simulations of our method (left),
and our method with hinge-based
shape operator (right), compared
to FEM formeshes with 1277, 3594,
and 5538 vertices, plotted over the
slab’s material domain.

Fig. 11. Deformed punctured plas-
tic spheres with different temper-
ature distribution with hotter re-
gion indicated as red are shown
on the top panel. Plastic torus de-
formation due to heat source (red
sphere) through time is shown in
the bottom.

Table 4. Timing numbers for the simulations shown in the paper. Each sim
used one thread on an Intel Xeon E3-1270 desktop with 16GB RAM.

Example Fig verts tris time step (s) time/step (s)
Bunny 5 51k 102k 10−5 5.25
Armadillo 5 42k 86k 10−5 33.88
Pasta 4 9k 19k 10−4 23.6
Globe 3 5k 10k 10−4 0.5
Annuli 12 1.5k 3k 10−4 8

Shape-changing Food. Differential growth has been used to design
gelatin films that fold into novel shapes, by exploiting the ability
to fabricate the film into a bilayer of differing density and poros-
ity [Wang et al. 2017]. Wang et al. validated their designs using a
volumetric simulation in ABAQUS; in figure 4 we compare their
simulated and experimental results to our thin shell simulations,
demonstrating that a reduced shell model can accurately predict the
behavior of the bilayer without need of a volumetric simulation.

Melting Plastic. We simulate the behavior of several thin-shell
plastic objects (sphere, torus bunny, and armadillo) shrinking when
exposed to heat. Notice the complex buckling patterns visible in
these examples, due to metric incompatibility introduced into the
object geometry during heating. See figure 5 and figure 11.
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Fig. 12. The left figure shows the curling behavior of moist paper annuli as they dry, with time increasing from top to bottom. Varying the thickness (from left
to right, the thicknesses of the annuli are 0.05 mm, 0.1 mm, 0.2 mm, and 0.5 mm) demonstrates that the amount and type of curling is strongly dependent on
the thickness of the material. The right figure shows the same annuli endowed with a principal machine direction along the x axis (directed from left-to-right
in the figure): the dynamics are markedly different from the case of no machine direction.
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